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1. Introduction. The notion of holonomic systems entails a natural generalization of
ordinary differential equations to higher dimension. A holonomic system is, by definition,
a left coherent E (or D) module whose characteristic variety is Lagrangian. It enjoys
many good properties (see Kashiwara [7], [8] and Kashiwara-Kawai [10]): for example,
all cohomology groups associated with its solution sheaf are constructible. As special
functions satisfy systems of ordinary differential equations with regular singularities, a
holonomic system with regular singularities introduced by Kashiwara-Oshima [11] and
[10] is particularly important. It is well known that the category of holonomic modules
with regular singularities is equivalent to that of perverse sheaves through Riemann-
Hilbert correspondence (Kashiwara [9]). Moreover the regularity of holonomic modules is
stable under many operations (integration, restriction, etc.). For holonomic modules with
irregular singularities, Kashiwara-Kawai obtained the following remarkable theorem.

Theorem [10; Theorem 5.2.1] Let X be a complex manifold and M a holonomic EX
module. Then there exists a holonomic EX module Mreg with regular singularities such
that

(1.1) E∞X ⊗EX M' E∞X ⊗EX Mreg.

This implies that all holonomic modules are transformed into holonomic modules with
regular singularities by use of micro-differential operators of infinite order. The author
had shown that this transformation can be achieved by a smaller class of operators (micro-
differential operators of Gevrey growth order) corresponding to the irregularity of modules
(Honda [7]). Then it is natural to treat a converse problem for holonomic modules (the
regularity theorem). The regularity theorem for ordinary differential equations has a
long history. Malgrange [16] has shown the regular singularity of the system is equivalent
to the convergence of its formal power series solutions. Ramis [17] extend the results
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to the irregular singular case, that is, the irregularity is characterized by the Gevrey
growth order of its formal power series solutions. In the real domain, Komatsu [14] also
has a similar result comparing ultra-distribution and hyperfunction solutions. One of
the important problems is to extend these results to higher dimensions. The deep study
of holonomic systems due to Kashiwara-Kawai [10] and Kashiwara [9] established the
regularity theorems for holonomic modules in the regular singular case. The main purpose
of this paper is to give several regularity theorem for the irregular singular holonomic
modules.

2. Preliminaries. Let X be a complex manifold, π : T ∗X→X its cotangent bundle,
and V ⊂ T ∗X \ X a regular involutive or Lagrangian submanifold with the dimension
l. We denote by EX (resp. EX(m)) the subsheaf of E∞X consisting of micro-differential
operators of finite order (resp. micro-differential operators of order at most m). For the
theory of EX , refer to Sato-Kashiwara-Kawai [18] and Schapira [19]. Now we define the
subsheaf E(s)

X of micro-differential operators of Gevrey growth order (s) for any s ∈ (1,∞).

Definition 2.1. For an open subset U of T ∗X, a sum
∑
i∈Z Pi(x, ξ) ∈ E∞X (U) belongs

to E(s)
X (U) if and only if {Pi}i∈N satisfies the following estimate. For any compact set K

of U , there exists a positive constant CK such that

sup
K
|Pi(x, ξ)| ≤

CiK
i!s

, i > 0.

For convenience, we set E(1)
X := E∞X and E(∞)

X := EX .

Next we review briefly the definition of the sheaf of holomorphic microfunctions in
Gevrey class. Let Y be a complex submanifold of X and T ∗YX its conormal bundle.

Definition 2.2. We define the subsheaf CR,(s)
Y |X of the holomorphic microfunctions

CR
Y |X in T ∗YX as

CR,(s)
Y |X := E(s)

X C
R,f
Y |X

where CR,f
Y |X is the sheaf of tempered holomorphic microfunctions (for the definition, refer

to Andronikof [1, 2]).

Roughly speaking, holomorphic microfunctions in Gevrey class are the holomorphic
microfunctions which have Gevrey growth order close to the boundary in the holomorphic
representation.

Example 2.3. Let X = C with a coordinate (z) and Y = {z = 0}. We set for ε > 0

Sε = {z ∈ C; 0 < |z| < ε, | arg(z)| < π/2 + ε},

and

O(s)(Sε) = {f ∈ O(Sε); for some l > 0, sup
z∈Sε
|f(z) exp(−|lz|

−1
s−1 )| <∞}.

The stalk of CR,(s)
Y |X at (0;−dz) ∈ T ∗YX has the following holomorphic representation:

CR,(s)
Y |X |(0;−dz) = lim

ε→0

O(s)(Sε)
O0

.
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Remark that these sheaves are also defined by the functor T−µ(s)
· (O), which is a natu-

ral extension of tempered microlocalization functor T −µ·(O) constructed by Andronikof
[1, 2],

E(s)
X := τ−1τ∗T − µ(s)

X (OX×X)⊗ΩX [dimX]

where τ :
◦
T X → P ∗X is the canonical projection, and

CR,(s)
Y |X := T − µ(s)

Y (OX)[codimY ].

