1. Introduction. In this lecture, we want to discuss some regularity properties of p-harmonic maps with values in euclidean spheres.

Let $B^n = \{ x \in \mathbb{R}^n : \sum (x_i)^2 < 1 \}$ denote the unit n-dimensional ball, and write S^{m-1} for the unit sphere in \mathbb{R}^m. Define the functional
\[
I_p(u) = \int_{\mathbb{B}^n} |\nabla u(x)|^p \, dx \quad \text{for } u \in W^{1,p}(\mathbb{B}^n, S^{m-1}).
\]

For exponents $p \in [2, n]$, we wish to investigate those maps which are critical points of I_p with respect both to variations in the range and in the parameter domain.

Definition. By a stationary p-harmonic map we mean here any u belonging to the Sobolev space
\[
W^{1,p}(\mathbb{B}^n, S^{m-1}) \equiv \left\{ f = (f_1, \ldots, f_m) : f_i \in W^{1,p}(\mathbb{B}^n) \text{ and } \sum_{i=1}^m (f_i(x))^2 = 1 \text{ a.e.} \right\},
\]
and satisfying the following two conditions:
\begin{align*}
(1) \quad & \left. \frac{d}{dt} \right|_{t=0} I_p \left(\frac{u + t\psi}{|u + t\psi|} \right) = 0 \quad \text{for all } \psi = (\psi^1, \ldots, \psi^m) \in C_0^\infty(\mathbb{B}^n, \mathbb{R}^m), \\
(2) \quad & \left. \frac{d}{dt} \right|_{t=0} I_p(u(x + t\zeta(x))) = 0 \quad \text{for all } \zeta = (\zeta^1, \ldots, \zeta^n) \in C_0^\infty(\mathbb{B}^n, \mathbb{B}^n).
\end{align*}

If a map $u \in W^{1,p}(\mathbb{B}^n, S^{m-1})$ satisfies only the condition (1), we say that u is weakly p-harmonic.

Condition (1) is easily checked to be equivalent to the fact that $u \in W^{1,p}(\mathbb{B}^n, S^{m-1})$ is a weak solution to the Euler-Lagrange elliptic system
\[
1991 \text{ Mathematics Subject Classification: } 35J70, 35J60.
\]

The paper is in final form and no version of it will be published elsewhere.

This work is partially supported by KBN grant no. 2–1057–91–01.
More precisely, the integral identity
\[
\int_{\mathbb{R}^n} |\nabla u|^{p-2} \nabla u^i \cdot \nabla \psi^i \, dx = \int_{\mathbb{R}^n} \psi^i u^i |\nabla u|^p \, dx
\]
holds true for all \(i = 1, \ldots, n\) and \(\psi = (\psi^1, \ldots, \psi^n) \in C_0^\infty(B, \mathbb{R}^n)\). Here and everywhere below,
\[
|\nabla u|^2 = \sum_{i=1}^m \sum_{j=1}^n \left(\frac{\partial u^i}{\partial x_j} \right)^2.
\]

Another integral identity for stationary \(p\)-harmonic maps,
\[
\int_{\mathbb{R}^n} |\nabla u|^p \text{div} \zeta \, dx = p \sum_{1 \leq j \leq m} \int_{\mathbb{R}^n} |\nabla u|^{p-2} \frac{\partial u^j}{\partial x_k} \frac{\partial u^j}{\partial x_k} \, dx,
\]
which holds true for all \(\zeta \in C_0^\infty(\mathbb{B}^n, \mathbb{B}^n)\), is a consequence of (2). Note that for smooth maps \(u\) formula (5) follows from (4) if we set \(\psi^j := \zeta \cdot \nabla u^j\). By a suitable choice of the testing map \(\zeta\), one can obtain the so-called monotonicity formula for stationary \(p\)-harmonic maps,
\[
\int_{\mathbb{R}^n} |\nabla u(y)|^p \, dy \leq \int_{\mathbb{R}^n} |\nabla u(y)|^p \, dy, \quad r_1 < r_2 \leq \text{dist}(x, \partial \mathbb{B}^n).
\]
This fact was proved for Yang–Mills fields and stationary harmonic maps by Price [18]; Fuchs [8] observed that (6) is valid also for stationary \(p\)-harmonic maps.

