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1. Introduction. In 1947 Tadeusz Ważewski [35, 36] proved his famous Re-
tract Theorem. Roughly speaking the theorem states that if the trajectories of
a flow leave a closed set W through a subset W− of the boundary of W , do it
“transversally”, and the set W− is not a deformation retract of W then there
exists a trajectory of the flow entirely contained in W . (We put the word trans-
versally in quotation marks, because what really matters is a certain topological
type of transversality.) The theorem soon found many applications in differential
equations concerning the existence of bounded trajectories.

Twenty years later Charles C. Conley and his student Robert Easton started
working on extending the concept of the Morse index to the case of a degene-
rate stationary point [6, 7]. (Let us recall that the Morse index of a hyperbolic
stationary point is the dimension of its unstable manifold.) The main tool they
used was the concept of isolating block. Though originally they were not aware
of the work of Ważewski, they soon realized that the notion of isolating block is
closely related to the set W in the assumption of the Retract Theorem. (Conley
called such sets Ważewski sets.) Inspired by the proof of the Ważewski theorem
Conley observed (comp. [4]) that the generalization of the Morse index proposed
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by him and R. Easton may be developed into an index theory for invariant sets.
This lead to a large research project carried out under the direction of Conley by
his Ph.D. students in 70’s (comp. in particular [3, 22, 16, 17]). The results of this
research, scattered in several papers, were then nicely presented in a booklet [5]
by Conley.

The basic concepts of the new theory, nowadays usually referred to as the Con-
ley index theory, are the notions of an isolating neighbourhood and an isolated
invariant set. A compact set N is called an isolating neighbourhood if the maxi-
mal invariant subset of N (possibly empty) does not intersect the boundary of N .
In other words, N is an isolating neighbourhood, if the trajectory of every point
on the boundary of N leaves N in some positive or negative time (not necessarily
immediately). An isolated invariant set S is a compact invariant set which is a
maximal invariant subset of some isolating neighbourhood N . The neighbourhood
N is then said to isolate S. It is easy to show that every Ważewski set is an isolat-
ing neighbourhood. It is much less straightforward to prove that every isolating
neighbourhood N isolating S admits a subset W which is a Ważewski set still
isolating S. This done, one proves that the homotopy type (and in particular also
the cohomology) of the quotient space W/W− does not depend on the particular
choice of the Ważewski set but only on the isolated invariant set S inside. Thus,
this homotopy type is an invariant of S and is by definition the homotopy Conley
index of S. The cohomology Conley index is defined as the cohomology of the
homotopy Conley index.

Some people feel discouraged by the fact that the definition of the Conley
index is quite complicated; in particular the index is not a number. Fortunately,
though a formal axiomatization of the theory has not been performed yet, a set of
properties, which seem to be sufficient in most applications, may be proposed. Let
us also mention that several numbers may be extracted easily from this abstract
form of the index. In particular, the Conley index of a hyperbolic stationary point
is the homotopy type of an n-dimensional sphere with n being the Morse index
of that point.

The Retract Theorem of Ważewski rephrased in terms of the Conley index
states that whenever the Conley index of an isolating neighbourhood is non-trivial
(i.e. different from the homotopy type of the one point space) then it isolates a
non-empty invariant set. One of the basic differences between the Retract The-
orem and the Conley index consists in the fact that the index persists under a
small perturbation of the flow. The computation of the Conley index is facili-
tated by several theorems, especially the homotopy property which states that
the Conley index of an isolating neighbourhood N remains constant when the flow
is continuously changed but N is kept an isolating neighbourhood. This gives the
theory a flavour similar to the fixed point index theory, which does not contradict
the fact that the two theories are essentially different.
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The potential strength of the Conley index theory lies in the fact that, unlike
the Ważewski Theorem, the theory may be used not only to prove the existence of
non-empty invariant sets but to tell something about their internal structure: the
existence of stationary points, heteroclinic connections, periodic trajectories and
recently also chaotic trajectories. This is possible, because the Conley indexes,
as algebraic structures, may be somehow measured or compared. The results of
measurements and comparisons often reflect the internal structure of an isolated
invariant set.

