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1. Introduction. The XVI-th Hilbert problem consists of two parts. The first
part concerns the real algebraic geometry and asks about the topological proper-
ties of real algebraic curves and surfaces. The second part deals with polynomial
planar vector fields and asks for the number and position of limit cycles.

The progress in the solution of the first part of the problem is significant. The
classification of algebraic curves in the projective plane was solved for degrees
less than 8. Among general results we notice the inequalities of Harnack and
Petrovski and Rohlin’s theorem. Other results were obtained by Newton, Klein,
Clebsch, Hilbert, Nikulin, Kharlamov, Gudkov, Arnold, Viro, Fidler. There are
multidimensional generalizations: the theory of Khovansky, the inequalities of
Petrovski and Oleinik, and others.

In contrast to the algebraic part of the problem, the progress in the solution
of the second part is small. In the present article we concentrate on the second
part of the XVI-th Hilbert problem.

2. Basic definitions. We consider the systems of differential equations of the
form

ẋ = f(x, y), ẏ = g(x, y), (1)

where f, g are polynomials of degree ≤ n. The qualitative properties of such
systems are determined by the properties of their solutions φ(t) = (x(t), y(t)).
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Some of the solutions are equilibrium points, the solutions to f = g = 0 (in the
number ≤ n2). Other are periodic solutions φ(t + T ) = φ(t) giving phase curves
diffeomorphic to the circle.

A limit cycle of system (1) is a periodic solution which is isolated among the
set of all periodic solutions. Therefore the trajectories φ(t) which start near a
limit cycle γ tend to γ as t → ∞ or as t → −∞. It is possible that the limit cycle
is stable on one side and unstable on the other side.

The second part of the XVI-th Hilbert problem asks for the number and posi-
tion of limit cycles of system (1). In particular, one wants to get the bound N(n)
for the number of limit cycles of systems of degree ≤ n.

3. History of errors. Interesting is the history of the second part of the
XVI-th Hilbert problem.

The first task is to show the finiteness of the number of limit cycles for an
individual vector field. In the beginning of 1920-th years Dulac published the
memoir [4], which contained the proof of the finiteness theorem. The result had
been considered to be true until the end of 70-ties when some people started to
read Dulac’s book carefully and could not understand some of his arguments. It
was Il’iashenko who in 1979 definitively showed that Dulac’s proof contains an
essential gap.

Since then Il’iashenko started to work on completing the proof of the finiteness
theorem. He succeeded. His complete demonstration is contained in the book [9]
(300 pages), but the main ideas can be found in his shorter work [8].

Another proof was announced by the group of French mathematicians,
J. Ecalle, J. Martinet, R. Moussu, J. P. Ramis, in [5]. In that note they gave
a general scheme of the proof. Later Ecalle published more details in [6].

Therefore we have two proofs. However only Il’iashenko’s proof is clear and
well established; he worked on its presentation since 1986. The quality of the
French proof is far below the Russian one.

Now the specialists are working on the local finiteness, i.e. on the bound for
the number of limit cycles for a local family Vλ, λ ∈ R

k, 0 of polynomial systems.
This would give the existence of the uniform bound N(n) < ∞.

Dramatic efforts were connected with estimating N(2). (The linear case is
trivial, N(1) = 0.)

Probably the first example of a quadratic system with a limit cycle was given
in 1929 by the physicist Sommerfeld in [13], where he got two cycles at once. In
1939 Bautin [1] announced that N(2) ≥ 3, the full proof appeared in 1952 [2]. In
1955 Petrovski and Landis [10] claimed to have a proof that N(2) = 3. Later there
was found a mistake in it (Novikov) and in 1967 they retracted from this result.

However, the conjecture N(2) = 3 remained until 1979. In that year the Chi-
nese mathematician Shi Songling gave the following example of a quadratic system
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with four limit cycles

ẋ = λx − y − 10x2 + (5 + δ)xy + y2

ẏ = x + x2 + (−25 + 8ǫ − 9δ)xy,
(2)

where δ = −10−13, ǫ = −10−52, λ = −10−200 (!). Thus, now the conjecture is
that N(2) = 4.

There is no reasonable conjecture about N(n) for arbitrary n. In fact, Petrovski
and Landis in [11] claimed an estimate for N(n) but the fate of that result was
the same as that from [10].

In what follows we present some details of Shi’s example, the general ideas of
Il’iashenko’s proof and the connection with Abelian integrals.

