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Abstract. We describe in this talk three methods of constructing different links with the
same Jones type invariant. All three can be thought as generalizations of mutation. The first
combines the satellite construction with mutation. The second uses the notion of rotant, taken
from the graph theory, the third, invented by Jones, transplants into knot theory the idea of the
Yang-Baxter equation with the spectral parameter (idea employed by Baxter in the theory of
solvable models in statistical mechanics). We extend the Jones result and relate it to Traczyk’s
work on rotors of links. We also show further applications of the Jones idea, e.g. to 3-string links
in the solid torus. We stress the fact that ideas coming from various areas of mathematics (and
theoretical physics) has been fruitfully used in knot theory, and vice versa.

0. Introduction. Exactly ten year ago, at spring of 1984, Vaughan Jones
introduced his (Laurent) polynomial invariant of links, VL(t). He checked im-
mediately that it distinguishes many knots which were not taken apart by the
Alexander polynomial, e.g. the right handed trefoil knot from the left handed
trefoil knot, and the square knot from the granny knot; Fig. 0.1.
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Fig. 0.1

Jones also noticed that his polynomial is not universal. That is, there are
different knots with the same polynomial; e.g. the Conway and Kinoshita-Terasaka
knots; Fig. 0.2.

Fig. 0.2

Then Jones asked the fundamental question whether there exists a nontrivial
knot with the trivial polynomial. Ten years later this is still an open problem and
specialists differ in their opinion whether the answer is yes or no. In this talk, I
will concentrate on more accesible problem: how to construct different links with
the same Jones polynomial. It may shed some light into the Jones question. I will
describe three methods of constructing knots with a coinciding Jones polynomial
(and its generalizations), each of which can be thought as a generalization of
the Conway idea of mutation. First however, in the introduction, we remind the
definitions of Jones type polynomials and of the Conway’s mutation.

(1) In the first part we consider satellites of mutants and their Jones type
invariants.

(2) In the second part we explain the idea of rotors.

(3) In the third part we explore the idea of Jones of the spectral parameter
tangle.
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(4) In the fourth part we apply the idea to the skein polynomial of links.

(5) In the fifth part we use a 3-string spectral parameter tangle.

We remind now definitions of the Jones polynomial, VL(t), and its generali-
zations: the skein (Homflypt) polynomial, PL(v, z), and Kauffman polynomial,
FL(a, x).

Definition 0.1. The skein polynomial invariant of oriented links can be cha-
racterized by the recursive relation (skein relation):

(i) v−1PL+
(v, z) − vPL−

(v, z) = zPL0
(v, z), where L+, L− and L0 are three

oriented link diagrams, which are the same outside a small disk in which
they look as in Fig. 0.3,

and the initial condition

(ii) PT1
= 1, where T1 denotes the trivial knot.

The Jones polynomial is defined as VL(t) = PL(t,
√

t − 1√
t
). The Alexander

polynomial, ∆L(t), as normalized by Conway, satisfies ∆L(t) = PL(1,
√

t − 1√
t
).

Kauffman [20] gave different approach to the Jones polynomial, starting from
the invariant of regular isotopy of unoriented diagrams or, equivalently, working
with unoriented framed links. This variant of the Jones polynomial is called now
the Kauffman bracket polynomial.

Fig. 0.3

Definition 0.2. The Kauffman bracket polynomial, 〈L〉 ∈ Z[A±1], of framed
unoriented links is characterized by the recursive relation (Kauffman bracket skein
relation):

(i) 〈LA〉 = A〈L0〉 + A−1〈L∞〉, where LA, L0 and L∞ denote diagrams of uno-
riented framed links, which are the same outside a small disc in which they
look as in Fig. 0.4. We use the convention that the framing of the diagram
is vertical to the plane of projection, unless otherwise stated.

(ii) Initial conditions:
〈Tn〉 = (−A2 − A−2)n−1, where Tn is the trivial framed n-component link.

If we orient L, then we get the Jones polynomial

VL(A−4) = (−A3)−Tait(L)〈L〉,
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where Tait(L) is the sum of signs of crossings of L. Equivalently, for a framed
oriented link L, Tait(L) is “the defect” of the framing, that is the number of
negative twists minus the number of positive twists which have to be performed
on the framing of L so that the new framing agrees with that given by the Seifert
surface of L. Let us use the convention that L(1) denote a framed link obtained
from L by twisting the framing of L once in the positive (right handed) direction.
Notice that L(1) is not uniquely defined if L is not a knot, but its Kauffman
bracket is well defined and the condition (ii) can be replaced by:

(iii) 〈L(1)〉 = −A3〈L〉.
To introduce the Kauffman polynomial, it is, as before, very convenient to

define it first for unoriented framed links.

Definition 0.3. The Kauffman polynomial of framed unoriented links,
ΛL(a, x) ∈ Z[a±1, x±1], is characterized by the recursive relation (Kauffman skein
relation):

(i) ΛLA
(a, x) + ΛLB

(a, x) = x(ΛL0
(a, x) + ΛL∞

(a, x)), where LA, LB , L0 and
L∞ are four diagrams of unoriented framed links, which are the same outside
a small disc in which they look as in Fig. 0.4.

(ii) Framing relations:
L(1) = aL.