It is also possible to define and consider stationary \(p\)-harmonic maps \(u : M^m \to N^n\) between Riemannian manifolds. We shall not pursue that point further here.

It is well known that the regularity theory of \(p\)-harmonic maps is a delicate topic. The example of the map \(u(x) = x/|x|\) from the unit ball \(\mathbb{B}^n\) to its boundary \(\partial \mathbb{B}^n \equiv S^{n-1}\), which is singular at 0 and weakly \(p\)-harmonic for all \(p \in [1, n)\), shows that weakly \(p\)-harmonic maps do not, in general, to be continuous. In fact, the state of affairs is even worse: T. Rivi`ere [19] has recently given an example of a weakly harmonic map \(u \in W^{1,2}(\mathbb{B}^3, S^2)\) which is discontinuous at every point of \(\mathbb{B}^3\).

However, there are lots of results about regularity and partial regularity of weakly \(p\)-harmonic maps under various additional assumptions. Let us mention below just a few; the list is obviously far from being complete.

Hardt and Lin [12], Fuchs [9], and Luckhaus [16] proved independently a theorem stating that minimizing \(p\)-harmonic maps \(u : M^m \to N^n\) are of class \(C^{1,\alpha}\), \(0 < \alpha < 1\), outside a set of Hausdorff dimension \(m - \lfloor p \rfloor - 1\) (that was a generalization of an earlier result of Schoen and Uhlenbeck [20] concerning the case \(p = 2\) of minimizing harmonic maps). Fuchs [8] was able to show that some partial regularity results are valid also for stationary \(p\)-harmonic maps with range contained in a small ball \(B(r_0) \subset N^n\) of radius \(r_0\) determined by the geometry of underlying manifolds.
There is also a series of recent developments which were obtained via applications of a theorem of Coifman, Lions, Meyer, and Semmes (1)—this method allows proving regularity or partial regularity without assuming that \(u \) minimizes the Dirichlet integral. In his papers [13]–[15], F. Hélein proved that any weakly harmonic map \(f : M \to N \) defined on a two-dimensional Riemannian manifold \(M \) is continuous; [13] contains the proof for \(N = S^{n-1} \), [15] concerns the case when \(N \) is a compact manifold with a Lie group of isometries acting transitively, and [14] deals with the case of arbitrary compact Riemannian \(N \). (By standard elliptic regularity methods, continuity of a weakly harmonic map implies its \(C^\infty \)-smoothness.) Evans [4] and Bethuel [1] generalized Hélein’s result to the case of stationary harmonic maps on \(n \)-dimensional manifolds, \(n \geq 2 \), proving their regularity outside a singular set of \((n-2)\)-dimensional Hausdorff measure zero. Up to now, these recent developments hardly have any counterparts for \(p \neq 2 \).

Let us now state our main results.

Theorem 1 (case \(p = n \)). Any weakly \(n \)-harmonic map \(u \in W^{1,n}(\mathbb{B}^n, S^{m-1}) \) is locally Hölder continuous on \(\mathbb{B}^n \).

Theorem 2. Let \(2 \leq p < n \) and assume that \(u \in W^{1,p}(\mathbb{B}^n, S^{m-1}) \) is a stationary \(p \)-harmonic map. Then the set \(V \subset \mathbb{B}^n \) defined by

\[
V := \left\{ x \in \mathbb{B}^n : r^p \int_{\mathbb{B}^n(x,r)} |\nabla u(y)|^p \, dy \to 0 \text{ as } r \to 0 \right\}
\]

is open, \(H^{n-p}(\mathbb{B}^n \setminus V) = 0 \), and \(u \) is locally Hölder continuous on \(V \).

Actually, M. Fuchs [7] proved these results independently and via different methods. A relatively short and direct proof of Theorem 1 can be found in [21]. Here, we would like to sketch the proof of Theorem 2.