4. Shi’s example. Consider first the situation when λ = ǫ = δ = 0. Then the
phase portrait of system (2) in the plane compactified with a circle, representing
the directions at infinity, is presented at Figure 1. (It is known that the phase
portrait of a polynomial system can be prolonged to such compactification, called
the Poincaré compactification.)

Figure 1
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The system has the line L : 1 + x − 25y = 0 without contact (all trajectories
pass through it in one direction). The circle at infinity is invariant for the system.
The system has two finite equilibrium points (0, 1) and (0, 0) separated by L. The
point (0, 1) is a strong unstable focus and the point (0, 0) is a very weak stable
focus.

After perturbation near the weak focus (0, 0) two limit cycles γ1, γ2 appear.
The point (0, 1) remains an unstable focus. Moreover we have two ring-like do-
mains U1 and U2. U1 is bounded by L, a half-circle at infinity and a small circle
around (0, 1). U2 is bounded by L, the other half-circle at infinity and a curve
close to the larger of the cycles γ1,2. Ui do not contain equilibrium points and at
their boundaries the trajectories either enter the domain (U1) or leave the domain
(U2). Such situations lead to the existence of additional limit cycles in Ui (the
Bendixson’s criterion [3]).

5. Proof of the finiteness theorem. At the beginning we follow the way
chosen by Dulac [4], next we shall see his mistake and then we shall show how
Il’iashenko overcame the difficulties.

Figure 2
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Assume that system (1) has an infinite number of limit cycles. Because any
periodic solution γ bounds a region which contains at least one equilibrium point
(the index of the vector field along γ is 1), there are infinitely many concentric
cycles γn. They lie in the compact disc, the Poincaré model.

Consider the limit set of {γn}. It cannot contain a periodic orbit δ. (We con-
sider the return map ∆δ : S → S for a transversal section S to δ which is
analytic and cannot have infinitely many accumulating fixed points.) There are
two possibilities:

(i) lim γn = Γ, a composed cycle consisting of equilibrium points and separa-
trices connecting them (see Figure 2);

(ii) lim γn is an equilibrium point, which we assume equal to (0, 0).

Lemma. The case (ii) reduces to (i).

Pr oo f. We have f(0, 0) = g(0, 0) = 0 and in the polar coordinates (r, φ)
system (1) writes as

ṙ = rl+1F (r, φ), φ̇ = rlG(r, φ), G(0, ·) 6= 0.

We can divide this system by rl (the phase portrait does not change and only the
velocity changes along trajectories). We obtain a vector field in a cylinder with
invariant circle r = 0. The circle r = 0 may contain equilibrium points to which
we can apply the above procedure. We get again an invariant circle with possible
singularities etc.

The well known theorem of Bendixson–Seidenberg–van den Essen [3] states
that this process ends after a finite number of steps. We obtain a contour Γ
consisting of elementary critical points and separatrices connecting them.

A singular point x = y = 0 is called elementary iff in some linear coordinates
the system has one of the two forms:

ẋ = λ1x + . . . , ẏ = λ2y + . . . (hyperbolic);
ẋ = axk+1 + . . . , ẏ = λy + . . . (degenerate).

Of course, after the above resolution lim γn = Γ.

In the case (i) we also resolve all non-elementary singular points appearing
in the vertices of Γ. Hence, we can assume that lim γn = Γ and Γ contains only
elementary critical points.

Take a section S transversal to Γ at a point of one of its separatrices. Then the
trajectories of the vector field define the return (or monodromy) map ∆Γ : S → S.
The fixed points of ∆Γ correspond to periodic solutions, limit cycles if the points
are isolated. We have to show that ∆Γ does not have infinitely many isolated and
accumulating fixed points.

We can represent ∆Γ as a composition ∆m ◦ . . . ◦ ∆1 of maps, where each
∆i : Si−1 → Si (Si – sections to Γ) is a map defined either by trajectories passing
along a separatrix of Γ or by trajectories passing near a single critical point (see
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Figure 2). The maps of the first kind are analytic. The maps of the second kind
contain essential singularities.

Consider the linear system ẋ = λ1x, ẏ = −λ2y. Then ∆i(x) = Cxλ2/λ1 . For a
non-linear hyperbolic critical point we get the asymptotic Dulac series

∆i(x) = c0x
ν0 +

∑
xνjPj(ln x), νj → ∞,

where Pj are polynomials.
Consider the degenerate critical point ẋ = axk+1, ẏ = −y. Then ∆i(x) =

Ce−a/(kxk), x ≥ 0.
Therefore each ∆i is either a Dulac series or a flat map or a map inverse to a

flat map. From this we can conclude that ∆Γ either is a flat map or is inverse to a
flat map or expands into the asymptotic Dulac series. To see the latter property
we consider the following example:

{e−b/xl

}−1 ◦ xν ◦ e−a/xk

= (−
1

b
ln x)−1/l ◦ e−aν/xk

= (
aν

bxk
)1/l.