(iii) Initial condition:
ΛT1

= 1, for the trivial framed knot T1.

If we orient L, then the Kauffman polynomial of the oriented unframed link
L, FL(a, x), is defined to be:
FL(a, x) = a−Tait(L)ΛL(a, x).

Fig. 0.4

The simplest method of producing different links with the same invariant is
mutation invented before 1960 by J. Conway. We describe the Conway idea of
tangles and mutation below1:
Consider a 2-tangle, L, that is a part of a link diagram placed in a disk, with 4
boundary points (2 inputs and 2 outputs, if L is oriented); see Fig. 0.5.

1 Conway recalls working out a good part of his theory of tangles while still a high school
student [1].
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Fig. 0.5

We perform a mutation of the link, of which L is a part, by rotating the tangle
along the x, y or z coordinate axis by the angle π. Thus we have three mutations
mx,my and mz, respectively; Fig. 0.6. Notice that together with the identity map
they form the group D2 = Z2⊕Z2. We keep the part of the link outside the tangle
fixed and, if necessary, change the orientation of the tangle part so it agrees with
outside part of the link.

Fig. 0.6

The mutation preserves not only Jones type polynomials but also the volume
of the (hyperbolic) complement of a link and the homeomorphic type of the
branched double cover of S3 with the link as the branching set, among many

Fig. 0.7
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other invariants. The simplest pair of non-equivalent mutant knots, the Conway
and Kinoshita-Terasaki knots, are drawn in Fig. 0.2.

To show that Jones type invariants are preserved by mutation, one follows
Conway’s idea of skein theory [6, 24, 8]. Namely, one simplifies the 2-tangle of
mutation as far as possible reaching, finally, tangles which are invariant under
mutation. In the case of the Kauffman skein relation one gets one of the tangles
of Fig. 0.7 with possible additional trivial components. Of course, each of these
tangles is invariant under any mutation.

1. Satellites of mutants. One can produce more complicated links from the
given one, say L, by decorating each component of the link by some pattern.
The resulting link is called a satellite of L. If we consider satellites of mutants
(with the same pattern) we obtain links with the same Jones polynomial and,
sometimes, with the same skein and Kauffman polynomials.
We should stress, however, that we cannot produce, in such a way, a nontrivial
knot with a polynomial of the trivial knot. It is the case because a mutation of a
trivial knot is a trivial knot (the 2-fold branched cover of (S3, L) and (S3,m(L))
are homeomorphic [25, 44], and the 2-fold branched cover of S3 whith a nontrivial
knot as the branching set cannot be S3; [45]). Furthermore a nontrivial satellite
of a nontrivial knot is a nontrivial knot.

Theorem 1.1 [26]. Let D be a diagram of a framed unoriented link and let
m(D) be a mutant of D. Assume additionally that the mutation preserves link
components of D (i.e. if v is a boundary point of the rotated tangle, then v and
m(v) lie in the same link component of D). Then for any satellites of D and
m(D) with the same pattern s (denoted by s(D) and s(m(D)), respectively), the
Kauffman bracket polynomial is the same. That is 〈s(D)〉 = 〈s(m(D))〉. If D is
additionally oriented then Vs(D)(t) = Vs(m(D))(t).

Theorem 1.2 [23, 29]. Let m(D) be a mutant of D obtained by rotating a
tangle T and preserving link components of D. Let s be a satellite pattern with
the wrapping number at most 2 (e.g. 2-cable or Whitehead double). Then:

(a) If D is oriented then:

(i) Ps(D)(v, z) = Ps(m(D))(v, z),

(ii) Fs(D)(a, x) = Fs(m(D))(a, x).

(b) If D is an unoriented framed diagram, then
Λs(D)(a, x) = Λs(m(D))(a, x).

Theorem 1.2 does not hold for wrapping number greater than 2. For example,
Morton and Traczyk [26] and J. Murakami [28] have shown that a 3-cable of the
Conway knot and its mutant the Kinoshita-Terasaka knot have different skein
and Kauffman polynomials. However a weaker fact still holds:



LINKS WITH THE SAME JONES TYPE POLYNOMIALS 127

Theorem 1.3 [21, 29]. Let L1 and L2 be two oriented links and let −L2 be
obtained from L2 by reversing orientations of all components of L2. Consider
connected sums L1#L2 and L1#−L2, where the same components of L1 and L2

are involved in L1#L2 and L1# − L2 (the second sum can be thought as a de-
generated, components preserving, mutation of the first). Then for any pattern s,
the satellites s(L1#L2) and s(L1# − L2) have the same skein and Kauffman
polynomials.

The original proofs of Theorems 1.1—1.3 were combinatorial, using skein the-
ory similarly as in the proof of the case of mutation. Later, however, J. Murakami
and G. Kuperberg found proofs based on properties of irreducible representations
of Lie algebras.

Theorems 1.1 and 1.3 are the basic tools in constructing different 3-manifolds
with the same Witten invariants [19, 22]. Theorem 1.1 is used in the case of SU(2)
Witten invariant, as constructed by Reshetikhin and Turaev [35] and Theorem 1.3
in the case of classical Lie algebra Witten invariants, as constructed by Turaev
and Wenzl [42].