Our proof combines earlier ideas due to Hélein and Evans with one simple observation from [21]. Namely, we note that the right-hand side of (3) is an element of the local Hardy space \(H^1_{loc} \), a proper subspace of \(L^1 \) (for \(p = 2 \) this was noticed and exploited by Hélein [13]–[15]). Due to that fact we are able to model the main part of the argument on Evans [4], introducing some modifications in order to cope with nonlinearity and degeneracy of the \(p \)-Laplace operator \(L_p(u) := \text{div}(|\nabla u|^{p-2}\nabla u) \). We exploit the duality between \(H^1(\mathbb{R}^n) \) and \(BMO(\mathbb{R}^n) \) to obtain, for the scaled energy

\[
E(x,r) = r^{p-n} \int_{\mathbb{B}^n(x,r)} |\nabla u(y)|^p \, dy,
\]

the following decay estimate.

Theorem 3. There exist constants (depending only on \(n \), \(m \), and \(p \)) \(\varepsilon_0 \in (0,1) \) and \(\theta \in (0,1) \) such that

\[
E(x,r) < \varepsilon_0 \Rightarrow E(x,\theta r) \leq \frac{1}{4} E(x,r)
\]

for all \(x \in \mathbb{B}^n \) and all positive \(r < d(x,\partial \mathbb{B}^n) \).

\(^{(1)}\) The theorem states that the Jacobian of a map \(u \in W^{1,n}(\mathbb{R}^n) \) belongs to the Hardy space \(H^1(\mathbb{R}^n) \).
Then we apply the Dirichlet growth theorem [11] and a covering argument to deduce Hölder continuity of \(u \) on an open subset \(V \) of \(\mathbb{B}^n \) with \(H^{n-p}(\mathbb{B}^n \setminus V) = 0 \).

2. Hardy space, BMO, and Fefferman–Stein duality theorem

Definition. A measurable function \(f \in L^1(\mathbb{R}^n) \) belongs to the Hardy space \(\mathcal{H}^1(\mathbb{R}^n) \) if and only if

\[
 f_* := \sup_{\epsilon > 0} |\varphi_\epsilon * f| \in L^1(\mathbb{R}^n).
\]

Here, \(\varphi_\epsilon(x) := \varepsilon^{-n}\varphi(x/\varepsilon) \), and \(\varphi \) is a fixed function of class \(C_0^\infty(B(0,1)) \) with \(\int \varphi(y) \, dy = 1 \). The definition does not depend on the choice of \(\varphi \) (see [6]).

The interested reader will find other equivalent definitions of \(\mathcal{H}^1(\mathbb{R}^n) \) and more details in [10] or [24]. Let us just mention here that \(\mathcal{H}^1(\mathbb{R}^n) \) is a Banach space with the norm \(\| f \|_{\mathcal{H}^1} = \| f \|_{L^1} + \| f_* \|_{L^1} \). Moreover, the condition \(f \in \mathcal{H}^1(\mathbb{R}^n) \) implies \(\int f(y) \, dy = 0 \).

C. Fefferman [5], [6] proved that the dual of \(\mathcal{H}^1(\mathbb{R}^n) \) is equal to the space of functions of bounded mean oscillation, \(BMO(\mathbb{R}^n) \). More precisely, there exists a constant \(C \) such that

\[
 (9) \quad \int_{\mathbb{R}^n} h(y)\psi(y) \, dy \leq C \| h \|_{\mathcal{H}^1} \| \psi \|_{BMO}
\]

for all functions \(h \in \mathcal{H}^1(\mathbb{R}^n) \) and \(\psi \in BMO(\mathbb{R}^n) \).

The interesting paper of S. Müller [17] inspired some of the research reported in [3], in particular the following remarkable theorem.

Theorem 4 (Coifman, Lions, Meyer, Semmes). Assume that \(u \in W^{1,p}(\mathbb{R}^n) \), \(1 < p < \infty \), and that \(H \in L^{p/(p-1)}(\mathbb{R}^n, \mathbb{R}^n) \) satisfies the condition \(\text{div} \, H = 0 \) in \(\mathcal{D}'(\mathbb{R}^n) \). Then \(\nabla u \cdot H \in \mathcal{H}^1(\mathbb{R}^n) \), and

\[
 (10) \quad \| \nabla u \cdot H \|_{\mathcal{H}^1} \leq C \| \nabla u \|_{L^p} \| H \|_{L^{p/(p-1)}}
\]

for some constant \(C \) depending only on \(n \) and \(p \).

