ON MARTINET’S SINGULAR SYMPLECTIC STRUCTURES

W. DOMITRZ and S. JANECZKO

Institute of Mathematics, Warsaw University of Technology
Pl. Politechniki 1, 00-661 Warszawa, Poland

Introduction. Let \(V \) be a stratified subspace of \(\mathbb{R}^N \). We call it symplectic if there exists a differential 2-form \(\omega \) on \(\mathbb{R}^N \) such that the restriction of \(\omega \) to each stratum is a symplectic form. In the Marsden-Weinstein singular reduction theory these spaces were studied by several authors [5, 4, 9, 1]. In this paper we classify the symplectic spaces modelled on the so-called symplectic flag \(S \). First we prove the corresponding Darboux theorem and then we show that the only reasonable symplectic structures on \(S \) are those with underlying Martinet’s singular symplectic structure of type \(\Sigma_{2,0} \). Finally we find the normal form for this structure and show the similar result for an example of a stratified symplectic space with singular boundary of the maximal stratum.

1. Singular symplectic spaces. A stratified differential space with each stratum being a symplectic manifold is called a stratified symplectic space. This notion was introduced in [9] (see also [4]) in the context of standard symplectic reduction. For our purpose, in the first step we need embedded symplectic spaces.

Definition 1.1. Let \(S \) be a stratified subset of \(\mathbb{R}^N \) with each stratum \(S_i \) (even dimensional) endowed with a symplectic structure \(\omega_{S_i} \). We assume that there exists a closed two-form \(\omega \) on \(\mathbb{R}^N \) such that \(\omega|_{S_i} = \omega_{S_i} \). Then the pair \((S, \omega)\) is called a singular symplectic space.

A representative model of a singular symplectic space is a disjoint union of semialgebraic sets. We consider the following elementary symplectic flag:

\[
S = S_{2n} \cup S_{2n-2} \subset \mathbb{R}^{2n},
\]

where

\[
S_{2n} = \{(x,y) \in \mathbb{R}^{2n} : x_1 > 0\}, \quad S_{2n-2} = \{(x,y) \in \mathbb{R}^{2n} : x_1 = 0, y_1 = 0\}
\]

endowed with a symplectic structure \(\omega \). By \(t_k : S_i \to \mathbb{R}^N \) we denote the canonical inclusions of \(S_{2n-k} \). Here \(S_{2n-1} = \{x \in \mathbb{R}^{2n} : x_1 = 0\} \).

The paper is in final form and no version of it will be published elsewhere.
Example 1.1. Let $V \subset (M, \omega)$ be an algebraic hypersurface. Let X_V be its Whitney stratification. By V^d we denote an element of X_V, $V^d \in X_V$, of dimension d. We say V is a coisotropic hypersurface if and only if each stratum of X_V is a coisotropic or an isotropic submanifold of (M, ω). We easily see that a typical hypersurface V defined by the polynomial equation $F(p) = 0$ is not coisotropic. As an example let us consider the cusp-edge surface in R^{2n} endowed with a symplectic form ω in general position with respect to V. In this case $\omega|_{\text{Sing} V}$ is a symplectic form. It is shown in [2] that (V, ω) is diffeomorphic to $(\{ x_1^3 - y_1^2 = 0 \}, \sum_{i=1}^n dx_i \wedge dy_i)$ and the reduced symplectic space $V - \text{Sing} V$ is isomorphic to the singular edge of V (cf. [4]).

We conjecture that if $\text{Sing} V$ is a coisotropic submanifold of (R^{2n}, ω), then (V, ω) is diffeomorphic to $(\{ x_1^3 - x_2^2 = 0 \}, \sum_{i=1}^n dx_i \wedge dy_i)$. Let $\Phi : R^{2n-1} \to R^{2n}$ be the parameterization of $\{ x_1^3 - x_2^2 = 0 \}$,

$$\Phi(s, y_1, y_2, x_3, y_3, \ldots, x_n, y_n) = (s^3, y_1^3, y_2, x_3, y_3, \ldots, x_n, y_n).$$