2. Rotors. The idea of rotors was used first in graph theory in the funda-
mental paper on division of a square into smaller unequal squares [5]. Later Tutte
used it to produce different graphs with the same dichromatic polynomial [43].
The idea was “translated” into knot theory in the paper of R. Anstee, D. Rolfsen
and myself.

Definition 2.1 [2]. Consider an n-tangle, that is a part of the link diagram
(possibly oriented or framed — depending on the application), placed in the
regular n-gon with 2n boundary points (n inputs and n outputs). We say that
this n-tangle is an n-rotor if it has a rotational symmetry, that is the tangle is
invariant with respect to rotation along z-axis by the angle 2π

n
; see Fig. 2.1 for an

example of a 4-rotor.

Theorem 2.2 [2]. Let L be a link diagram with an n-rotor part R. Let the rotant
r(L), be obtained from L by rotating R along the x-axis by the angle π and keeping
the stator, S = L − R, unchanged (if necessary, we change the orientation of the
rotor so it agrees with that of the stator). Then:

(a) 〈L〉 = 〈r(L)〉 for n ≤ 5, where L is an unoriented framed link diagram.

(b) PL(v, z) = Pr(L)(v, z) for n ≤ 4, where L is an oriented link diagram.

(c) ΛL(v, x) = Λr(L)(v, x) for n ≤ 3, where L is an unoriented framed link
diagram.

Furthermore, if L is oriented then Tait(L) = Tait(r(L)).

The proof of the theorem given in [2] is a straightforward generalization of
the proof for mutants: the skein relation allows as to simplify the stator of L so
that it is invariant under the reflection in a side of the n-gon. We illustrate it
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Fig. 2.1. Rotor of Toulouse, Carolingian era, IX century AD.

for n = 3 and the Kauffman skein relation. If we simplify the stator (placed in a
regular triangle) using the Kauffman skein relations, we obtain one of the fifteen
3-tangles (possibly with additional trivial components); Fig. 2.2.

Fig. 2.2

Clearly each tangle of Fig. 2.2 is symmetric with respect to reflection in an edge
of the triangle. Instead of reflecting the stator we can reflect the rotor (and because
of its rotational symmetry, all reflections are equivalent), and the Theorem 2.2(c)
follows.
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D. Rolfsen was searching for examples of n-rotors for which the theorem does
not hold. In particular he studied 6-rotors and their Jones polynomial. However
he couldn’t find a counterexample to the theorem. At the Sussex conference held
in summer of 1987, he discussed rotors with P. Traczyk and Traczyk observed
that 6-rotors considered by Rolfsen have only 2 connections between identical
segments of rotors; see Fig. 2.3.

Fig. 2.3

T. Jin and Rolfsen considered more complicated rotors and found, in the sum-
mer of 1988, that Theorem 2.2 is the best possible [11].
On the other hand, Traczyk showed that if there are only two internal connec-
tions between segment of a rotor then the Jones and the skein polynomials are
the same for the link and its rotant (he proved it first for n = 6 in 1987, and the
next year in the full generality). Namely:

Theorem 2.3 [39]. Let L be a link diagram with an n-rotor part R. Furthermore
assume that there are at most two arcs between neighboring segments of the rotor.
If r(L) is the rotant of L then:

(a) 〈L〉 = 〈r(L)〉, for any n, where L is an unoriented framed link diagram.

(b) PL(v, z) = Pr(L)(v, z), for any n, where L is an oriented link and a segment
of the rotor (which is a 3-tangle) is oriented, up to the global change of
orientation, as in Fig. 2.4.

Fig. 2.4

The method used by Traczyk for proving Theorem 2.3 is essentially different
than that used in the proof of Theorem 2.2. Namely, it is algebraic and uses
essentially the linearity of skein relations. Furthermore Traczyk operates on the
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rotor part of the link (excluding its center) instead of the stator, so he gets, in
fact, theorem about tangles in the solid torus (projected into an annulus), or any
3-manifold in which the solid torus is embedded (to make it precise one should
consider the notion of the skein module of a 3-manifold; see part 3). Traczyk’s
theorem does not hold for the Kauffman polynomial. A simple counterexample
is given in [11] (Example 1); see Fig. 2.5, where 4-rotors with different Kauffman
polynomials are presented. Furthermore these rotors have only two connections
between segments.

Fig. 2.5. FL(a, x)− Fr(L)(a, x) = (a10 + 4a12 + 6a14 + 4a16 + a18) +O(z).

It follows from the work of Tutte that the determinant of an oriented link,
∆L(−1), is the same for L and its rotant r(L), for any n and any number of con-
nection between segments. This suggests the possibility that the whole Alexander
polynomial is unchanged by rotation and a lot of examples which confirm this
were computed by Jin and Rolfsen.

Conjecture 2.4. If L is an oriented link and r(L) its rotant then their Ale-
xander polynomials are equal.

We noticed in [2] that if we decorate an unoriented framed link L and its
2-rotant r(L) by a pattern s with the wrapping number 2, then the Kauffman
bracket polynomials of s(L) and s(r(L)) are equal. There is no need, however,
for a separate proof of this fact because Yamada showed [46] that the Kauffman
bracket of a 2-cable of a link is determined by the Kauffman polynomial of the
link at (a, x) = (iA8,−i(A4 − A−4)). The idea of rotors was taken from graph
theory2. Now however, Traczyk’s theorem and the results of the next parts can
be translated back to give new results in graph theory.