The estimate (10) was not explicitly stated in [3], but follows from the proof presented there (cf. also [4, Section 2]). Let us now make explicit a corollary of the above theorem (more or less well known to specialists).

Corollary 5. Let \(\Omega \) be a ball in \(\mathbb{R}^n \). Assume that \(u \in W^{1,p}(\Omega) \), \(1 < p < \infty \), and that \(H \in L^{p/(p-1)}(\Omega, \mathbb{R}^n) \) satisfies the condition \(\text{div} \, H = 0 \) in \(\mathcal{D}'(\Omega) \). Then one can find a function \(h \in \mathcal{H}^1(\mathbb{R}^n) \) such that

\[
 h(x) = \nabla u(x) \cdot H(x), \quad x \in \Omega,
\]

and

\[
 \| h \|_{\mathcal{H}^1} \leq C \| \nabla u \|_{L^p(\Omega)} \| H \|_{L^{p/(p-1)}(\Omega)}.
\]

The constant \(C \) does not depend on the size of \(\Omega \).

Proof. See [21].
3. Energy decay estimates

Proof of Theorem 3. Assume that (8) is violated and for all positive \(\theta \in (0,1) \) we can find a sequence of balls \(B_k \equiv B(x_k, r_k) \subset \mathbb{B}^n \), \(k = 1, 2, \ldots \), such that

\[
E(x_k, r_k) = \lambda_k \xrightarrow{k \to \infty} 0,
\]

and at the same time

\[
E(x_k, \theta r_k) > \frac{1}{4} \lambda_k^p.
\]

We now change the variables,

\[
\mathbb{B}^n \ni z \mapsto y = x_k + r_k z \in B_k, \quad k = 1, 2, \ldots,
\]

to rescale everything to the unit ball \(\mathbb{B}^n \subset \mathbb{R}^n \). Write

\[
v_k(z) := \frac{u(x_k + r_k z) - a_k}{\lambda_k}, \quad a_k := \int_{B_k} u(y) \, dy.
\]

Using the Poincaré inequality and the classical change of variables formula, we easily obtain the following three statements:

\[
\sup_{B^n} \int_{\mathbb{B}^n} |v_k(z)|^p \, dz < +\infty,
\]

\[
\int_{\mathbb{B}^n} |\nabla v_k(z)|^p \, dz = 1 \quad \text{for all} \quad k \in \mathbb{N},
\]

\[
\theta^{p-n} \int_{\mathbb{B}^n(0, \theta)} |\nabla v_k(z)|^p \, dz > 1/4 \quad \text{for all} \quad k \in \mathbb{N}.
\]

Therefore, we may pass to a subsequence and assume without loss of generality that

\[
v_k \to v \quad \text{strongly in} \quad L^p(\mathbb{B}^n, \mathbb{R}^m) \quad \text{and a.e.,}
\]

\[
\nabla v_k \rightharpoonup \nabla v \quad \text{weakly in} \quad L^p(\mathbb{B}^n, \mathbb{R}^{mn}).
\]

What we now need to conclude the proof of Theorem 3 is the following.

Main Lemma. \(|\nabla v_k|^{(p-2)/2} \nabla v_k \xrightarrow{k \to \infty} |\nabla v|^{(p-2)/2} \nabla v| in the strong topology of \(L^2(\mathbb{B}(0,1/2)) \). Moreover, the limit function \(v \) satisfies the non-constrained \(p \)-harmonic equation, i.e.

\[
\int_{\mathbb{B}^n} |\nabla v|^{p-2} \nabla v \cdot \nabla \psi \, dy = 0
\]

for all \(\psi = (\psi^1, \ldots, \psi^m) \in C_0^\infty(\mathbb{B}^n, \mathbb{R}^m) \).

Let us first show that this fact implies Theorem 3.