Then

$$\Phi^* \omega = ds \wedge d(3s^2 y_2 + 2sy_1) + \sum_{i=3}^n dx_i \wedge dy_i.$$

Let $\pi : R^{2n-1} \to R^{2n-2}$ be the mapping

$$\pi(s, y_1, y_2, x_3, y_3, \ldots, x_n, y_n) = (s, 3s^2 y_2 + 2sy_1, x_3, y_3, \ldots, x_n, y_n).$$

Let S be the image of π. Then

$$S = \{(x, y) \in R^{2n-2} : x_1 \neq 0\} \cup \{(x, y) \in R^{2n-2} : x_1 = 0, x_2 = 0\}$$

and

$$\pi^* \left(\sum_{i=1}^{n-1} dx_i \wedge dy_i \right) = \Phi^* \omega.$$

The reduced space S endowed with the Darboux form on R^{2n-2} is a singular symplectic space.

Now we have a natural extension problem: let $\tilde{\omega}$ be a symplectic form on S_{2n-2}, we ask for the existence of the closed two-form on N^S such that $\omega|_{S_{2n-2}} = \tilde{\omega}$ and $\omega|_{S_2}$ is symplectic. The first step in approaching this problem is to classify singular symplectic spaces (S, ω), where ω provides a symplectic structure on R^{2n}.

By G_S we denote the group of germs of diffeomorphisms $(R^{2n}, 0) \to (R^{2n}, 0)$ preserving S, i.e. if $\Phi \in G_S$ then $\Phi(S_{2n}) \subset S_{2n}$, and $\Phi(S_{2n-2}) \subset S_{2n-2}$.

Let $\Phi \in G_S$. Then using the standard setting of singularity theory (cf. [7]) we have

$$\Phi(x_1, y_1, \ldots, x_n, y_n) = (x_1 \phi_1(x, y), x_1 \phi_2(x, y) + y_1 \phi_22(x, y), \phi_3(x, y), \ldots, \phi_{2n}(x, y)),$$

where $\phi_1, \phi_2, \phi_22, \phi_3, \ldots, \phi_{2n}$ are smooth germs of functions on $(R^{2n}, 0)$.

Let ω_1, ω_2 be two symplectic structures on S (closed two-forms on $(R^{2n}, 0)$).

Definition 1.2. We say that ω_1 and ω_2 are S-equivalent ($\omega_1 \sim_S \omega_2$) if and only if there exists $\Phi \in G_S$ such that $\Phi^* \omega_1 = \omega_2$.

Theorem 1.1 (Darboux form). Let ω be a symplectic structure on S. Assume ω is a symplectic form on \mathbb{R}^{2n}. Then ω is S-equivalent to the Darboux form:

$$\omega \sim S \sum_{i=1}^{n} dx_i \wedge dy_i.$$

Proof. We take the homotopy (cf. [8]) $\omega_t = t\omega_1 + (1 - t)\omega_0$, $t \in [0, 1]$. One can check that ω_t is a nondegenerate form for every $t \in [0, 1]$. We seek for a smooth family $t \mapsto \Phi_t$ such that

$$\Phi_t^* \omega_t = \omega_0, \quad \Phi_0 = id_{\mathbb{R}^{2n}}.$$

Differentiating (1) we have

$$L_{V_t} \omega_t + \omega_1 - \omega_0 = 0,$$

where L_{V_t} is the Lie derivative along the vector field V_t generated by the flow Φ_t. But

$$L_{V_t} \omega_t = d(V_t \rfloor \omega_t) + \iota_{V_t} d\omega_t = d(V_t \rfloor \omega_t).$$

We have $d(\omega_0 - \omega_1) = 0$ and $\iota_{S^{2n-1}}(\omega_0 - \omega_1) = 0$. So by the relative Poincaré Lemma (see e.g. [11]) there exists a one-form α such that $d\alpha = \omega_0 - \omega_1$ and α vanishes on S^{2n-1}. Thus we have

$$V_t \rfloor \omega_t = \alpha \quad \text{and} \quad \alpha |_{(x,y)} = 0 \quad \text{for every } (x,y) \in S^{2n-1}.$$

Because ω_t is a nondegenerate form, (2) is always solvable with respect to V_t and moreover $V_t(x,y) = 0$ for every $(x,y) \in S^{2n-1}$. We deduce Φ_t exists, $\Phi_t \in G_S$ and by compactness of the interval $[0,1]$ we have $\Phi^* \omega_1 = \omega_0$. ■

2. Martinet’s singular symplectic spaces. Before we pass to the more detailed analysis of the degenerate case we recall the basic results on the standard classification of singularities of differential forms [6].