2 One can say that it came from physics, as the authors of [5] where motivated by the theory
of electrical circuits.
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3. The spectral parameter tangle. In the spring of 1991, Jones used an
idea from the statistical mechanics to produce examples of different links with the
same Jones type polynomials. We describe in this part of the talk how the Yang-
Baxter equation with spectral parameter can be “translated” into an equation
involving tangles and how the Baxter method of “commuting transfer matrices”
can be “translated” to produce various links with the same Jones, and skein
polynomials [14, 15]. After this we generalize slightly the method of Jones, and
relate it to Traczyk’s work on rotors of links3. Finally we give another application
of the spectral parameter tangles.

We first present the work of Jones.
Consider a finite dimensional vector space V and the space of parameters Λ.

Consider also the family, R(λ), of matrices (R : Λ → End(V ⊗ V )). We say that
R satisfies the Yang-Baxter equation with spectral parameter if for every pair
λ, λ′ ∈ Λ there is λ′′ ∈ Λ such that

R1(λ)R2(λ
′)R1(λ

′′) = R2(λ
′′)R1(λ

′)R2(λ),

where both sides are endomorphisms of V ⊗ V ⊗ V and R1(χ) = R(χ) ⊗ Id and
R2(χ) = Id ⊗ R(χ). χ ∈ Λ is called the spectral parameter. The Yang-Baxter
equation is expressed graphically in Figure 3.1.

Fig. 3.1

We interpret three initial points as V ⊗V ⊗V and going through the crossing
corresponds to the endomorphism R(χ). When the spectral parameter is constant
then the correspondence between the crossing and the Yang-Baxter operator R

can be used to define new, Jones type, invariants of links (Jones [13], Turaev [40]).
The method uses the fact that a Yang-Baxter equation corresponds to the third
Reidemeister move (Fig. 3.2).

V. Jones in the spring of 1991 [14, 15] discovered that one can use the idea
of the Yang-Baxter operator with spectral parameter to produce different links
with the same Jones polynomials. The idea uses the classical argument from the
theory of solvable models in statistical mechanics [3]. As before, V corresponds
to a point and V ⊗ V ⊗ . . . ⊗ V

︸ ︷︷ ︸

n

to n points. R(λ) ∈ End(V ⊗V ) corresponds to a

3 This part and Part 4 are based on the notes for the talk given at the University of Tennessee,
October 1991 [31].
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Fig. 3.2

2-tangle L and the composition of endomorphisms corresponds to the composition
of tangles. To get the analogy to the Yang-Baxter equation we consider the skein
module (linear skein) of a tangle, the notion which was essentially introduced
by J. Conway ([6, 9, 30, 41]). In short skein modules are quotients of modules
over ambient isotopy classes of links in a 3-manifold (possibly with boundary) by
properly chosen local (skein) relations.

Now we have to be more specific and choose a skein module with which we
work. We start with the Kauffman bracket approach to the Jones polynomial.
Consider an n-tangle, that is a 2-disc with fixed 2n points on the boundary and a
framed link diagram (composed of closed curves and curves with endpoints fixed)
inside. Framing is fixed at boundary points. The Kauffman bracket skein mod-
ule of n-tangles, S2,∞(n) is defined to be an R-module (for a chosen commutative
ring with 1) obtained from the free R-module over all tangles up to isotopy (mod-
ulo boundary) divided by the submodule generated by (the Kauffman bracket)
skein relations LA = AL0 + A−1L∞ and framing relations L(1) = −A3L, where
L(1) denotes a framed link obtained from L by twisting its framing once in the
positive direction. A is an invertible element of R (in practice, unless other-
wise stated, we will assume at this talk that R = F(A) — the field of rational

functions in variable A). S2,∞(n) is a free module of
1

n + 1

(

2n

n

)

generators ([12,

27]). For example S2,∞(2) has two generators and S2,∞(3) has five generators;
Fig. 3.3.

Fig. 3.3
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S2,∞(n) with product yielded by the composition of tangles has a structure
of an algebra (the Temperley-Lieb algebra [38]). We will use the standard (in
Yang-Baxter equations theory) notation: R(i) for a 2-tangle R placed on i’th
and (i + 1)’th strings of n strings, see Fig 3.4. The result (analogy to the Yang-
Baxter equation with spectral parameter) which Jones uses, can be stated as
follows:

Lemma 3.1 (Jones [15]). For a dense subset of pairs of tangles T, T ′ ∈ S2,∞(2)×
S2,∞(2) there is an invertible tangle T ′′ (in Temperley Lieb algebra S2,∞(2)) such
that: T(1)T

′
(2)T

′′
(1) = T ′′

(2)T
′
(1)T(2). Graphically this equality of two 3-tangles is shown

in Figure 3.4.