Well-known results of N. Uraltseva [27] and K. Uhlenbeck [26] (see also [23]) assert that \(\nabla v \) is locally Hölder continuous on \(\mathbb{B}^n \). In particular, we have the estimate

\[
\text{ess sup}_{y \in \mathbb{B}^n(0,1/2)} |\nabla v(y)| \leq C(n, p) \left(\int_{\mathbb{B}^n} |v(y)|^p \, dy \right)^{1/p},
\]
which in view of (13) implies
\[\theta^{p-n} \int_{\mathbb{R}^n(0,\theta)} |\nabla v(y)|^p \, dy \leq C\theta^p < 1/8, \] if only \(\theta \in (0,1/2) \) is small enough. On the other hand, the strong convergence of gradients, \(|\nabla u_k|^{(p-2)/2} \nabla u_k \to |\nabla u|^{(p-2)/2} \nabla u \), combined with (15) forces
\[\theta^{p-n} \int_{\mathbb{R}^n(0,\theta)} |\nabla v(z)|^p \, dz \geq 1/4, \] a contradiction to (20). Therefore, the argument will be complete once we prove the Main Lemma. The proof given below is modelled on [4, Section 4], with some minor changes forced by nonlinearity of the \(p \)-Laplace operator.

Take a smooth function \(\zeta : \mathbb{R}^n \to [0,1] \). To fix ideas for a moment, assume that \(\text{supp} \zeta \subset B(0,9/16) \) and \(\zeta \equiv 1 \) on \(B(0,1/2) \). Mimicking the arguments of [4] one can use the monotonicity formula to prove the following.

Lemma 6. For every \(1 \leq i \leq m \), the double sequence \((\zeta(v^k_i - v^s_i))_{k,s \in \mathbb{N}} \) is bounded in \(\text{BMO}(\mathbb{R}^n) \).

Next, for \(k \in \mathbb{N} \) and \(1 \leq i,j \leq m \), define the vector field \(b^i_{k,j} \in L^{p/(p-1)}(\mathbb{R}^n,\mathbb{R}^n) \) with coordinates
\[b^i_{k,j} = |\nabla v_k|^{p-2} \left((a^i_k + \lambda_k v_k^i) \frac{\partial v_j}{\partial x^i} - (a^j_k + \lambda_k v_k^j) \frac{\partial v_i}{\partial x^j} \right). \]
An easy straightforward calculation (see e.g. [21]) leads to

Lemma 7. \(\text{div} b^i_k = 0 \) in \(\mathcal{D}'(\mathbb{R}^n) \); more precisely,
\[\sum_{\ell=1}^n \int_{\mathbb{R}^n} \frac{\partial \phi}{\partial x^\ell} b^i_{k,\ell} \, dz = 0 \]
for every function \(\phi \in W^{1,p}(\mathbb{B}^n) \cap L^\infty(\mathbb{B}^n) \) with compact support.

Combining this lemma with Corollary 5 we obtain

Lemma 8. The sequence of functions
\[\sum_{\ell=1}^n b^i_{k,\ell} \frac{\partial (\zeta v^j_k)}{\partial x^\ell}, \quad k = 1, 2, \ldots, \]
is bounded in \(\mathcal{H}^1(\mathbb{R}^n) \) for each \(1 \leq i,j \leq m \).

Proof of the Main Lemma. For sake of brevity, write \(G(\xi) = |\xi|^{(p-2)/2} \xi \), and let \(H(\xi) = |\xi|^{p-2} \xi \). Pick a bounded function \(\psi \in W^{1,p}(\mathbb{B}^n,\mathbb{R}^m) \) with support contained in \(\mathbb{B}^n \). Set \(\psi_k(y) := \psi((y-x_k)/r_k) \). Because \(u \in W^{1,p}(\mathbb{B}^n, S^{m-1}) \) is weakly \(p \)-harmonic, we have
\[\int_{B_k} H(\nabla u) : \nabla \psi_k \, dy = \int_{B_k} |\nabla u|^p \psi_k \, dy. \]
Changing integration variables from $y \in B_k$ to $z \in \mathbb{B}^n$ gives
\begin{equation}
\int_{\mathbb{B}^n} H(\nabla v_k) \cdot \nabla \psi \, dz = \lambda_k \int_{\mathbb{B}^n} |\nabla v_k|^p (a_k + \lambda_k v_k) \psi \, dz.
\end{equation}