Let ω be a germ of a closed two-form on \mathbb{R}^{2n} at zero. We denote

$$\Sigma_k(\omega) = \{ x \in \mathbb{R}^{2n} : \operatorname{rank} \omega(x) = 2n-k \}, \quad k \text{ is even}. $$

Let $\omega^n = f \Omega$, where Ω is the volume form on \mathbb{R}^{2n}.

(i) If $f(0) \neq 0$ then ω is a symplectic form (according to the standard notation denoted by Σ_0) and by the Darboux theorem we obtain

$$\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$$

in local coordinates around zero.

(ii) Next we assume $f(0) = 0$ while $(df)(0) \neq 0$. We have $\Sigma_2(\omega) = \{ f = 0 \}$ and let $\iota : \Sigma_2(\omega) \to \mathbb{R}^{2n}$ be the inclusion. If $\iota^* \omega^{2n-1}(0) \neq 0$ then in local coordinates

$$\omega = x_1 dx_1 \wedge dy_1 + \sum_{i=2}^{n} dx_i \wedge dy_i$$

and this type of singular form ω is denoted by $\Sigma_{2,0}$ (and called Martinet’s singular form).

Both types of forms Σ_0, $\Sigma_{2,0}$ are locally stable (see [6]) and this is why we use them in what follows.
Proposition 2.1. Let ω be a symplectic structure on S. Assume $f(0) = 0$ and $df_0 \neq 0$ (stability conditions), then ω is a singular form of type $\Sigma_{2,0}$ at zero, i.e. ω belongs to the standard orbit of (ii) (4).

Remark 2.1. We see that the symplectic form ω on S may be very singular in general. The singular set of ω is not visible from S (see Fig. 1). The above proposition says that the typical symplectic forms on S can only have $\Sigma_{2,0}$ or Σ_0 type singularities in the ambient space. Thus the two remaining stable cases $\Sigma_{2,2,0}$ are naturally excluded from our approach (cf. [3]).

Proof of Proposition 2.1. We see that ω is a symplectic form on S_{2n-2}. Let
\[
\tilde{S} = \Sigma_2(\omega) = \{ f = 0 \},
\]
where $\omega^n = f \Omega$ and Ω is the standard volume form on \mathbb{R}^{2n}. We have $T_0 \tilde{S} = T_0 S_{2n-1}$, because ω is symplectic on S_{2n}. $S_{2n-2} \subset S_{2n-1}$ so $T_0 S_{2n-2} \subset T_0 S_{2n-1}$ and $T_0 S_{2n-2} \subset T_0 \tilde{S}$. By assumption $\iota_{2n-2} \omega$ is symplectic. Thus $(\iota_{2n-2} \omega)^{n-1} \neq 0$ and this implies $(\iota^* \omega)^{n-1} \neq 0$, where $\iota: \tilde{S} \to \mathbb{R}^{2n}$ is the embedding of \tilde{S}. $
$
Lemma 2.1. By means of a diffeomorphism $\Phi \in G_S$ of the form
\[
\Phi(x,y) = (\phi(x,y),x_2,\ldots,x_n,y_1,\ldots,y_n)
\]
one can reduce f to the following normal form:
\[
f(x_1,y_1,\ldots,x_n,y_n) = \pm (x_1 - \psi(y_1,x_2,\ldots,x_n,y_n)).
\]

Definition 2.1. We say that ψ_1, ψ_2 are contact equivalent if and only if there exists a diffeomorphism $\Phi: (\mathbb{R}^{2n-1},0) \to (\mathbb{R}^{2n-1},0)$ and a smooth function-germ $g: (\mathbb{R}^{2n-1},0) \to \mathbb{R}$, $g(0) \neq 0$, such that
\[
\psi_1 = g \cdot (\psi_2 \circ \Phi).
\]