Fig. 3.4

We do not prove here the Jones lemma as its generalized version is given in
Lemma 3.3. The “trick” which Jones uses goes as follows:
Consider 2-tangles T and T ′ placed cyclicly in the annulus as in Figure 3.5(a).
Assume that for T and T ′, there exists an invertible 2-tangle T ′′ from Lemma 3.1.
Then without changing the element of the Kauffman bracket skein module of the
solid torus (annulus is the projection surface of the solid torus), we can insert the
pair of tangles T ′′ and (T ′′)−1 (Fig. 3.5(b)) and then move around the annulus
with T ′′, interchanging T with T ′ on the way (Fig. 3.5(c)), and finally arriving
on the second side of (T ′′)−1 and canceling it; Fig. 3.5(d).
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Fig. 3.5

One sligtly extends the scope of the Jones “trick” by observing that S2,∞(2)
is commutative. Thus one gets

Theorem 3.2 [15]. Let T and T ′ be 3-tangles and si, i = 1, . . . , n, 2-tangles.
Consider the following elements of the Kauffman bracket skein module of the solid
torus with 2n boundary points; Fig. 3.6(a) and (b).

Then the tangles (a) and (b) represent the same element of the Kauffman
bracket skein module of the solid torus. In particular, if the solid torus is embedded
in an oriented 3-manifold and boundary points are connected together (outside
the solid torus), then the links obtained are equal in the Kauffman bracket skein
module of the 3-manifold.

At the conference in Sacramento at April 1991, Jones gave a talk explaining
his ideas. We discussed them also afterwards (Jones, Hoste and myself). I knew
well the work of Traczyk on rotors so I suspected immediately that it should be
related to results of Jones. In fact I noticed that the Jones method works without
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Fig. 3.6

changes if instead of two tangles T and T ′ combined as in Figure 3.7(a), one
can, more generally, consider one tangle of Figure 3.7(b). Similarly one can work
with the tangle of Figure 3.7(c). In such a way one recovers the Traczyk result
and generalize it. We present now, with details, this slight generalization of the
Jones work. We start from the case of the Kauffman bracket polynomial (and the
Kauffman bracket skein module).

Fig. 3.7

Lemma 3.3.

(a) Let rz : S2,∞(n) → S2,∞(n) denote the algebra isomorphism generated by
rotating a tangle by 180 degrees about the z-axis (rz(xp ) = qp). Then for a
dense subset of tangles L ∈ S2,∞(3) there is an invertible 2-tangle P = P (L)
such that LP(1) = P(2)rz(L) in S2,∞(3) (see Figure 3.8).

(b) Let ry : S2,∞(n) → S2,∞(n) denote the involution of modules given by the
rotation ry (ry(xp ) = yp). Then there is a dense subset D(3) of elements
of S2,∞(3), such that if L is in this subset, then there exists an invertible
2-tangle P = P (L) such that LP(1) = P(1)ry(L) in S2,∞(3) (see Figure 3.9).
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Fig. 3.8

Fig. 3.9

Pr oo f. We will prove (b) in details. The proof of (a) is similar4.
Let (e1, e2, . . . , e5) be the basis of S2,∞(3) and (f1, f2) the basis of S2,∞(2) as
shown in Figure 3.10.

Fig. 3.10

4 It is observed in [10] that (a) follows immediately from (b), thus there is no need for a
separate calculation.



LINKS WITH THE SAME JONES TYPE POLYNOMIALS 137

S2,∞(3) is a left and a right S2,∞(2) module. The table for the right multipli-
cation is shown in Figure 3.11, where µ = −A2 − A−2.










e1 e3

e2 e5

e3 µe3

e4 e3

e5 µe5










Fig. 3.11. The (i, j) entry of the matrix is equal to (eifj).

Now let L ∈ S2,∞(3) and L = a1e1 + a2e2 + a3e3 + a4e4 + a5e5. We look for
P = (xf1 + yf2) ∈ S2,∞(2), such that

(∗∗) LP = ry(LP ).

LP = (a1x)e1+(a2x)e2+(a1y+a3x+µa3y+a4y)e3+(a4x)e4+(a2y+a5x+µa5y)e5.
Notice that ry(fi) = fi and ry(ei) = ei for i ≤ 3, and ry(e4) = e5, ry(e5) = e4.
Therefore (∗∗) is equivalent to: a4x = a5x + a2y + µa5y or equivalently y(a2 +
µa5) = x(a4 − a5). Now, either

(i) a2 + µa5 = 0 and then x(a4 − a5) = 0,

or

(ii) a2 + µa5 6= 0 and then y
x

= a4−a5

a2+µa5
. Equivalently one has one projective

solution (x, y) = t(a2 + µa5, a4 − a5).

Now we have to check whether P is invertible in S2,∞(2) (we are interested
in two sided inverse so we use the fact that S2,∞(2) is commutative). Let Q =
z1f1 + z2f2. Then PQ = QP = (xz1)f1 + (yz1 + xz2 + µyz2)f2. Thus Q is the
inverse of P iff xz1 = 1 and yz1 + (x + µy)z2 = 1. Thus P is invertible iff x 6= 0
and x + µy 6= 0. If P is invertible then P−1 = 1

x
f1 + x−y

(x+µy)xf2. From the above

it follows that L is in D(3) iff a4 = a5 or (a2 + µa5)(a2 + µa4) 6= 0. Thus D(3)
contains the complement of an algebraic set so it is dense in S2,∞(3).

Theorem 3.4.