One could then expect that the Conley index is a commonly used tool in diffe-
rential equations but it is not. The Retract Theorem seems to be already applied
everywhere it could have been applied. It is not surprising: the theorem is alre-
ady 46 years old. As we said, the ambition of the Conley index theory is to find
applications beyond the Ważewski Theorem. Unfortunately, it is even not easy
to find isolating neighbourhoods unless a Ważewski set is known. The situation
with Ważewski sets resembles that with Lyapunov functions: it is easy to check
if something is a Lyapunov function but usually it is hard to find one. Paradoxi-
cally, numerical experiments indicate that the isolating neighbourhood is a very
common phenomenon in dynamics. Thus, the behaviour of isolating neighbour-
hoods is opposite to Ważewski sets and Lyapunov functions: it is easy to find a
candidate but hard to prove that we really found an isolating neighbourhood: the
analytic technicalities are too complicated.

A numerical test for an isolating neighbourhood is simple. We choose a possibly
large set of points in the boundary of the candidate N and follow their trajectories
numerically forwards and backwards for some time. If they all eventually leave the
set N we may believe that N is an isolating neighbourhood. It is thus tempting
to ask the question: could such a computation be converted into a rigorous proof?
If yes, could we also use computer for rigorous computing the Conley index?

It is relatively easy to give positive answer to the first question. Since we
can rigorously estimate all the errors involved in the computation, we can also
make claims about trajectories of individual points. When the set of points in the
boundary is large enough we can then extend the argument to all points in the
boundary using Lipschitz estimates.

The answer to the other question is also positive but it requires a substantial
extension of the Conley index theory. Any dynamics implemented on computer by
its very nature is discrete. Thus we need the Conley index for discrete dynamical
systems. Conley asked for such an extension but the problem remained unsolved
for ten years. The obstacle seemed to be serious. The classical Conley index theory
was build on the idea of homotopies along trajectories of the flow, the idea taken
from Ważewski. In the discrete case such homotopies do not make any sense.
Nevertheless a solution was finally proposed by J. Robbin and D. Salamon in
1988 in [33] and independently also in [25] in 1990. The other problem is that
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what we really deal with on computer is multivalued dynamics. This is because of
error estimates. Thus a Conley index for discrete multivalued dynamical systems
is needed. Such a construction was proposed in [15].

With the above set of tools computer assisted rigorous computation of the
Conley index became, at least theoretically, possible. The first actual computation
concerned chaos in the Lorenz equations [20, 21]. Some other results based on
similar methods, concerning the Kuramoto-Shivashinsky equation are in progress.

In this paper we would like to review basic results which lead to applying the
ideas of Ważewski, via the Conley index, to computer assisted proofs in dynamics.

2. The Ważewski Retract Theorem. Let us begin with recalling the classical
Ważewski Retract Theorem, following the original papers of Ważewski [35, 36, 37].
Ważewski studies a non-autonomous differential equation

x′ = V (t, x), (t, x) ∈W ⊂ R×Rn (1)

with continuous right hand side which guarantees the uniqueness of solutions. Let
x(t, t0, x0) denote the solution of the equation originating from (t0, x0). Assume
U ⊂ W is open. Take (t0, x0) ∈ U . Then there are two possibilities. Either the
positive trajectory of (t0, x0) is contained entirely in U or it exits U at some exit
point C(t0, x0) = (t#, x#) ∈ bdW U . Ważewski calls the exit point a strong exit
point if there exists an ε > 0 such that (t, x(t, t#, x#)) 6∈ clU for t# < t < t# + ε.
Denote by U# the set of all exit points and by U− the set of strong exit points.
Obviously U− ⊂ U# ⊂ bdW U .

Recall that if A ⊂ B then A is called a retract of B if there exists a continuous
function r : B → A, called retraction, such that r|A = idA. A is called a defor-
mation retract of B if there exists a retraction r : B → A which is homotopic to
id|B.

Theorem 2.1. (Ważewski Retract Theorem). Assume U# = U−, i.e. every
exit point is a strong exit point. Let Z ⊂ U ∪U− be such that Z ∩U− is a retract
of U− but not a retract of Z. Then there exists a point (t0, x0) ∈ Z ∩U such that
its positive trajectory is contained entirely in U .