Let ω_1, ω_2 be two symplectic forms on S. Let f_1, f_2 define their corresponding singular hypersurfaces, $\omega_1^n = f_1 \Omega$ and $\omega_2^n = f_2 \Omega$ and ψ_1, ψ_2 are as in Lemma 2.1. By straightforward check we obtain the following

Proposition 2.2. If ω_1 and ω_2 are S-equivalent then ψ_1 and ψ_2 are contact equivalent.

Let ω be a symplectic form on S, $\omega^n = f \Omega$, $f(0) = 0$ and $df_0 \neq 0$. We see that $\frac{\partial f}{\partial x_i}(0) = 0$ and $\frac{\partial f}{\partial y_j}(0) = 0$ for $i = 2,\ldots,n, j = 1,\ldots,n$, so $\frac{\partial f}{\partial x_1}(0) \neq 0$. Thus
\[
df \wedge dy_1 \wedge dx_2 \wedge dy_2 \wedge \ldots \wedge dx_n \wedge dy_n(0) \neq 0,
\]
so $\{y_1,x_2,\ldots,x_n,y_n\}$ defines a coordinate system on $\tilde{S} = \{ f = 0 \}$.

Before we formulate the main theorem concerning the normal form of ω we need some necessary facts ([6]).

Lemma 2.2. Let τ be a k-form on \mathbb{R}^n satisfying
\[
\frac{\partial}{\partial x_1}|\tau = 0, \quad \frac{\partial}{\partial x_1}|\tau = 0.
\]
Then \(\tau = \pi^* \iota^* \tau \), where
\[
\pi : R^n \to \{x_1 = 0\}, \quad \pi(x_1, x_2, \ldots, x_n) = (0, x_2, \ldots, x_n),
\]
\[
\iota : \{x_1 = 0\} \to R^n, \quad \iota(x_2, \ldots, x_n) = (0, x_2, \ldots, x_n).
\]

Lemma 2.3. Let \(\tau \) be a \(k \)-form on \(R^n \) satisfying
\[
(6) \quad \frac{\partial}{\partial x_1} |_{\tau} = 0, \quad \frac{\partial}{\partial x_1} |_{d\tau} = \varphi \tau,
\]
where \(\varphi \) is a smooth function on \(R^n \). Then
\[
\tau = \zeta \pi^* \iota^* \tau,
\]
where \(\zeta \) is a smooth function on \(R^n \), and \(\zeta |_{\{x_1 = 0\}} = 1 \).

It is easy to prove the following lemmas.

Lemma 2.4. Let \(\alpha \) be a germ of a closed \((n-1)\)-form on \(R^n \) at \(0 \) satisfying the following conditions:
1. \(\alpha_0 \neq 0 \),
2. a germ of a vector field \(X \) at \(0 \) such that \(X |_{\alpha} = 0 \) and \(X(0) \neq 0 \) meets \(\{x_1 = 0\} \) transversally at \(0 \).

Then there exists a germ of diffeomorphism \(\Phi : (R^n, 0) \to (R^n, 0) \), which preserves \(\{x_1 = 0\} \) and
\[
\Phi^* \alpha = dx_2 \wedge \ldots \wedge dx_n,
\]
where \((x_1, \ldots, x_n)\) is a coordinate system on \(R^n \).

Lemma 2.5. Let \(\alpha \) be a germ of a 1-form on \(R^{2k+1} \) at \(0 \) satisfying the following conditions:
1. \(\alpha \wedge (d\alpha)^k \neq 0 \),
2. a germ of a vector field \(X \) at \(0 \) such that
\[
X |_{\alpha} \wedge (d\alpha)^k = (d\alpha)^k
\]
meets \(\{ z = 0 \} \) transversally at 0.
3. \(\iota^* \alpha_0 \neq 0 \), where \(\iota : \{ z = 0 \} \hookrightarrow \mathbb{R}^{2k+1} \) is the canonical inclusion.