For the definition and properties of the Gevrey microlocalization functor, refer to Hon-
da [5].

To define the irregularity of holonomic modules, we introduce several sheaves. We first
define a sheaf of rings E(σ)

V ⊂ EX for σ a rational number 1 ≤ σ <∞. When σ = 1, this
sheaf is introduced and studied by Kashiwara-Oshima [11], Kashiwara-Kawai [10] and in
general case, by Laurant [15]. We give here the following formulation.

We set the subsheaf IV ⊂ EX(1) by

IV := {P ∈ EX(1); δ1(P )|V ≡ 0}.

Here we denote the symbol map of degree 1 by δ1(·). Now we define the sheaf of rings

E(σ)
V in

◦
T X.

Definition 2.4. For a rational number σ ∈ [1,∞), we define

E(σ)
V :=

∑
n≥0

EX
(

(1− σ)n
σ

)
InV .

In case σ = 1, this sheaf coincides with the sheaf EV defined in Kashiwara-Oshima [11]
and Kashiwara-Kawai [10]. We can find that E(σ)

V is stable under the quantized contact
transformations. Set E(σ)

V (d) = EX(d)E(σ)
V for an integer d. We list the properties of the

sheaf E(σ)
V .

(1) E(σ)
V is a subring of EX .

(2) EX(0) ⊂ E(σ)
V and E(σ)

V (d) is a left and right EX(0) module.

(3) E(σ)
V is a sheaf of Noetherian ring, and any coherent EX module is pseudo-coherent

over E(σ)
V .

(4) If P ∈ E(σ)
V , then the formal ajoint operator P ∗ belongs to E(σ)

V .

Example 2.5. Let X = Cl with a coordinate system (x1, . . . , xl) and

V ⊂ T ∗X = {(x1, . . . , xl; ξ1, . . . , ξl);x1 = ξ2 = . . . = ξl = 0, ξ1 6= 0}.

In this case, definition 2.4 is equivalent to the following definition in the above coordinates:
P ∈ EX(m) belongs to E(σ)

V (d) at p if and only if for the symbol expansion P (x, ξ) =
Pm(x, ξ) + Pm−1 + . . . of P (x,D),

Van(V ),p(Pk(x, ξ)) ≥ σ(k − d) for k ≤ m.
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Moreover if σ = q
p (here p and q (q ≥ p) are positive integers and prime to each other)

E(σ)
V = EX(0)[(xα1 ∂

β1
1 . . . ∂βll )], 1 ≤ k ≤ p, α ≥ 0,

β2 ≥ 0, . . . , βl ≥ 0,

β1 + . . .+ βl = k,

α+ β2 + . . .+ βl = sk.

Here sk is a minimal integer satisfying sk ≥ σk.

In case that V ⊂ T ∗X = {(x1, . . . , xl; ξ1, . . . , ξl); ξd = . . . = ξn = 0, ξ1 6= 0} (the
regular involutive case), the same definition as above works. Then we have

E(σ)
V = EX(0)[(∂α1 ∂

βd
d . . . ∂βll )], 1 ≤ k ≤ p,

βd ≥ 0, . . . , βl ≥ 0,

α+ βd + . . .+ βl = k,

β2 + . . .+ βl = sk.

Here sk is the same as previously.

Let M be a holonomic EX module in a neighborhood of p ∈
◦
T X. We first define the

weak irregularity ofM at a smooth point of its support. Given p 6∈ supp(M)sing ∪T ∗XX.

Definition 2.6. M has weak irregularity at most σ at p if and only ifM satisfies the
following conditions.

There exist an open neighborhood U of p, a maximally degenerate involutive subman-
ifold V with its singular locus supp(M), and an E(σ)

V coherent module M0 in U which
generatesM over EX and is finitely generated over EX(0) at any point of a dense subset
in supp(M) ∩ U .

Next we define weak irregularity in the general case.

Definition 2.7. (1) A holonomic EX module M has weak irregularity at most σ at
p if and only if there exist an open neighborhood U of p and a closed analytic subset
Z ⊃ supp(M)sing with codimZ ≥ dimX+1 such that,M has weak irregularity at most

σ at any point in U\Z ∩
◦
T X.

(2) A holonomic DX moduleN has weak irregularity at most σ if and only if EX⊗DXN
has irregularity at most σ at any point in

◦
T X.

We give several lemmas and examples for the weak irregularity.

Lemma 2.8. Let 0 →M1 →M2 →M3 → 0 be an exact sequence of holonomic EX
modules. Then M2 has weak irregularity at most σ if and only if M1 and M3 have weak
irregularity at most σ.