The classical formulation of the theorem is slightly complicated, so let us
make a few comments. In most applications Z is taken to be just U ∪ U−. The
formulation may be slightly simplified if the open set U is replaced by a closed
set W . The condition U# = U− is then equivalent to assuming that the set

W− := {(s, x) ∈W | ∃ε > 0 : x(t, s, x) 6∈W for s < t < s+ ε}

is closed. Following C. Conley, we will call such sets Ważewski sets. Note that
the points in W− correspond to strong exit points in the Ważewski terminology
but they are usually called just exit points, because the exit points in the sense
of Ważewski are no longer necessary. The theorem then becomes:
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Theorem 2.2. If W is a Ważewski set and W− is not a deformation retract
of W then there exists x ∈W such the whole positive trajectory of x is contained
in W .

The idea of proof is very simple. Assume there is no such trajectory. Then
for every point x ∈ W the associated exit point C(x) ∈ W− is well defined. The
closedness of W− implies that the transformation C : W → W− is continuous,
thus evidently it is a retraction. Moreover, using the trajectories of the flow, one
can easily build a homotopy joining C with the identity map on W . Thus W−

turns out to be a deformation retract of W , a contradiction. The proof of the
original version of Ważewski theorem goes along exactly the same lines.

Though it is rather hard to prove non-existence of retraction just from defi-
nition, many examples, in particular the fact that an n-dimensional ball cannot
be retracted to an (n − 1)-dimensional sphere are well known. (This is easy to
prove only in dimension one, because in that case topology is induced by order.)
Basic tools which are used to measure the non-retractability are provided by the
homotopy theory and the homology theory. The idea of Conley was to apply these
theories to transform the Ważewski Theorem into an index theory.

3. The Conley index. First of all observe that Ważewski Theorem by its very
nature is purely topological; hence the same proof applies when the differential
equation is replaced by a flow π : X × R → X on a topological space X. Recall
that a flow is a group π = {πt}t∈R of homeomorphisms of X indexed by real
numbers and such that the map t → πt is a homomorphism of groups. (The
solutions of (1) define a flow π = {πt : (t0, x0)→ x(t− t0, t0, x0)} on W .)

The classical Conley index is defined for flows. However, unlike the Ważewski
Theorem, the theory requires some compactness. In the simplest setting, adopted
in this paper, flows on locally compact metric spaces are considered. Thus assume
that π is a flow on a locally compact metric spaceX. The maximal invariant subset
of N ⊂ X is defined by

InvN := {x ∈ N | ∀t ∈ R πt(x) ∈ N}.

We say that S is invariant if S = InvS and that S is isolated invariant if there
exists a compact set N such that S = InvN and S ⊂ intN. The set N is then
called an isolating neighbourhood.

The definition of the homotopy (cohomological) Conley index for flows rests
on the following two theorems.

Theorem 3.1. Every isolating neighbourhood N contains a Ważewski set W
such that InvN ⊂W .

Theorem 3.2. The homotopy type of the quotient space W/W− (the Alexander-
Spanier cohomology H∗(W,W−)) does not depend on the index pair but only on
the isolated invariant set S.
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This common value is taken as the homotopy (cohomological) Conley index.
Though the homotopy index is more general and easier to introduce (all neces-

sary definitions from homotopy theory are elementary), the cohomological Conley
index is easier to apply, because the cohomology is easier to compute than the
homotopy type. Thus we will restrict our attention to the cohomology Conley
index in the sequel. The cohomology Conley index takes the form of a graded
vector space (for simplicity we take cohomology with field coefficients).

The definition of the Conley index for semidynamical systems is similar (see
[34]) but conceptually more complicated, so we omit the details.

4. The Conley index for maps. When a differential equation is investigated
numerically, what really happens is that a discrete numerical scheme approxima-
ting the equation is iterated. Thus, if there is any hope of computing the Conley
index on computer, first of all the index must be generalized to discrete dyna-
mical systems. A discrete dynamical system on X is a group π = {πt}t∈Z of
homeomorphisms of X like in the case of a flow but indexed by integers. Unlike
the flow, a discrete dynamical system is generated by a single element, namely
π1 (or π−1). Hence it is often identified with its generator. In other words, if
f : X → X is a homeomorphism then we can think of f as a discrete dynamical
system πf = {fn}n∈Z given by the iterates of f .

The question how to generalize the Conley index to the discrete case was
raised already in Conley’s booklet [5]. The notions of isolating neighbourhood
and isolated invariant set can be carried over directly to the discrete case via the
obvious change of R to Z. However, the notion of Ważewski set does not make
sense in the discrete case. This is because the trajectories may jump over the
boundary. Thus it is necessary to extend the notion of exit set in such a way that
it is not necessarily a subset of boundary. This is done via so called index pairs.

