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Abstract. We construct a bounded domain Ω ⊂ R2 with the cone property and a harmonic
function on Ω which belongs to W 1,p

0 (Ω) for all 1 ≤ p < 4/3. As a corollary we deduce that
there is no Lp-Hodge decomposition in Lp(Ω,R2) for all p > 4 and that the Dirichlet problem
for the Laplace equation cannot be in general solved with the boundary data in W 1,p(Ω) for all
p > 4.

1. Introduction. It is natural to consider the Poisson equation∆u=h in the Sobolev
space W 1,2(Ω). However, in some problems we have to seek for solutions in W 1,p(Ω),
where p 6= 2. This appears for example in the context of the Lp-Hodge decomposition
which has recently found many applications to Navier–Stokes equations [13], quasiregular
mappings [10], [7], [8], harmonic mappings [1], calculus of variations [9], higher integrabil-
ity of the Jacobian [11], [5], [6], elliptic equations [12], [16], [18] and many other problems.
Usually one assumes that the boundary of the domain is sufficiently regular. Then one
proves the uniqueness and the existence of the solution to the Dirichlet problem for the
Poisson equation and hence that for the Lp-Hodge decomposition. In this note we give
a very elementary example which shows that a single cusp on the boundary can imply
nonexistence and nonuniqueness results. In a slightly different context the nonuniqueness
for Dirichlet problem in a domain with a single cusp on the boundary has been studied
in [14].

2. Result. For the sake of simplicity we assume that Ω is a bounded domain. By
W 1,p

0 (Ω) we denote the closed subspace of W 1,p(Ω) which is the closure of C∞0 (Ω) in
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the W 1,p norm ‖u‖1,p = ‖u‖p + ‖∇u‖p. It is a well known and trivial fact that the only
harmonic function in W 1,2

0 (Ω) is the constant equal to zero. Hence the same holds in
W 1,p

0 (Ω) for all p ≥ 2 (because W 1,p
0 (Ω) ↪→W 1,2

0 (Ω)). In the case p ≥ 2 we do not need
any assumptions about the regularity of the boundary. But what about the case p < 2?
In the case p = 1 it suffices to assume that ∂Ω ∈ C1,1 (cf. [4, Vol. 1, Chapter 2, Prop.
13]) and in the case 1 < p < 2 that ∂Ω ∈ C1 (see Remark 2 below).

We start with a very elementary example which shows that if we loosen the smooth-
ness assumptions on the boundary, then the above result on the uniqueness of Dirichlet
problem may fail for 1 ≤ p < 2.

Let Ω be the image of the two dimensional disc D = {z | |z − i| < 1} under the
mapping z 7→ z2. The boundary of Ω is a smooth Jordan curve except the point z = 0,
where we have an interior cusp. Moreover, this domain has the cone property, i.e., there
exists a cone V with a finite height so that every point x ∈ Ω has a cone Vx congruent
to V and with vertex at x such that Vx ⊂ Ω.

Theorem 1. If Ω is as above, then the function u(z) = Im (z−1/2 + i/2) is harmonic
in Ω and belongs to W 1,p

0 (Ω) for all 1 ≤ p < 4/3.

P r o o f. The mapping z 7→ 1/z+i/2 maps D onto the halfplane {Im z < 0} and hence
the boundary ∂D is mapped onto the x-axis. So f(z) = Im (1/z + i/2) is harmonic and
it vanishes on ∂D, except the discontinuity point z = 0. But since Ω and u are obtained
from D and f by composition with

√
z, it follows that u is a harmonic function and

equal to zero on the boundary of Ω, except the point z = 0, where u is not continuous.
Elementary estimation shows that |∇u| ∈ Lp for all p < 4/3. Now it easily follows that
u ∈W 1,p

0 (Ω).

R e m a r k 1. As was pointed out to the author by Pekka Koskela it follows from Bren-
nan’s conjecture that the exponent 4/3 in Theorem 1 is in some sense critical. Namely, if
Ω ⊂ R2 is a bounded simply connected domain and φ : Ω → B2 is the Riemann mapping
(B2 is the unit disc) then as was conjectured by Brennan [3], |∇φ| ∈ Lp(Ω) for all p < 4.
Assume now that u ∈ W 1,q

0 (Ω) for some q > 4/3. If Brennan’s conjecture is true then
it easily follows that u ◦ φ−1 ∈ W 1,1

0 (B2). Moreover, if u is harmonic then u ◦ φ−1 is
harmonic as well. The only harmonic function in W 1,1

0 (B2) is the constant function equal
to zero and hence we deduce that if u ∈W 1,q

0 (Ω) is a nontrivial harmonic function then
q ≤ 4/3. As far as I know, Brennan’s conjectute is still open and the best known result in
this direction is due to Pommerenke [15] who proved that |∇φ| ∈ Lp(Ω) for all p < 3.399.
Of course this result also gives a certain estimate for q.

