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The purpose of this essay is two-fold. We want to give the reader some ele-
mentary idea of what knot theory is about and to provide some information of the
recent progress in the area, especially in its combinatorial branch. This is meant
as an elementary introduction for non-specialists with an interest in the area.

We would like to get straight to the point, so we omit the discussion of all the
technicalities. Generally, knot theory deals with one-dimensional closed piecewise
linear submanifolds of the three-dimensional sphere S3, in other words we consider
the images of piecewise linear embeddings of disjoint unions of circles into S3.
These are called links, or in the case of just one component—knots. In the case
of a single component this is our mathematical model of a knotted closed string
in the physical space. Mathematically, it is important that the knot be closed,
because from the topologist’s point of view the embeddings of a segment into S3

are all equivalent. It is surprising, how the natural idea of equivalence of knots (or
links) proves difficult to be expressed mathematically. It is commonly agreed that
the most appropriate mathematical description of this equivalence is by means
of ambient isotopy. This means that two links L1 and L2 are equivalent if there
exist a one-parameter continuous family H of homeomorphisms of S3 into itself
such that H1 = identity and H2(L1) = L2. It would be more natural to consider
a one parameter family of embeddings starting with L1 and ending with L2—this
seems closer to the intuitive idea of deforming the links without cutting them,
but this leads to nowhere—under such definition all knots would be equivalent.

Our subject in this essay is the combinatorial knot theory. This means that
we practically forget the whole three-dimensional context of the situation and
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do all our work with knot diagrams on a plane or better on a two-dimensional
sphere. What is meant by knot (or link) diagram is a certain very natural form of
visualisation of the subject: we consider regular projections of links onto a plane
(regular means that we choose the projection angle to avoid multiple points as
much as possible—the only multiple points that we cannot avoid are double points
which we call crossings) with an indication of which arc is over and which is under
at every crossing. Figure 1 below shows an example of such a diagram.

Figure 1

The knot shown in this figure is the so-called trefoil. It is not equivalent to the
trivial knot, which is intuitively obvious but not so easy to prove. There is a
fundamental theorem showing how the three-dimensional problem of equivalence
of links is reduced to this two-dimensional setting.

Figure 2
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Theorem (Reidemeister). Two diagrams represent equivalent links if and only
if one may be transformed into the other by a sequence of operations given in
Figure 2 (the so-called Reidemeister moves of type I, II and III).

The most obvious problem in knot theory is that of classification of links. The
natural way to address this problem is to construct invariants of links, that is
such functions that ascribe some mathematical quantities to links in a way that
depends only on the equivalence class of the given link. One classical example is
the fundamental group of the complement of the given link in S3. This invariant
has the advantage of being quite obviously invariant. It is also quite easy to write
down a finite presentation of the considered group (given the diagram), which is
called Wirtinger presentation (see [B-Z], chapter 3). Another advantage is that
this invariant is quite effective in distinguishing knots. In fact, the fundamental
group with certain additional refinement—the so-called peripheral system classi-
fies knots. But there is one great disadvantage: although theoretically very nice,
the invariant is very difficult to use in practice. This is so because the isomorphism
problem for group presentations is very difficult.

Figure 3

We want to present here a class of combinatorial invariants discovered since
1984, known as knot polynomials. What we mean by combinatorial is that the
invariants are defined through various types of diagrams and their invariance is
proved by means of Reidemeister moves. It is very educational to have a look
first at one of them, denoted by f . This is the Kauffman version of the Jones
polynomial V (the polynomial V was introduced by V.F.R. Jones in 1984 in a
very influential paper [J]). The polynomial f is a polynomial in two variables A

and A−1 with integer coefficients. It is defined for oriented links. The definitions
is made in two stages. In the first stage we forget about the orientation and
compute the Kauffman bracket 〈D〉 of the unoriented version of the given diagram
D. The polynomial fD of the original oriented diagram is then defined by simply
multiplying the bracket of D by (−A3)−w(K), where w(K) is the sum of the signs
of crossings as defined in Figure 3.