Definition 4.1. The pair P = (P1, P2) of compact subsets of N will be called
an index pair of S in N iff the following three conditions are satisfied

x ∈ Pi, f(x) ∈ N ⇒ f(x) ∈ Pi, i = 1, 2

x ∈ P1, f(x) 6∈ N ⇒ x ∈ P2

InvN ⊂ int(P1\P2).

Like in the case of a flow (Theorem 3.1) one can prove

Theorem 4.2. Every isolating neighbourhood admits an index pair P .

However, there is no direct analogue of Theorem 3.2. The cohomology of index
pair does depend on its choice. The proof fails, because the fundamental tool in
the proof of Theorem 3.2, i.e. the homotopy build along trajectories of the flow,
does not make any sense in the discrete case. In this respect entirely new ideas
are needed.
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Assume f : X → X is a homeomorphism, S is an isolated invariant set with
respect to πf and P = (P1, P2) is an index pair in N . It can be easily derived
from the definition of the index pair that f induces a map of pairs

fP : (P1, P2) 3 x→ f(x) ∈ (P1 ∪ f(P2), P2 ∪ f(P2))

and the inclusion

iP : (P1, P2) 3 x→ x ∈ (P1 ∪ (P2), P2 ∪ f(P2)).

induces an isomorphism in Alexander-Spanier cohomology.

Definition 4.3. The endomorphism

H∗(fP ) ◦H∗(iP )−1 of H∗(P ),

where H∗ denotes the Alexander-Spanier cohomology, will be called the index
map associated with the index pair P and denoted by IP .

The index map contains information which is essential in the construction of
the discrete Conley index. This information is not important in the continuous
case, because it is then trivial in the sense that the index map associated with
the time-one translation map of a flow is always the identity.

In order to make use of the extra information we need some definitions.
Denote by E the category of vector spaces. If E,F ∈ E then E(E,F ) will stand

for the set of all linear maps from E to F in E .
The category EE of linear endomorphisms is defined as follows. The objects

of the category EE are all pairs (E, e), where E ∈ E and e ∈ E(E,E) is an
endomorphism. The morphisms from (E, e) ∈ EE to (F, f) ∈ EE are all maps
φ ∈ E(E,F ) such that the diagram

E
e−→ Eyφ yφ

F
f−→ F

commutes. We define the category EI of linear automorphisms as the full sub-
category of EE consisting of pairs (E, e) such that e is an isomorphism. We will
consider the category E as a subcategory of EI using the natural functorial em-
bedding

E 3 E → (E, id) ∈ EI.

Thus we have
E ⊂ EI ⊂ EE.

We want to define a functor L : EE → EI. Since its definition is simplest on a
subcategory of finite dimensional vector spaces, we restrict our attention to that
case.
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Let (F, f) ∈ EE. Define the generalized kernel of f as

gker(f) :=
⋃
{f−n(0) | n ∈ N}.

Since f(gker(f)) ⊂ gker(f), we have an induced monomorphism

f ′ : F/ gker(f) 3 [x]→ [f(x)] ∈ F/ gker(f).

Put
L(F, f) := (F/ gker(f), f ′).

It is easy to verify that f ′ is in fact an isomorphism. Thus L(F, f) ∈ EI. One
can easily extend the above definition to morphisms, so that we actually obtain
a covariant functor

L : EE → EI.

We will call it the Leray functor.
The analogue of Theorem 3.2 in the discrete case is the following theorem.

Theorem 4.4. Assume f : X → X is a homeomorphism and S is an isolated
invariant set with respect to πf . Then L(H∗(P ), IP ) does not depend on the index
pair but only on the isolated invariant set S.

The above theorem allows us to define the Conley index in the discrete case
as L(H∗(P ), IP ). Let us emphasize that in the discrete case the Conley index has
the form of a pair

Con∗(S) = (CH∗(S), χ∗(S)),

where CH∗(S) is a graded vector space and χ∗(S) : CH∗(S) → CH∗(S) is a
graded automorphism.

As we stated above, if f is the time-one-map of a flow and S is an isolated
invariant set, then IP is an identity. Consequently

Con(S, πf ) = L(H∗(P ), id) = (H∗(P ), id) = H∗(P ).