Write now the same identity with v_k (resp. a_k, λ_k) replaced by v_s (resp. a_s, λ_s), substitute $\psi = \zeta^2(v_k - v_s)$ in both of the resulting equalities and subtract one of them from the other to obtain
\begin{equation}
L_{k,s} \equiv \int_{\mathbb{B}^n} \zeta^2 (H(\nabla v_k) - H(\nabla v_s)) \cdot (\nabla v_k - \nabla v_s) \, dz \\
+ 2 \int_{\mathbb{B}^n} \zeta (v_k - v_s) \cdot (H(\nabla v_k) - H(\nabla v_s)) \cdot \nabla \zeta \, dz
\leq |R_{k,s}| + |R_{s,k}|,
\end{equation}
where, for $k, s \in \mathbb{N}$,
\begin{equation}
R_{k,s} = \lambda_k \sum_{1 \leq i, j, m \leq n} \int_{\mathbb{B}^n} \zeta^2 |\nabla v_k|^{p-2} \frac{\partial v_i^j}{\partial x_k} (\frac{\partial v_i^j}{\partial x_k} (a_k^i + \lambda_k v_k^i) (v_k^i - v_s^i)) \, dz.
\end{equation}

By the H"older inequality, (16) and (17), the absolute value of the second integral on the left hand side of (23) does not exceed
\[C \|v_k - v_s\|_{L^p(\mathbb{B}^n)} \sup_{k \in \mathbb{N}} \|\nabla v_k\|_{L^p(\mathbb{B}^n)} = o(1) \quad \text{for} \ k, s \to \infty. \]

To estimate from below the first integral on the left hand side of (23), we apply the elementary inequality
\[(H(X) - H(Y)) \cdot (X - Y) \geq \frac{1}{p} |G(X) - G(Y)|^2, \]
valid for $p \geq 2$ and for vectors X, Y in any scalar product space. The calculations imply
\begin{equation}
L_{k,s} \geq \frac{1}{p} \int_{\mathbb{B}^n(0, 1/2)} |G(\nabla v_k) - G(\nabla v_s)|^2 \, dz + o(1) \quad \text{for} \ k, s \to \infty.
\end{equation}

To estimate the right hand side of (23), note that $|u| = 1$ implies
\[\sum_{j=1}^m (a_k^j + \lambda_k v_k^j) \frac{\partial v_i^j}{\partial x_k} = 0 \quad \text{for} \ i = 1, \ldots, n \text{ and } k \in \mathbb{N}. \]

Therefore, the crucial trick of Hélein can be adapted to the case $p \neq 2$. We may use the b_k^{ij} to express the integral $R_{k,s}$, and then apply Fefferman’s theorem. Here is the calculation:
\begin{align*}
R_{k,s} &= \lambda_k \sum_{1 \leq i, j, m \leq n} \int_{\mathbb{B}^n} \zeta^2 |\nabla v_k|^{p-2} \frac{\partial v_i^j}{\partial x_k} (\frac{\partial v_i^j}{\partial x_k} (a_k^i + \lambda_k v_k^i) - \frac{\partial v_i^j}{\partial x_k} (a_s^i + \lambda_s v_s^i)) (v_k^i - v_s^i) \, dz \\
&= \lambda_k \sum_{1 \leq i, j, m \leq n} \int_{\mathbb{B}^n} \zeta^2 \frac{\partial v_i^j}{\partial x_k} b_k^{ij} (v_k^i - v_s^i) \, dz.
\end{align*}
\[= \lambda_k \sum_{1 \leq i, j \leq m} \int \left(\sum_{l=1}^n b_{k,l}^i \frac{\partial (\zeta v_k^j)}{\partial x_l} \right) (v_k^i - v_j^i) \, dz \]
\[- \lambda_k \sum_{1 \leq i, j \leq m} \int b_{k,l}^i \zeta (v_k^i - v_j^i) \, dz \equiv \lambda_k (\Sigma_{k,s}^1 - \Sigma_{k,s}^2).\]