Then there exists a germ of diffeomorphism \(\Phi : (\mathbb{R}^{2k+1}, 0) \to (\mathbb{R}^{2k+1}, 0) \), which preserves \(\{ z = 0 \} \) and

\[
\Phi^* \alpha = dz + dy_1 + \sum_{i=1}^{k} x_i dy_i,
\]

where \((z, x_1, \ldots, x_n, y_1, \ldots, y_n)\) is a coordinate system on \(\mathbb{R}^n \).

Now we prove the main theorem obtaining the normal form (with moduli) of the symplectic structure on \(S \). The geometrical contents of this theorem is illustrated in Fig. 1.

Theorem 2.1. Let \(\omega \) be a symplectic structure on \(S \). Assume \(f(0) = 0 \) and \(df_0 \neq 0 \). Then \(\omega \) is \(S \)-equivalent to the form

\[
(7) \quad (x_1 - \psi(x_2, \ldots, x_n, y_1, \ldots, y_n))d(x_1 - \psi(x_2, \ldots, x_n, y_1, \ldots, y_n)) \wedge dy_1 + \sum_{i=2}^{n} dx_i \wedge dy_i,
\]

where \(\psi \) is a germ at 0 of a smooth function, \(\psi(0) = 0 \), \(\frac{\partial \psi}{\partial x_i}(0) = 0 \), \(i = 2, \ldots, n \), \(\frac{\partial \psi}{\partial y_i}(0) = 0 \), \(i = 1, \ldots, n \).

Proof. By Lemma 2.1 we have \(f = \pm(x_1 - q) \), where \(q \) does not depend on \(x_1 \). We are searching for a 1-form \(\alpha \) satisfying the following conditions:

1. \(d\alpha = \omega \),
2. \(\iota^* \alpha \wedge (d\iota^* \alpha)^{n-1}_0 \neq 0 \), where \(\iota : \tilde{S} \hookrightarrow \mathbb{R}^{2n} \) is the canonical inclusion,
3. \(\iota^* \alpha_0 \neq 0 \), where \(\iota : \tilde{S} \cap \{ y_1 = 0 \} \hookrightarrow \mathbb{R}^{2n} \) is the canonical inclusion.

\(\omega \) is closed, then there exists a 1-form \(\alpha \) such that \(d\alpha = \omega \). If \(\alpha \) fails to satisfy condition 3 then we replace it by the 1-form \(\alpha + dy_2 \), which satisfies conditions 1 and 3.

Since \(S_{2n-2} \) is symplectic and \(T_0S_{2n-2} = T_0(\tilde{S} \cap \{ y_1 = 0 \}) \), we have \((\iota^* \alpha)_0^{n-1} = (\tilde{\iota}^* \omega)_0^{n-1} \neq 0 \). Hence by Lemma 2.4, we obtain

\[
\delta^* \iota^*(d\alpha)^{n-1} = dx_2 \wedge \ldots \wedge dx_n \wedge dy_1 \wedge \ldots \wedge dy_n,
\]

where \(\delta : (\tilde{S}, 0) \to (\tilde{S}, 0) \) is a diffeomorphism which preserves \(\tilde{S} \cap \{ y_1 = 0 \} \). Therefore

\[
\iota^* d(\Delta^* \alpha)^{n-1} = dx_2 \wedge \ldots \wedge dx_n \wedge dy_1 \wedge \ldots \wedge dy_n,
\]

where \(\Delta \in G_S \) and

\[
\Delta(x, y) = (x_1, \delta(x_2, \ldots, x_n, y_1, \ldots, y_n)).
\]

If \(\Delta^* \alpha \) fails to satisfy condition 2, then we replace it by the 1-form \(\Delta^* \alpha + dy_1 \), which satisfies all the conditions.