(a) Choose any tangles L ∈ S2,∞(3) and Ti ∈ S2,∞(2). Further choose any cyclic
word, w(L, Ti), over the alphabet {L, Ti} and place the corresponding tangles
in the annulus as in Fig. 3.12(a). Now consider the cyclic word w(rz(L), Ti),
and again place the corresponding tangles in the annulus (Fig. 3.12(b)).
Then the elements of the Kauffman bracket skein module of the annulus
corresponding to w(L, Ti) and w(rz(L), Ti) are the same.

(b) Choose any tangles L ∈ S2,∞(3) and tangles Ti ∈ S2,∞(2). Choose any cyc-
lic word, w(L, Ti), over the alphabet {L, Ti} and place the corresponding
tangles in the annulus as in Fig. 3.13(a). Now consider the cyclic word



138 J. H. PRZYTYCKI

Fig. 3.12

Fig. 3.13

w(ry(L), Ti), and again place the corresponding tangles in the annulus (Fig.
3.13(b)). Then the elements of the skein module of the annulus correspon-
ding to w(L, Ti) and w(ry(L), Ti) are the same.

Pr oo f. We will prove (b). The proof of (a) is analogous5. Let L ∈ D(3)
and P ∈ S2,∞(2) from Lemma 3.3(b). Let us place PP−1 in the annulus, as in
Fig. 3.14. Then let P travel along the annulus, changing L to ry(L), and finally
cancelling P with P−1; thus Theorem 3.4 holds for a dense subset of S2,∞(3) and
therefore for any element L of S2,∞(3). This completes the proof of Theorem 3.4.

5 As in [10], we can deduce (a) from (b).
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Fig. 3.14

4. Spectral parameter tangle for the skein polynomial. We describe
in this section various applications of the Jones idea of the spectral parameter
tangle to oriented links, generalizing results of Jones [15] and Traczyk [39]. We
can allow various 2-tangles and variuos mutations, for our construction. There are
two essentially different ways of orienting a 3-tangle: “braid like” (Fig. 4.1(a)) and
“alternating” (Fig. 4.1(b)). We concentrate here on the braid like case because
Traczyk’s method does not work in that case.

Fig. 4.1

Remind that the skein (Homflypt) polynomial invariant of oriented links in S3,
PL ∈ Z[v±1, z±1], is given by:

(i) PT1
= 1;

(ii) v−1PL+
− vPL−

= zPL0
.
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The skein module (linear skein), S3(M) is a generalization of the skein poly-
nomial to any oriented 3-manifold (possibly with boundary). It is a quotient of
RL and the submodule generated by expressions v−1PL+

− vPL−
− zPL0

, where
L is the set of all oriented links (including links with boundary on ∂M) up to the
ambient isotopy, R is a commutative ring with unit containing Z[v±1, z] and RX

is the free R-module with basis X. Unless otherwise stated, we work here with R

being the field of rational functions, F(v, z).

Fig. 4.2

Let S3(n) denote the skein module of a tangle with n inputs and n outputs as
in Fig. 4.2 (inputs and outputs are fixed).

Fig. 4.3

S3(n) is known to be the Hecke algebra of type A and is free with basis
indexed by permutations, Sn [4, 12, 27]. In particular (1, σ1) is a basis of S3(2)
and (e1, . . . , e6) = (1, σ1, σ2, σ1σ2σ1, σ1σ2, σ2σ1) is a basis of S3(3); Fig. 4.3.

Lemma 4.1.

(a) Let P = (x1 + x2σ1) ∈ S3(2). P is invertible in S3(2) iff x2
1 − v2x2

2 −
vzx1x2 6= 0.

(b) Let L = (Σ6
i=1aie1) ∈ S3(3). If LP = ry(LP ) up to the global change of

orientation, then x1(a5 − a6) = x2(a3 + vza6 − v2a4).

(c) Let D3(3) denote the subset of S3(3) such that for L ∈ D3(3), there is an
invertible element P ∈ S3(2) satisfying LP = ry(LP ) (up to the global
change of orientation) in S3(3) (see Fig. 4.4). Then L ∈ D3(3) iff a5 = a6
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Fig. 4.4

or F (a3, a4, a5, a6) 6= 0 where F (a3, a4, a5, a6) = (a3 − v2a4 + vza5)(a3 −
v2a4 + vza6) − v2(a5 − a6)

2.

(d) D3(3) is dense in S3(3).

Pr oo f.

(a) P acts from the right side on S3(2) and in the basis 1, σ1 it is described by
the matrix

[P ] =

[

x1 v2x2

x2 x1 + vzx2

]

Thus P is invertible iff det[P ] = x2
1 − v2x2

2 − vzx1x2 6= 0.

(b) Let 〈−,−〉 be a bilinear form on S3(3) given by 〈ei, ej〉 = δi,j, then LP =
ry(LP ) is equivalent to 〈LP, e5〉 = 〈LP, e6〉. The short calculation gives:
〈LP, e5〉 = x1a5 + x2a4v

2, and 〈LP, e6〉 = x1a6 + a3x2 + vza6x2. Thus P

is given by the condition x1(a5 − a6) = x2(a3 + vza6 − v2a4).