Example 2.9. Let X = C, V = T ∗{0}X(⊂ T ∗X) = {(x; ξ);x = 0, ξ 6= 0}, q = 0 and
p = (0; dx). Let P (x,D) = xdDm+am−1(x)Dm−1 + . . .+a0(x) be a differential operator
of order m. We define the rational number IrrV,q(P ) by

IrrV,q(P ) = max
{

1,
d−Van{0},q(ak(x))

m− k

}
.
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Then the holonomic EX module EX
EXP has weak irregularity at most IrrV,p(P ). Conversely

we obtain the following

Lemma 2.10. Let M be a holonomic EX module which has weak irregularity at most
σ = q

p at p. Then for any u ∈M, there exists a differential operator P such that Pu = 0
and IrrV,p(P ) ≤ σ.

Remark that in spite of M being an EX module, we can find such an operator in the
category of differential operators.

We investigate the functoriality of the irregularity by the inverse image. Let f : Y ↪→
X be an inclusion of two complex manifolds. We associate the morphisms $ and ρ as
usual:

T ∗Y ← T ∗X ×Y Y → T ∗X.

Lemma 2.11. Let M be a holonomic EX module which has weak irregularity at most
σ. If M is non-characteristic along Y , then MY = ρ∗(EY→X ⊗ϕ−1EX ϕ

−1M) has weak
irregularity at most σ.

3. Statement of main theorem. We give our main theorems. Let X be a complex
manifold with its contangent bundle T ∗X.

Main Theorem 1. Let U ⊂ T ∗X be a C× conic open set , M a holonomic EX
module in U and σ ≥ 1 a rational number. The following conditions (1), (2) and (3) are
equivalent.

(1) There exists a holonomic EX module Mreg with regular singularities satisfying

E(s)
X ⊗EX M' E

(s)
X ⊗EX Mreg

in U for all s ∈ [1, σ
σ−1 ].

(2) For any submanifold Y ⊂ X and any s ∈ [1, σ
σ−1 ], we have

RHomEX (M, CR,(s)
Y |X )|U ' RHomEX (M, CR

Y |X)|U .

(3) M has weak irregularity at most σ in U .

We give a short explanation of the meaning of the main theorem. (3) to (1) means, as
mentioned in the introduction, any holonomic modules (with irregular singularities) can
be transformed into regular singular holonomic modules by micro-differential operators
of Gevrey growth order corresponding to irregularities of modules. The statement (1)
in the theorem is a quite powerful tool to study the growth order of solutions, and for
its application we give corollaries 1, 2 below. (2) to (3) implies the irregularity of a
holonomic module is controlled by the growth order of its solutions, as shown by many
mathematicians in the case of ordinary differential equations.

We give some corollaries. Let M be a real analytic manifold with complexification X.

Corollary 1. Let M be a holonomic EX module at p ∈ T ∗X with weak irregularity
at most σ. Then we have the isomorphisms for all s ∈ [1, σ

σ−1 ],

RHomEX (M, C(s)M ) ' RHomEX (M, CM )
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where CM and (resp. C(s)M ) is the sheaf of microfunctions (resp. microfunctions of Gevrey
class (s)).

In the case that M is regular singular and the solution sheaf is tempered microfunc-
tions, this result was already obtained by Andronikof [3]. We also remark that applying

the functor τ∗ :
◦
T X → P ∗X to the result (2) of the main theorem, we can recover the

results of Laurent [15].

Corollary 2 [15]. Let M be a holonomic EX module at p ∈ T ∗X with weak ir-
regularity at most σ. Then we have the isomorphisms for all s ∈ [1, σ

σ−1 ] and for any
submanifold Y ⊂ X,

RHomEX (M, C(s)Y |X) ' RHomEX (M, C∞Y |X).

We have also the distribution version of the above theorem. Let X be the complex-
ification of a real analytic manifold M and N a holonomic D module at q ∈ M . We
denote by Db(s)M (resp. BM ) the sheaf of ultra-distributions of Gevrey class (s) (resp.
Sato’s hyperfunctions) in M .

Main Theorem 2. Assume

(char(N )reg ∩ T ∗MX)C = char(N )reg.

(This means the smooth part of the characteristic variety is the complexification of a real
analytic Lagrangian variety in T ∗MX.) Then the following conditions (1), (2) and (3) are
equivalent.

(1) There exists a holonomic DX module Nreg with regular singularities satisfying

D(s)
X ⊗DX N ' D

(s)
X ⊗DX Nreg

in a neighborhood of q.
(2) For any s ∈ [1, σ

σ−1 ], we have

RHomDX (N ,Db(s)M ) ' RHomDX (N ,BM )

in a neighborhood of q.
(3) N has weak irregularity at most σ in a neighborhood of q.

The main theorem 2 is the extension to higher dimensions of the following result of
H. Komatsu [14].

Let P be an ordinary differential operator. Then Irr(P ) < σ if and only if for any
s ∈ [1, σ

σ−1 ], the hyperfunction solutions of P and the ultra-distribution solutions in
Gevrey class (s) coincide.
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