Hence we have the following

Theorem 4.5 (see [28]). The cohomological Conley index of an isolated inva-
riant set of a flow coincides with the corresponding cohomological Conley index
of the time-one-map of this flow.

There is also

Theorem 4.6 (see [28]). S is an isolated invariant set with respect to a flow iff
it is an isolated invariant set with respect to the time-one translation of the flow.

Hence our index can be considered as a generalization of the cohomological
Conley index for flows.
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5. Properties of the Conley index. As we mentioned in the introduction,
the Conley index has several properties which facilitate its computation. In most
applications it is sufficient to know the properties only. In this section we would
like to summarize them.

The first property is just a reformulation of the Ważewski Retract Theorem.

Theorem 5.1. Ważewski property: If N is an isolating neighbourhood with
respect to πf and Con(InvN, πf ) 6= 0 then InvN is non-empty.

Theorem 5.2. Stability property: If N is an isolating neighbourhood with re-
spect to πf then it is an isolating neighbourhood with respect to πg for g sufficiently
close to f in the compact-open topology and the Conley indexes with respect to f
and g coincide.

Theorem 5.3. Homotopy property: Assume πs, s ∈ [0, 1], is a family of dy-
namical systems on X continuously depending on s. If N ⊂ X is an isolating
neighbourhood with respect to every dynamical system πs then Con(InvN, πs) does
not depend on s.

Theorem 5.4. Additivity property: If N,N1, N2 are isolating neighbourhoods
such that InvN = InvN1 ∪ InvN2, InvN1 ∩ InvN2 = ∅ then Con(InvN, πf ) =
Con(InvN1, πf )× Con(InvN2, πf )

Theorem 5.5. Normalization property: The whole space X is an isolating
neighbourhood and Con(X,πf ) = (H∗(X), f∗).

Theorem 5.6. Commutativity property (see [29]). Assume f = ψφ, g = φψ,
where φ : X → Y, ψ : Y → X are continuous. If S ⊂ X is an isolated invariant
set with respect to πf then φ(S) is an isolated invariant set with respect to πg and
Con(S, πf ) = Con(φ(S), πg).

Theorem 5.7. Relation to fixed point index (see [23]). Assume X is a compact
ANR and S is an isolated invariant set of πf . Let Con(S, πf ) = (E, e) ∈ EI. Then
E is of finite type and Λ(e), the Lefschetz number of e, is exactly the fixed point
index of f in a neighbourhood of S.

Let x0 be a hyperbolic fixed point of f. Let k denote the number of eigenvalues
of Df(x0) with modulus greater than one (counted with multiplicity). Let l denote
the number of real eigenvalues of Df(x0) which are less than −1. Then the pair
(k, l) will be called the Morse index of x0.

Theorem 5.8. Assume x0 is a hyperbolic fixed point of a C1-diffeomorphism
f : Rn → Rn. Then {x0} is an isolated invariant set and

Coni({x0}, πf ) =

{
0 for i 6= k
(Q, (−1)l id) for i = k,

where (k, l) is the Morse index of {x0}.
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6. The Conley index for multivalued discrete dynamical systems. In order
to apply the Conley index in computer assisted proofs, it was necessary to extend
the Conley index theory to multivalued maps. Such a theory for multivalued flows
was proposed in [24]. The generalization in that case is quite natural. However,
the discrete case is different, because it is not evident how to define an isolating
neighbourhood in that case. In [15] an extension of the theory, based on the
following definition of the isolating neighbourhood, was proposed.

Definition 6.1. Assume F : X → X is a multivalued map and N ⊂ X. The
set Inv(N,F) is defined as the set of x ∈ N such that there exists a function
σ : Z → N satisfying σ(0) = x and σ(n + 1) ∈ F(σ(n)). The set N is said to be
an isolating neighbourhood for F if

BdiamN F (InvN) ⊂ intN,

where diamN F is the maximal diameter of the values of F in N .

The generalization of the notion of the index pair is then straightforward:

Definition 6.2. Let N be an isolating neighbourhood for F . A pair P =
(P1, P2) of compact subsets P2 ⊂ P1 ⊂ N is called an index pair if the following
conditions are satisfied:

F(Pi) ∩N ⊂ Pi, i = 1, 2;

F(P1\P2) ⊂ N ;

InvN ⊂ int(P1\P2).