(c) If a5 = a6 then we can take for example P = P−1 = 1, otherwise we have
unique “projective” solution P = t((a3+vza6−v2a4)+(a5−a6)σ1). Putting
this solution to the condition from (a) one gets: (a3 − v2a4 + vza5)(a3 −
v2a4 + vza6) − v2(a5 − a6)

2 6= 0.

(d) It is enough to notice that the last polynomial inequality holds for a (open)
dense subset of S3(3) (a complement of an algebraic set).

Theorem 4.2.

(a) Let L be any oriented 3-tangle such that the rotation rz sends inputs to
outputs and vice versa, as shown in Fig. 4.5(a). Let o(L) denote the 3-tangle
obtained from L by changing its orientation, Fig. 4.5(b).

Consider now a cyclic word w(L, o(L),Dα) over the alphabet consisting of
tangles L, o(L) and all oriented 2-tangles, Dα. Furthermore assume that
neighboring tangles in the cyclic word have compatible orientation (can be
glued together). Let T (w) be the associated tangle placed in the annulus
(oriented version of Fig. 3.12(a)). Now, let us rotate, along the axis z, each
3-tangle of the word, and then change its orientation. We obtain, possibly
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Fig. 4.5

different, tangle but equal to the previous one in the skein module of the
solid torus. That is, T (w(L, o(L),Dα)) and T (w(o(rz(L)), o(rz(o(L))),Dα))
are equal in the skein module of the solid torus; compare Fig. 3.12. If the
solid torus is embedded in a 3-manifold and the endpoints of the tangles are
connected in the same manner, outside the solid torus, then the resulting
links are equal in the skein module of the 3-manifold.

(b) Let L be any oriented 3-tangle such that the rotation ry sends inputs to
outputs and vice versa, as shown in Fig. 4.6. Consider now a cyclic word
w(L, o(L),Dα) over the alphabet consisting of tangles L, o(L) and all orien-
ted 2-tangles, Dα. Furthermore assume that neighboring tangles in the cyclic
word have compatible orientation (can be glued together). Let T (w)
be the associated tangle placed in the annulus. Now, let us rotate, along
the axis y, each 3-tangle of the word, and then change its orientation.
We obtain, possibly different, tangle but equal to the previous one in the
skein module of the solid torus. That is, T (w(L, o(L),Dα)) and
T (w(o(ry(L)), o(ry(o(L)),Dα))) are equal in the skein module of the solid
torus; compare Fig. 3.13. If the solid torus is embedded in a 3-manifold and
the endpoints of the tangles are connected in the same manner, outside the
solid torus, then the resulting links are equal in the skein module of the
3-manifold.

Pr oo f. If L is a “braid like” 3-tangle (Fig. 4.1(a)), we use the spectral para-
meter tangle (from Lemma 4.1) similarly as in the case of the Kauffman bracket
skein relation. All cases of the orientation of L from Fig. 4.5 and 4.6 easily reduce
to the basic cases of “braid like” and “alternating” 3-tangles. For an “alterna-
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Fig. 4.6

ting” 3-tangles one should prove a lemma analogous to Lemma 4.1, but there is
no difficulty in doing so.

5. Spectral parameter 3-tangle. We use in this section the idea of the
spectral parameter tangle but in the more involved case. The spectral parameter
tangle is, in this section, a 3-tangle. We work in this part with the third (Homflypt)
skein relation, i.e. with the skein module S3. For the Kauffman bracket skein
module, computations are similar but slightly shorter. I delayed publishing these
results, which were ready in the summer of 1991 [32], because I believed that
a similar result could hold for the Kauffman polynomial. Only two years later
Traczyk performed calculations which showed that it is not a case (even for a 2-
cable of the Jones polynomial which gives a special substitution of the Kauffman
polynomial).

Theorem 5.1. If X and Y are 3-tangles oriented as in Figure 5.1(a) (resp. Fig.
5.1(b)) and W (XY ) is any word in letters X and Y then

Tr(W (X,Y )) = Tr(W (ry(X), ry(Y ))

where Tr(A) denotes the cyclic closer of the 6-tangle A (i.e. the link diagram in
the annulus determined by A); compare Fig. 5.2.

Theorem 5.1 contains 2 parts depending on whether tangles X and Y are of
type (a) or (b) of Figure 5.1. The idea in both cases is the same but specific
calculations are different. We prove here the simpler case of tangles X,Y oriented
as in Figure 5.1(a)6. As in previous parts the crucial element of the proof is the

6 The initial proof of the second case with segments oriented as in Figure 5.1(b) was performed
with the using the computer program Mathematica (and with help of J. Walsh). We will present
a “computer free” proof in the future paper [33].
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Fig. 5.1

Fig. 5.2

existence of the invertible spectral parameter tangle and then Theorem 5.1 follows
easily, as the results in the previous parts. Denote by S ′

3(3) the skein module of
the tangle from Fig. 5.1(a).

Lemma 5.2.
(a) Let Y = Σ5

i=0yiei ∈ S ′
3(3), in the basis of S ′

3(3) shown in Fig. 5.3. Y is
invertible in S ′

3(3) iff

((y0 + y3 + µy1)(y0 + y4 + µy2) − (y2 + y5 + µy4)(y1 + y5 + µy3))

× (y0(y0 + v−1zy5) − v−2y2
5) 6= 0.