The rest of this paper is devoted to showing how to use Theorem 1 to obtain examples
of nonexistence for the Lp-Hodge decomposition and nonexistence of solutions to the
Dirichlet problem for Laplace and Poisson equations. We start with an elementary general
observation.

Theorem 2. Let Ω ⊂ Rn be a bounded open set and 1 < p, q < ∞, 1/p + 1/q = 1.
Then:

(A) The following two conditions are equivalent :
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(a) For every h ∈ (W 1,q
0 (Ω))∗ the Dirichlet problem

∆u = h, u ∈W 1,p
0 (Ω),

has a solution.
(b) Every vector field F ∈ Lp(Ω,Rn) admits an Lp-Hodge decomposition, i.e., there

exist u ∈W 1,p
0 (Ω) and H ∈ Lp(Ω,Rn), divH = 0, such that

F = ∇u+H.

Moreover , the solution of the Dirichlet problem of (a) is unique if and only if the
Lp-Hodge decomposition of (b) is unique.

(B) If the above conditions (a), (b) are satisfied (we do not assume uniqueness), then
the only harmonic function in W 1,q

0 (Ω) is the constant function equal to zero.

P r o o f. (A) First we prove that (b)⇒(a). Let h ∈ (W 1,q
0 (Ω))∗ be taken at will. It

follows from the Poincaré inequality that ∇ : W 1,q
0 (Ω) → Lq(Ω,Rn) is an isomorphism

onto a closed subspace and hence by the Hahn–Banach theorem the functional h can be
represented in the form h[v] =

∫
〈F,∇v〉 for a certain F ∈ Lp(Ω,Rn). Let F = ∇u + H

be the Lp-Hodge decomposition. Then h[v] =
∫
〈∇u,∇v〉 and hence h = −∆u. The proof

of the implication (a)⇒(b) is easier and involves similar arguments.
Equivalence of uniqueness of solutions to (a) and (b) is evident.
(B) To the contrary we assume that v ∈W 1,q

0 (Ω), v 6≡ 0, ∆v = 0. Let h ∈ (W 1,q
0 (Ω))∗

be such that h[v] 6= 0. It follows from (a) that there exists u ∈ W 1,p
0 (Ω) with ∆u = h.

Now 0 6= ∆u[v] = u[∆v] = 0. This contradiction completes the proof.

R e m a r k 2. If the boundary of the domain is sufficiently regular, say ∂Ω ∈ C1,
then it follows from Calderón–Zygmund theory that both conditions (a) and (b) of the
above theorem are satisfied (see [17, Thm. 4.6]) and hence by Theorem 2(B) for every
1 < p <∞ the only harmonic function in W 1,p

0 (Ω) is the constant equal to zero. However,
as follows from Theorem 1 the uniqueness does not hold for a domain which appears in
Theorem 1. Hence we get the following theorem.

Theorem 3. If Ω is as in Theorem 1 and p > 4, 1/p + 1/q = 1, then there exists
h ∈ (W 1,q

0 (Ω))∗ such that the Dirichlet problem ∆u = h, u ∈ W 1,p
0 (Ω), does not admit

any solution. Moreover , there exists a vector field F ∈ Lp(Ω,R2) which does not admit
an Lp-Hodge decomposition.

R e m a r k 3. The domain Ω which appears in Theorem 3 has the cone property and
hence Theorem 3 is slightly surprising when compared with the result of Bogovskĭı [2]
who proved that if Ω ⊂ Rn is a bounded domain with the cone property and 1 < p <∞ is
taken arbitrarily, then every function f ∈ Lp(Ω) admits an Lp-Hodge decomposition, i.e.,
there exists a vector field F ∈W 1,p

0 (Ω,Rn) and a constant C such that f = divF + C.

Theorem 4. If Ω is as in Theorem 1 and p > 4, then there exists u0 ∈W 1,p(Ω) such
that the Dirichlet problem

∆u = 0, u− u0 ∈W 1,p
0 (Ω),

does not admit any solution u ∈W 1,p(Ω).
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R e m a r k 4. Note that in this domain, the classical Dirichlet problem for the Laplace
equation, for any continuous boundary data, admits a unique solution.

P r o o f o f T h e o r e m 4. Let F ∈ Lp(Ω,R2) be a vector field which does not admit
an Lp-Hodge decomposition. We extend this vector field onto R2 putting F = 0 outside
Ω. Then we can apply to this extended F a variant of Hodge decomposition which holds
on the entire R2 (see [10], [9]):

F = ∇v +H,

where v ∈ L1,p(R2) = {f ∈ D′(R2) | ∇f ∈ Lp(R2)}, divH = 0. It is well known that
L1,p ⊂ W 1,p

loc , so we get u0 = v|Ω ∈ W 1,p(Ω). Now the Dirichlet problem stated in
Theorem 4 (with just defined u0) does not admit any solution. For if not we would have
the Lp-Hodge decomposition F = ∇(v − u) + (H +∇u) in Ω.
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