The estimate of \(\Sigma_{k,s}^1\) is provided by the Fefferman–Stein duality theorem, Corollary 6, and Lemma 8:

\[\sup_{k,s \in \mathbb{N}} |\Sigma_{k,s}^1| \leq C \sum_{1 \leq i, j \leq m} \sup_{k \in \mathbb{N}} \left(\left\| \sum_{l=1}^n b_{k,l}^i \frac{\partial (\zeta v_k^j)}{\partial x_l} \right\|_{\mathcal{H}^1(\mathbb{R}^n)} \right) \sup_{k,s \in \mathbb{N}} \|v_k^i - v_j^i\|_{BMO(\mathbb{R}^n)} < \infty.\]

To get a bound for \(\Sigma_{k,s}^2\), we employ the Hölder inequality with exponents \(2p, 2p, p/(p-1)\) to obtain

\[\sup_{k,s \in \mathbb{N}} |\Sigma_{k,s}^2| \leq C < \infty,\]

since, by Lemma 6 and John–Nirenberg’s inequality, the sequence \(v_k\) is bounded in \(L^{3p}(B(0, 15/16), \mathbb{R}^m)\), and \((v_k^j)_{k \in \mathbb{N}}\) is bounded in \(L^{p/(p-1)}(B(0, 15/16))\) by (14).

Hence, \(|R_{k,s}| \leq C \lambda_k\) for \(k, s \to \infty\). Estimating \(R_{k,s}\) in the same way, and using (23) and (25) we obtain the \(L^2\)-Cauchy condition for \(G(\nabla v_k)\),

\[\int_{\mathbb{R}^n(0,1/2)} |G(\nabla v_k) - G(\nabla v_s)|^2 \, dz \to 0 \quad \text{as} \quad k, s \to \infty.\]

To identify the strong limit of \(G(\nabla v_k)\), recall two other elementary inequalities:

\[(27) \quad |G(X) - G(Y)|^2 \geq 3^{-p}|X - Y|^p, \]
\[(28) \quad |H(X) - H(Y)| \leq 2(p-1)(|X|^p + |Y|^p)^{p-2} \frac{2}{p} |G(X) - G(Y)|.\]

Combining (27) with (26) gives \(\|\nabla v_k - \nabla v_s\|_{L^p} \overset{k,s}{\longrightarrow} 0\). Therefore, (17) implies \(\nabla v_k \rightharpoonup \nabla v\) in \(L^p(B(0, 1/2))\), and a subsequence is convergent pointwise a.e. Since the map \(\xi \mapsto G(\xi)\) is a homeomorphism of \(\mathbb{R}^m\), the strong \(L^2\) limit of \(G(\nabla v_k)\) is equal to \(G(\nabla v)\). This proves the first statement of the Main Lemma.

To prove that the limit function \(v\) satisfies \(\text{div} (|\nabla v|^{p-2} \nabla v) = 0\), note first that (28) and the Hölder inequality imply that

\[\int_{B(0,1/2)} |H(\nabla v_k) - H(\nabla v)|^\frac{p}{p-1} \, dz \leq C \left(\int_{B(0,1/2)} |G(\nabla v_k) - G(\nabla v)|^2 \, dz \right)^{\frac{p}{2}} \sup_{k \in \mathbb{N}} \left(\int_{\mathbb{R}^n} |\nabla v_k(z)|^p \, dz \right)^{\frac{p-2}{2}}. \]

Therefore \(H(\nabla v_k) \rightharpoonup H(\nabla v)\) strongly in \(L^{p/(p-1)}(B(0, 1/2), \mathbb{R}^m)\). Now, recall the identity (22), assume that \(\text{supp} \psi \subset B(0, 1/2)\) and conclude upon letting \(k \to \infty\) that

\[\text{div} (|\nabla v|^{p-2} \nabla v) = 0 \quad \text{in the interior of} \quad \{x \in \mathbb{R}^n : \zeta \equiv 1\}. \]

Varying the initial choice of \(\zeta\), we obtain the second statement of the Main Lemma. \(\blacksquare\)
Proof of Theorem 2. Define
\[\tilde{V} = \{ x \in \mathbb{B}^n : E(x, r) < \varepsilon_0 \text{ for some } r < d(x, \partial \mathbb{B}^n) \}. \]

Obviously, \(\tilde{V} \) is open, and moreover \(H^{n-p}(\mathbb{B}^n \setminus \tilde{V}) = 0 \). To see this, check that the set \(V \) of those \(x \in \mathbb{B}^n \) for which the normalized energy \(E(x, r) \) tends to zero as \(r \to 0 \), is equal to \(\tilde{V} \). Therefore, by Frostman’s lemma (see e.g. [27, Lemma 3.2.2 & Corollary 3.2.3]) we obtain immediately \(0 = H^{n-p}(\mathbb{B}^n \setminus V) = H^{n-p}(\mathbb{B}^n \setminus \tilde{V}) \).