(b) Let X = Σ5
i=0xiei ∈ S ′

3(3). If XY = ry(XY ) and Y = ry(Y ) (up to the
global change of orientation) then y3 = y4 and

y0(x4 − x3) + y1(x2 + x5 + µx4) − y2(x1 + x5µx3)

− y3(x3 − x4 + µ(x1 − x2)) + y5(x2 − x1) = 0.

(c) Let D2(3) denote the subset of S ′
3(3) × S ′

3(3), such that (A,B) ∈ D2(3)
iff there is an invertible element Y ∈ S ′

3(3) such that AY = Y ry(A) and
BY = Y ry(B). Then D2(3) is dense in S ′

3(3) × S ′
3(3).
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Fig. 5.3

Pr oo f.
(a) Let X = Σ5

i=0xiei, Y = Σ5
i=0yiei, in the basis of S ′

3(3) shown in Fig. 5.3.

Then

XY = e0(y0x0 + v−2y5x5)
+ e1(y0x1 + y1(x0 + x3 + µx1) + y4(x1 + x5 + µx3) + y5(x3 − v−1zx5))
+ e2(y0x2 + y2(x0 + x4 + µx2) + y3(x2 + x5 + µx4) + y5(x4 − v−1zx5))
+ e3(y0x3 + y2(x1 + x5 + µx3) + y3(x0 + x3 + µx1) + y5x1)
+ e4(y0x4 + y1(x2 + x5 + µx4) + y4(x0 + x4 + µx2) + y5x2)
+ e5(y0x5 + y5(x0 + v−1zx5)).

If X is treated as a linear operator acting (from the left) on S ′
3(3), then

from the above calculation we obtain that in the basis e1, . . . , e5:

detX = ((x0 + x3 + µx1)(x0 + x4 + µx2)
− (x2 + x5 + µx4)(x1 + x5 + µx3))

2(x0(x0 + v−1zx5) − v−2x2
5).

Then part (a) follows (we have to change roles of X and Y ).

(b) follows immediately from the formula for XY .

(c) One have to perform easy but long and tedious calculations.

One of the ingredients of our work was to show that the elements of the
Temperley-Lieb algebra TL2 and TL3 are almost everywhere invertible. We can
show that it holds for any n, answering the question raised by Rolfsen in [36]
(Question after Proposition 5). Similar fact also holds for the Hecke algebra
Hn(v, z) = S3(n) as well as for Birman-Murakami-Wenzl algebra.

Theorem 5.3.
(a) Invertible elements of TLn = S2,∞(n) form a dense subset of TLn.

(b) Invertible elements of Hn(v, z) form a dense subset of Hn(v, z).

Pr oo f. We will demonstrate (b). The proof of (a) is similar. The main idea
of the proof is observation that the analogous result for the group algebra over
the symmetric group Sn can be seen immediately7.

7 We could stop here saying thatHn(v, z) and F(v, z)Sn are algebra isomorphic, but we present
an elementary proof.
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It is convenient to work with the ring Q[v±1, z], in addition to the field F(v, z).
Denote the corresponding (to the ring Q[v±1, z]) skein module and Hecke algebra
by S+

3 (n) = H+
n (v, z). Let {e1 = 1, e2, . . . , en!} be a basis of Hn(v, z), composed

of positive braids of minimal number of crossings for a given permutation. It
is also a basis of the free module H+

n (v, z). Let X be an element of Hn(v, z)
and consider its action from the left on Hn(v, z). It is a linear function and its
matrix [X] = [ai,j] in our basis is given by Xei = Σjai,jej . Invertible elements of
Hn(v, z) form a subalgebra of Hn(v, z). It is immediate but important observation
that in order to show that they are dense in Hn(v, z), it suffices to show that
elements of non-zero determinant in H+

n (v, z) are dense in H+
n (v, z). Consider

X = Σn!
i=1xiei in H+

n (v, z). Because xi ∈ Q[v±1, z], we can work now modulo
(z, v2−1) – the ideal generated by z and v2−1. Our skein relation σ2

i = vzσi +v2

reduces to σ2
i ≡ 1 mod(z, v2 − 1). We can immediately check that detX ≡

xn!
1 + O(xn!−2

1 )mod(z, v2 − 1), because for [X] = [ai,j], ai,i ≡ x1 mod(z, v2 − 1)
and ai,j ≡ xs mod(z, v2 − 1) where s 6= 1 for i 6= j. Thus detX 6= 0 outside an
algebraic set and Theorem 5.3(b) holds.

Another application of the spectral parameter tangle has been recently demon-
strated by Rolfsen in [37]. Furthermore, the remarkable example by T. Kanenobu
of an infinite family of different knots with the same skein polynomial [17] can
be put in more general context similar to that of the spectral parameter tangle
[18]. Namely Kanenobu considers elements of S ′

3(n) for which e2 of Figure 5.3 is
an eigenvector.

References

[1] D. Albers, John Horton Conway, Talking a good game, Math. Horizons, Spring 1994,
Published by the M.A.A.

[2] R. P. Anstee, J. H. Przytycki, D. Rolfsen, Knot polynomials and generalized mutation,
Topology Appl., 32 (1989), 237–249.

[3] R. Baxter, Exactly solved models in statistical mechanics, Academic Press, London, 1982.
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