From condition 2 it follows that a vector field \(\mathbf{X} \) which satisfies the conditions

\[
X \cap \alpha \wedge (d\alpha)^{n-1} = 0, \quad X(0) \neq 0,
\]

meets \(\tilde{S} \) transversally at 0. Hence \(\mathbf{X} \) also meets \(S_{2n-1} \) transversally at 0. Therefore by means of elements from \(G_S \), one can reduce \(\mathbf{X} \) to the form \(\pm \frac{\partial \psi}{\partial x_1} \). Thus \(\tilde{S} \) is locally a graph.
of a smooth function \(\theta : (S_{2n-1}, 0) \to (R, 0) \). Hence \((x_2, \ldots, x_n, \ldots, y_1, \ldots, y_n)\) define a coordinate system on \(\tilde{S} \). From 2 and 3 it follows that \(\iota^* \alpha \) satisfies the assumptions of Lemma 2.5. Therefore we have

\[
\phi^* \iota^* \alpha = dy_1 + dy_2 + \sum_{i=2}^{n} x_i dy_i,
\]

where \(\phi : (\tilde{S}, 0) \to (\tilde{S}, 0) \) is a diffeomorphism which preserves \(\tilde{S} \cap \{y_1 = 0\} \). Let \(\Phi \in G_{\tilde{S}} \) be such that

\[
\Phi(x, y) = (x_1, \phi(x_2, \ldots, x_n, y_1, \ldots, y_n)).
\]

Hence we obtain

\[
\iota^* \Phi^* \alpha = dy_1 + dy_2 + \sum_{i=2}^{n} x_i dy_i.
\]

It is easy to check that the vector field \(X \) satisfies the following conditions:

\[(8) \quad X |\alpha = 0 \quad \text{and} \quad X |d\alpha = \varphi \alpha,\]

where \(\varphi : R^{2n} \to R \) is a smooth function. Thus by Lemma 2.3, we obtain

\[
\alpha = h\left(dy_1 + dy_2 + \sum_{i=2}^{n} x_i dy_i\right),
\]

where \(h : R^n \to R \) is a smooth function such that \(h_{|\tilde{S}} = 1 \). We have

\[
(d\alpha)^n = n! h^{n-1} \frac{\partial h}{\partial x_1} \Omega.
\]

On the other hand, by Lemma 2.1, \(\omega^n = \pm (x_1 - g) \Omega \). Hence \(n! h^{n-1} \frac{\partial h}{\partial x_1} = \pm (x_1 - g) \), and

\[
\frac{\partial h^n}{\partial x_1} = \pm \frac{1}{(n-1)!} \frac{1}{(x_1 - g)^{2(n-1)}}
\]

with an extra condition \(h_{|\{x_1 = g\}} = 1 \). Solving this equation we get

\[
h = \sqrt[2n]{\pm \frac{1}{2(n-1)!} (x_1 - g)^2 + 1}.
\]

By the diffeomorphism \(A^{-1} \in G_\Sigma \), where

\[
A(x, y) = (x_1, h(x, y)x_2, \ldots, h(x, y)x_n, y_1, \ldots, y_n),
\]

we reduce \(\alpha \) to

\[
\alpha = h(dy_1 + dy_2 + \sum_{i=2}^{n} x_i dy_i),
\]

The diffeomorphism

\[
\Upsilon(x, y) = \left((x_1 - \zeta)\sqrt{\frac{n-1}{n-1} \sum_{i=0}^{n-1} \left(\frac{n}{i+1} \left(\frac{1}{2} (x_1 - \zeta)^2\right)^i - g, y_1, \ldots, x_n, y_n \right)}\right),
\]

where \(\zeta \) is a function which does not depend on \(x_1 \) and satisfies

\[
\sqrt[2n]{\pm \frac{1}{2(n-1)!} g^2 + 1} = \pm \frac{\zeta^2}{2} + 1,
\]
Since Σ exists, we obtain which contradicts the fact that ϵ is a critical value of ψ. We can find a diffeomorphism Φ on closed 2-forms such that if β is in V, then there is a neighbourhood of 0 which preserves S. Hence we obtain

$$\alpha = \left(1 \pm \frac{1}{2}(x_1 - \psi)^2\right)(dy_1 + dy_2) + \sum x_idy_i.$$

Therefore

$$\omega = d\alpha = \pm(x_1 - \psi)d(x_1 - \psi) \land dy_1 + d\left(x_2 \pm \frac{1}{2}(x_1 - \psi)^2\right) \land dy_2 + \sum dx_i \land dy_i.$$

Finally, by means of $\Xi \in G_\Sigma$, where

$$\Xi(x, y) = \left(x_1, x_2 \pm \frac{1}{2}(x_1 - \psi)^2, x_3, \ldots, x_n, \pm y_1, y_2, y_3, \ldots, y_n\right),$$

we reduce ω to the form 7.