If \(x \in V \), then by iterations of inequality (8), Theorem 3 implies that for some positive constants \(C \) and \(\beta \) we have \(E(y, r) \leq Cr^{\beta} \) for all \(y \) in a small neighbourhood of \(x \) and all sufficiently small radii \(r \). Therefore, applying Morrey’s imbedding theorem [11, pages 64–65], we conclude that \(u \) is uniformly Hölder continuous with exponent \(\alpha = \beta/p \) on compact subsets of \(V \).

Remarks. Using a rather standard argument, one can use Gehring’s lemma to prove that \(|\nabla u| \in L^q_{\text{loc}}(V) \) for some \(q > p \). Global higher integrability of \(|\nabla u| \) on the set \(V \) would obviously imply that the Hausdorff dimension of \(\mathbb{B}^n \setminus V \) is strictly smaller than \(n - p \). In spite of some efforts, we were not able to prove this fact.

Another interesting problem is to prove the following.

Conjecture 9. For any \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \(\Omega \subset V \) is an open set with \(\text{diam} \Omega \leq \delta \), then the inequality
\[\int_Q |\nabla u(y) - [\nabla u]_Q| \, dy \leq \varepsilon \int_{2Q} |\nabla u(y)| \, dy \]
is valid for any cube \(Q \) such that \(2Q \subset \Omega \).

This result would imply that \(|\nabla u| \in L^q_{\text{loc}}(V) \) for any \(q < \infty \), thus allowing for a new and relatively simple proof of the Hölder continuity of \(\nabla u \) on \(V \).

4. One more regularity theorem. As a byproduct of the proofs presented above, we are able to generalize a theorem of F. Hélein and F. Bethuel (asserting smoothness of weakly harmonic maps \(u : M^m \to N^n \) with \(|\nabla u| \in L^m_{\text{loc}} \)) to the \(p \)-harmonic case.

Theorem 10. Assume that \(u \in W^{1,p}(\mathbb{B}^n, S^{m-1}) \) is a weakly \(p \)-harmonic map (not necessarily stationary), with \(|\nabla u| \in L^n(\mathbb{B}^n) \). Then \(u \) is Hölder continuous on \(\mathbb{B}^n \).

We sketch below a proof of this result, without entering into technical details, which are either identical or very similar to those appearing in the proof of Theorem 3. The task of writing down a fully detailed proof is left to the interested readers as an easy but tedious exercise.

First, note that for \(u \) satisfying the assumptions of Theorem 10 we have, by Hölder inequality,
\[E(x, r) = r^{p-n} \int_{\mathbb{B}^n(x, r)} |\nabla u(y)|^p \, dy \leq C \left(\int_{\mathbb{B}^n(x, r)} |\nabla u(y)|^n \, dy \right)^{p/n}. \]

Therefore, by the absolute continuity of the integral, the set \(V \) defined by (29) is equal to \(\mathbb{B}^n \), no matter what value of \(\varepsilon_0 > 0 \) we choose. All that remains to be done is to prove inequality (8).
The first part of the proof of decay of $E(x, r)$ goes without any changes.

In the proof of Lemma 6, the monotonicity formula can be replaced by the imbedding $W^{1,n} \subset BMO$, and instead of applying John–Nirenberg’s lemma we can use the classical Sobolev imbedding theorem (functions from $W^{1,n}_{loc}$ are locally integrable with any power $q \in [1, \infty)$).

The rest of the proof also goes without changes.

Added in proof. A few months after having submitted this work to Banach Center Publications, the author learned that other mathematicians, among them Takeuchi, Toro, and Wang, have independently proved Theorems 1 and 2 (see [22], [25]).

References