Now, what is the bracket of an unoriented diagram D? This is defined in a
very simple recursive way.
1. 〈©〉 = 1 (here © is simply the trivial diagram).
2. 〈D⊔©〉 = (−A−2 −A2)〈D〉 (here, D⊔© means D with an additional trivial

circle added to it).
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3. see Figure 4 below.

Figure 4

Without some explanation Figure 4 is a little cryptic. In fact it introduces
one of the most important ideas that were discovered in knot theory in the recent
years. What is considered in Figure 4 is a triple of almost identical diagrams.
They differ only locally and what the figure shows (inside of the three brackets)
is this tiny area in which the diagrams do differ—one diagram has a crossing in
this area, in the remaining two the crossing is replaced (smoothed) in two different
ways.

If the choice of coefficients in the above formulas seems a little arbitrary,
the reader is advised to carry out the calculations proving that the bracket is
invariant under Reidemeister moves of types II and III, then to check how it
changes when a Reidemeister I move is performed. It is surprising that such a
simple definition leads to a very powerful invariant of links. As was mentioned
above, the polynomial f is a version of the polynomial V originally introduced
by Jones. This was introduced by means of representations of braid groups into
certain von Neumann algebras, but was soon discovered to satisfy the following
equality:

4. t−1V+ − tV− = (
√

t − 1
√

t
)V0,

where V+, V− and V0 are again the polynomials of three diagrams that are almost
identical and differ only locally as shown in Figure 5.

Figure 5

Let us stress the difference: this time we consider oriented diagrams, this is
why we consider two versions of the crossing and just one version with the crossing
removed (because only this version may be coherently oriented). Historically, it is
this equality that started the revolution in knot theory. It was soon discovered that
in this case the choice of coefficients does not really matter—one can replace t−1,
−t and

√
t− 1

√

t
with practically anything, and still get an invariant satisfying the

relevant condition. While the most obvious choice of ‘practically anything’ would
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probably be three independent (but commuting) variables x, y and z, it turns out
that a wiser choice is the one used in the formula below:
5. lP+ + l−1P− + mP0 = 0.

Figure 6

Surprisingly, no information is lost (compared to the x, y and z version)—the
two invariants are fully equivalent. The invariant P defined by equality 5 and the
condition P (©) = 1 is known as the Homfly polynomial. It was discovered at
more or less the same time by five groups of researchers (see [FYHLMO]). Since
then hundreds of papers have been written in the area, exploring various proper-
ties of the new invariants and introducing new invariants of similar construction.
Of these, the most significant one was the Kauffman polynomial (see [K]). Some
important theoretical results were proved by means of the Jones polynomial, es-
pecially two of the so-called Tait’s conjectures. These are conjectures dating back
to the nineteenth century. Let us describe one of them. We consider alternating
diagrams. These are diagrams in which undercrossings and overcrossings are en-
countered alternatingly when one walks along the diagram. Thus in Figure 6 the
diagram on the left is alternating and the diagram on the right is not.

Figure 7

In some cases an alternating diagram may look as in Figure 7.

Figure 8
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It is then possible to modify it to the form given in Figure 8 and the result is
still an alternating diagram.

When this is no longer possible we say that the diagram is reduced. Now, the
first Tait conjecture says that an alternating reduced diagram has the minimal
possible number of crossings (for the given class of equivalence of knots). It turns
out that the span of the Jones polynomial (the difference between the highest and
the lowest exponents) is always smaller than or equal to the number of crossings
of the considered diagram, and in the case of reduced alternating diagrams the
equality always holds. This proves the conjecture in a surprisingly elegant way.
For the details see [M], [K] and [T]. The last paper is especially interesting because
it explores another aspect of the story—the connections of knot theory and the
graph theory.

Generally speaking the astounding career of the new invariants is to a large
degree due to deep and unexpected connections with various aspects of mathe-
matics and physics that were discovered in the aftermath of the introduction of
the Jones polynomial. To the reader with an interest in this fascinating story the
author wants to recommend the book [K1].
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