The definition of the index map does not essentially differ from the single
valued case. One only needs to put some admissibility conditions (as in [12, 13])
to ensure that the multivalued map induces a map on cohomology level. This is
all what is necessary to develop the Conley index theory for multivalued discrete
dynamical systems.

As we mentioned in the introduction, all what we may obtain rigorously from
numerical computations of a trajectory of a differential equation is only a set
where the exact value is located. This is why we need the Conley index theory for
multivalued maps. The following result let us go back to the single-valued map
of interest.

Theorem 6.3 (see [30]). Let F be an admissible multivalued map and f be a
selector of F , i.e. f(x) ∈ F(x) for every x ∈ Rn. If N is an isolating neighbour-
hood for F , then it is an isolating neighbourhood for f . Furthermore, the Conley
indexes of f and F coincide.
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7. Results in dynamics based on Conley index. We would like to show in this
section that results based on the Conley index go essentially beyond the Ważewski
Retract Theorem. Let us begin with an example from [5], where Conley index is
used to prove the existence of bounded but non-stationary solutions.

Example 7.1. Consider the system of differential equations{
x′i = xi+1 i = 1, 2, ..., n− 1
x′n = (x1)2 − 1.

(2)

The system admits a non-stationary, bounded solution.

The sketch of the proof is as follows: Let S denote the set of points which lie on
bounded trajectories of system (1). It may be easily shown that S is compact, i.e.
it is an isolated invariant set. Moreover, system (1) can be continued to a system
with no bounded trajectories. Thus the homotopy and Ważewski properties imply
that Con(S) = 0. S contains the two stationary trajectories of (1), S1 and S2. It
suffices to prove that S 6= S1 ∪ S2. Assume the contrary. Then, by the additivity
property, 0 = Con(S) = Con(S1)× Con(S2) and Con(S1) = Con(S2) = 0. Howe-
ver, it can be computed that at least one of the stationary points S1, S2 must be
hyperbolic and Theorem 5.8 implies that its index is non-zero, a contradiction.

Conley shows in [5] that system (2) is gradient-like in odd dimension. Thus
the non-stationary solution is in fact a heteroclinic connection between the two
stationary solutions. The Conley index turned out to be very useful in studying the
existence of heteroclinic connections and a whole new theory, called the connection
matrix theory, emerged from such applications (see [9, 10, 11]).

Consider now the following map obtained from (2) by the Euler approximation
method

fs : Rn 3 (x1, x2, ...xn)→ (x1, x2, ...xn) + s(x2, ..., xn, (x1)2 − 1) ∈ Rn,

where s is a constant denoting the step of the Euler method. Similarly as in the
continuous case one can show, using the discrete Conley index, that it also admits
a non-constant, bounded trajectory at least for small values of the step s (for a
more general treatment see [32]).

Although until recently the problems of existence of heteroclinic connections
as in the above example, were the main area of applications of the Conley index,
the following two theorems substantially extend this area, by providing tools for
proving the existence of periodic solutions and chaos.

Theorem 7.2 (Ch. McCord, K. Mischaikow and M. Mrozek, see [18]). Assume
X is an ANR and ϕ : X × [0,∞)→ X is a semiflow with compact attraction. If
N is an isolating neighbourhood for ϕ which admits a cross-section Σ and

dimCH2n(N,ϕ) = dimCH2n+1(N,ϕ) for n ∈ Z
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or
dimCH2n(N,ϕ) = dimCH2n−1(N,ϕ) for n ∈ Z

and not all above dimensions are zero then ϕ has a periodic trajectory in N .

Theorem 7.3 (K. Mischaikow and M. Mrozek, see [19]). Assume that N =
N0 ∪ N1 is an isolating neighbourhood under f where N0 and N1 are disjoint
compact sets and for k = 0, 1

Conn(Nk) =

{
(Q, id) if n = 1

0 otherwise.

Then Nkl := (Nk∩f(Nk))∪ (Nk∩f(Nl))∪ (Nl∩f(Nl)) for k, l ∈ {0, 1}, k 6= l, are
isolating neighbourhoods and if additionally χ∗(Nkl) is not conjugate to identity
then there exists a d ∈ N and a continuous surjection ρ : Inv(N, f) → Σ2 such
that

ρ ◦ fd = σ ◦ ρ

where σ : Σ2 → Σ2 is the full shift dynamics on two symbols.

The above result allows to prove analytically chaos in the Hénon map (see
[20]).