Now we pass to the investigation of stability properties of symplectic structures on S.

Definition 2.2. Let ω be a symplectic form on S. Then ω is stable at $p \in S_{2n-2}$ if for any neighbourhood U of p in S_{2n-2} there is a neighbourhood V of ω (in the C^∞ topology on closed 2-forms) such that if β is in V, then there is a point $q \in U$ and a germ of a diffeomorphism $\Phi: (R^{2n}, q) \to (R^{2n}, p)$ which preserves S and $\Phi^*\beta = \omega$.

It is easy to see that the Darboux form on S is stable.

Proposition 2.3. Let ω be a symplectic structure on S. Assume $f(0) = 0$ and $df_0 \neq 0$. Then ω is not stable at 0.

Proof. From Theorem 2.1 it follows that ω can be reduced to the form

$$(x_1 - \psi)d(x_1 - \psi) \land dy_1 + \sum dx_i \land dy_i.$$

Suppose the proposition is false. Let U be a neighbourhood of 0 in R^{2n}, $\psi(0) = 0 \in R$ is a critical value of $\psi|_U$. From the Sard theorem we see that there is $\epsilon \in R$ which is not a critical value of $\psi|_U$, in any neighbourhood of 0 $\in R$. Let $\beta = \alpha + ed(x_1 - \psi) \land dy_1$. Then we can find a diffeomorphism Φ which preserves S and $\Phi^*\beta = \omega$. Hence

$$\Phi^*\beta^n = \Phi^*((x_1 - \psi + \epsilon)\Omega) = \omega^n = (x_1 - \psi)\Omega.$$

Since $\Sigma_2(\omega)$ is tangent to S_{2n-1} at 0, $\Sigma_2(\beta)$ is tangent to S_{2n-1} at $q = \Phi(0) \in S_{2n-2}$. Therefore, we obtain

$$\psi(q) = \epsilon, \quad d\psi_q = 0,$$

which contradicts the fact that ϵ is not a critical value of $\psi|_U$.

2.1. Remark. Let us consider the following semialgebraic set:

\[S = S_{2n} \cup S_{2n-2} \subset R^{2n}; \]
\[S_{2n} = \{ (x, y) \in R^{2n} : x_1^3 > y_1^2 \}, \]
\[S_{2n-2} = \{ (x, y) \in R^{2n} : x_1 = 0, y_1 = 0 \}. \]

We notice the difference with the previous space: \(\partial S_{2n} \) is a singular set.

We endow \(S \) with a symplectic structure \(\omega \). As before \(G_S \) denotes the group of diffeomorphisms \((R^{2n}, 0) \to (R^{2n}, 0) \) preserving \(S \). Let \(\omega_1, \omega_2 \) be two symplectic structures on \(S \). We say that \(\omega_1 \) and \(\omega_2 \) are \(S \)-equivalent if and only if \(\Phi^* \omega_1 = \omega_2 \) for some \(\Phi \in G_S \).

Now we can show the following

Proposition 2.4. Let \(\omega \) be a symplectic structure on \(S \). Assume \(f(0) = 0 \) and \(df_0 \neq 0 \).

Then \(\omega \) is a singular form of type \(\Sigma_{2,0} \) at zero.

Proof. By straightforward use of the proof of Proposition 2.1.

An analogous Darboux theorem for the space \(S \) is proved by Arnold ([2]): Let \(\omega \) be a symplectic structure on \(R^{2n} \). Then \(\omega \) is \(S \)-equivalent with respect to formal equivalence to the Darboux form:

\[\omega \sim \sum_{i=1}^{n} dx_i \wedge dy_i. \]

References