The flat or inverse to flat maps do not have accumulating fixed points. If the
Dulac series is convergent then it cannot also have accumulating fixed points
(∆Γ − id = dxµ(ln x)k(1 + . . .) 6= 0 near 0).

Here the mistake made by Dulac lies. He assumed that only the Dulac series
governs the behaviour of ∆Γ. But we have the following example:

− lnx ◦ xν(1 − xµ) ◦ e−1/xk

= − ln x ◦ e−ν/xk

(1 − e−µ/xk

)

= νx−k −
∑ 1

j
e−µj/xk

.

We see that besides the Dulac series ∆Γ may contain flat terms which cannot be
detected by the Dulac series.

Now we must leave Dulac and follow the way of Il’iashenko. Because this way
is very long and complicated, we restrict ourselves to some general ideas.

Il’iashenko goes into the complex domain. Namely, he uses the logarithmic
chart ζ = − ln x, transforming a neighbourhood of the point x = 0 in C into the
half-plane Re ζ > C0.

If all the vertices of Γ are hyperbolic then ∆Γ prolongs holomorphically to
a domain Ω biholomorphically equivalent to Re ζ > C1. Next he applies the
Fragmen-Lindelöf principle to get the property that if (∆Γ− id)(ζn) = 0, ζn → ∞
then ∆Γ = id. (The Fragmen-Lindelöf principle allows to estimate a function (with
good behaviour at infinity) in a sector in C by its values at the boundary of the
sector.)

If one of the vertices of Γ is a degenerate critical point then the good analytic

properties of ∆i hold only in sectors {arg x ∈ (β
(s)
1 , β(s))} and ∆Γ(ζ) is well defined
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in strips. We have some cocycle corresponding to a covering of the domain Ω by
strips. The coboundary of the cocycle is small in intersections of strips. Using this
Il’iashenko was able to apply a modification of the Fragmen-Lindelöf principle.
Of course, here he had to overcome a lot of technical problems which cannot be
included into this article.

Ecalle chose a different way. He applied to ∆Γ a kind of Borel transform
(
∑

aix
i →

∑
(ai/i!)x

i). The Borel transform of ∆Γ is analytic with good pro-
perties. Next, he applied the integral Laplace transform, which turns out to be
inverse to the Borel transform.

6. The linearization of the XVI-th Hilbert problem. Consider the sys-
tem

ẋ =
∂H

∂x
+ ǫP, ẏ = −

∂H

∂y
+ ǫQ,

where H,P,Q are polynomials of degree ≤ n and ǫ is a small parameter. For ǫ = 0
the system is Hamiltonian and its phase curves are given as H(x, y) = h; some of
them form a continuous family of periodic orbits.

After perturbation this picture becomes spoiled and only few periodic solutions
remain. To investigate them we consider the return map ∆ : S → S, where S is
a section to the family H = h parametrized by h. We get

∆(h) − h = ∆H =

∫ T

0

d

dt
H(x(t), y(t))dt = ǫ

∫
γ(ǫ,h)

Qdx − Pdy,

where T is the time of return and γ(ǫ, h) is a trajectory of the perturbed system.
But γ(ǫ, h) ≈ {H = h}. Thus, ∆H = ǫIω(h) + O(ǫ2), where

Iω(h) =

∫
H=h

ω

is the Abelian integral of the 1-form ω = Qdx − Pdy. Under some generic as-
sumptions about H we conclude that the number of limit cycles is equal to the
number of zeroes of Iω.

The weakened (or linearized) XVI-th Hilbert problem consists in estimating the
number of zeroes of Iω (Arnold).

The general result was obtained by Varchenko [15]. The number of zeroes is
bounded by a constant C(n). He did not give the expression for C(n).

There are only few concrete estimates of the number of zeroes of Abelian
integrals. The best was obtained by Petrov [12] for the elliptic Hamiltonian H =
y2 + x3 − x.

Let Vn be the space of functions Iω, deg ω ≤ n. Then the number of zeroes of
Iω ∈ Vn, Iω 6= 0 is not greater than n − 1, where n = dim Vn. This property of a
space of functions is known as the Chebyshev property.
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