8. Computer assisted proofs in dynamics. Theorem 7.3 cannot be applied
directly to a differential equation, because the automorphism part of the index is
always identity in that case. However, the theorem could be applied to a Poincaré
map. Unfortunately, in general there is no analytic formula for a Poincaré map, so
in that case it is especially hard to find the necessary Conley indexes with analytic
methods and a computer assisted argument seems to be a natural choice. Here is
a rough idea of such a proof (for simplicity we assume that the problem is three
dimensional). We select a Poincaré plain and a finite grid of squares on the plain
covering the area of interest. Then we follow numerically the trajectories of the
centres of the squares until they cross the Poincaré plain again. Let us call the map
obtained this way the computed Poincaré map. We know it only approximates
the exact Poincaré map to some extend. Having estimated all involved errors we
obtain a multivalued map, defined at the centres of the grid. Its values are balls
centered at the computed Poincaré map with radius being the error estimate. Thus
the value of the exact Poincaré map is contained in the ball. This multivalued map
is not yet the one we need, because it is defined only at the finite set of the centres
of the grid. Knowing a Lipschitz constant of the Poincaré map, we increase the
radius of every ball in such a way that it contains not only the image of the centre
of the square but the image of the whole square. Finally we assign the new ball as
the value to all points in the corresponding square (the points at the boundaries
of the squares require a bit more delicate treatment to obtain a well defined map;
we omit the details here). The multivalued map obtained this way still has the
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property that the exact Poincaré map is its selector. We now verify (this is a
combinatorial task again performed on computer) if the candidates for isolating
neighbourhoods in Theorem 7.3 are isolating neighbourhoods for the computed
multivalued map. If they are not, our proof fails. Otherwise we use Theorem 7.3
to carry over this fact to the exact Poincaré map and apply Theorem 7.3.

The discussed scheme was successfully applied to the Lorenz equations.

Theorem 8.1 (K. Mischaikow and M. Mrozek, see [20, 21]). Consider the Lorenz
equations

ẋ = s(y − x)
ẏ = Rx− y − xz
ż = xy − qz,

and the plane
P := {(x, y, z) | z = 53}.

For all parameter values in a sufficiently small neighbourhood of (s,R, q) =
(45, 54, 10), there exists a Poincaré section N ⊂ P such that the Poincaré map
g induced by (1) is Lipschitz and well defined. Furthermore, there exists a d ∈ N
and a continuous surjection ρ : Inv(N, g)→ Σ2 such that

ρ ◦ gd = σ ◦ ρ

where σ : Σ2 → Σ2 is the full shift dynamics on two symbols.

The situation when the presented scheme of computer assisted proofs fails re-
quires some discussion. Though it may mean that the result we want to prove
fails, more probably it just means that the size of squares in our grid was too
large and our computations were not sufficiently accurate. Hence we can always
decrease the size of squares and the accuracy of computations and repeat the pro-
cedure. This means more computations. Roughly speaking, if we want to increase
accuracy n times, we need nd more computations, with d being the dimension
of the problem. Thus it may turn out that the amount of computations neces-
sary to get the positive result is far beyond the power of the best present days
computers. This also explains why topological methods are better than smooth
methods in this respect. If we need to compute a space derivative of a solution, an
equation in variations must be simultaneously solved which immediately changes
a 3-dimensional problem into a 12-dimensional problem.

The choice of Lorenz equations as a first candidate to a computer assisted
proof was dictated (surprisingly) by the fact that the amount of computations
necessary to complete the goal in that case was relatively small, though still quite
complex. This also justified the particular choice of coefficients.

In fact, the main limitation of the method is the amount of necessary compu-
tations. However, the rapid progress in the available power of computers together
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with the development of more efficient algorithms gives us hope to attack more
and more complex problems. The power of the method is the fact that it may
provide rigorous results concerning concrete differential equations and dynamical
systems which are intractable by todays analytic methods and are only investi-
gated numerically. Because of the inherent nature of computational complexity in
nonlinear problems, the method seems to be natural and maybe even inevitable.

Finally let us mention that the method offers a way of answering one of the
fundamental questions of present days numerical analysis: how is the dynamics
of the discretization of a differential equation related to the dynamics of the
equation.
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[36] T. Ważewski, Sur un principe topologique pour l’examen de l’allure asymptotique des
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