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Abstract. For a class of semi-abstract evolution equations for sections on vector bundles on
a three-dimensional compact manifold we prove that for initial values with certain symmetries
strong solutions exist for all times. In case these solutions become small after some time, strong
solutions exist also for small perturbations of these initial values. Many systems from fluid
mechanics are included in this class.

1. Introduction. While, given large sufficiently smooth initial values, the time-
dependent Navier–Stokes equations have classical solutions in two space dimensions (see
[9], [4]), it is not known whether this is true in general in three space dimensions. Only
for flows having certain symmetries classical solutions are known to exist (see [5], [10]).
These two papers prove existence of classical solutions for two quite different symmetries,
and with quite different methods.

As in the arguments given in [2] and [16] for two-dimensional flows only the validity
of certain imbedding theorems seems to play a role, it appears worthwhile to try to prove
such an existence theorem for a general class of problems and symmetries. This is the
first aim of this paper.

In [11] it was proved that if v(x, t) is the velocity field of a strong solution of the
Navier–Stokes equation, and
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∞∫
0

‖∇v(t)‖4L4
dt <∞,

then for all initial states that are sufficiently close to v(x, 0) exactly one classical so-
lution of the Navier–Stokes equation exists. The second aim of the paper is to prove
similar, though not identical, theorems in a more abstract form suitable for many appli-
cations. These results can be applied in the cases quoted above and at the same time
are applicable to the Boussinesq approximation of compressible flow and incompressible
magneto-hydrodynamics. Examples of this are discussed in Sec. 4. In the main part we
consider the partly abstract parabolic equation

(EQ) Ut +AU = F (U, t)

where A is a self-adjoint positive operator with domain D(A) on a Hilbert space H. The
space H is a closed subspace of the space L2(V) of square integrable sections of a vector
bundle V based on a compact C∞ manifold M of dimension three with a C3-boundary.
AsM is compact this space can be defined in a natural manner (see Sec. 1.1). We denote
its scalar product by (· , ·) and its norm by ‖ · ‖. The language of vector bundles (see
chap. 4, Sec. 1 (pp. 85–92) in [3]) is only used here in order to be able to cover the case of
partly periodic boundary conditions. (E.g. periodic flow in an infinite pipe.) So in a first
reading one may want only to think of spaces of functions from a bounded C3-domain Ω
in R3 to Rn. We can of course think of V as the union

⋃
m∈M Vm, where Vm is the fiber

of V at m ∈M.
We also have a natural definition of the spaces Lp, and Hi

p(V) for i = 1, 2, and
p ∈ [1,∞). We assume that D(A) is a closed subset of H2

2 (V) ∩ H, and that ‖AU‖ is
an equivalent norm to ‖ · ‖H2

2
on D(A), and ‖A1/2U‖ is also equivalent to ‖U‖H1

2
on

D(A1/2). Then A has a discrete spectrum as M is compact. Let S = {Tω : ω ∈ R} with
T0 = idV be a compact one-dimensional group of vector-bundle isomorphisms of V which
depend infinitely differentiably on ω. There is also a group of transformations T̃ω from
M to itself such that Tω covers T̃ω. We assume dT̃ω(m)/dω 6= 0 everywhere in M. Now
let Lω be defined by

LωU(x) = TωU(T̃−1
ω (x)).

Then H̃ = {U ∈ H : LωU = U for all ω ∈ R} is easily seen to be a closed subspace of
L2(V). Let us assume Lω(D(A)) = D(A), LωA = ALω, and that F : H1

5 (V)×[0,∞)→ H

has the property F (LωU, t) = LωF (U, t). Also let λ0 = inf‖U‖=1(AU,U), and for a ∈ R
let a+ = max(0, a), and a− = max(0,−a).

Assume we are given numbers η ∈ [0, 1), C3, C6 < ∞, ν1, ν2 ∈ [0, 1) with ν1 + ν2 <
3
2

such that

(1) (F (U, t), U)+ ≤ η[(F (U, t), U)− + ‖A1/2U‖2] + C1(t)‖U‖2 + C2(t)

with some functions C1(t), C2(t) ≤ C6,

(2) ‖F (U, t)‖ ≤ C3(‖U‖L4 + 1)(‖U‖H1
4

+ 1),

and
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(3) ‖F (U, t)− F (U ′, t′)‖ ≤ C5(‖U‖H1
5

+ ‖U ′‖H1
5
)(‖U − U ′‖H1

5
+ |t− t′|)

with an increasing function C5.
We call a function U : [t0, t1] → H a solution of (EQ) on the interval [t0, t1] if U

belongs to C0([t0, t1], H1
5 )∩C0((t0, t1], D(A))∩C1((t0, t1], L2) and solves (EQ) on (t0, t1].

We obtain the following results.

Theorem 1. For every U0 ∈ H̃ ∩D(A) there is a solution U(t) ∈ H̃ of (EQ) for all
times.

Theorem 2. There is a number δ > 0 such that if there is a K1 < ∞ with
max(C1(t), C2(t)) ≤ δ for t ≥ K1, then for every solution U(t) of (EQ) on [0,∞) there
is an ε > 0 such that if W0 ∈ D(A) and ‖W0 − U(0)‖H2

2
< ε, then the solution W (t) of

(EQ) with initial value W0 also exists for all times.

The proofs of these theorems can be split up into two clearly distinct parts. First we
prove two somewhat more general theorems dealing with this situation in a more abstract
setting, and then we show that the abstract theory is applicable to the semi-abstract
situation described above. The more abstract section may have other applications also.
In Sec. 2 we use some ideas from [2] (see also [16], III.3.1), formulated in the style of and
using some techniques from [18] and [15]. In Sec. 3 we then show how our symmetry
group allows us to eliminate one independent variable, and thus permits us to use two-
dimensional imbedding theorems for all symmetric functions. Sec. 4 then chiefly discusses
the application of these abstract theorems to the equations of magneto-hydrodynamics.

1.1. Notation and function spaces. The letter C is used for generic positive constants
with varying values. The norm of any Banach space B is denoted by ‖ · ‖B . In the
notation for the function spaces defined below we will often leave out the designation of
domain and range, if no confusion can arise from this. Let S ⊂ Rm be a bounded open
set or its closure. Then Ck+α(S,Rn) (k = 0, 1, 2, . . . , α ∈ (0, 1)) are the spaces of all real
vector-valued functions that are, locally in S, Hölder-continuous with exponent α, the
same being true for the derivatives up to order k. This means that these are Banach
spaces with the usual norms only in the case of S compact.

Then if Ω is open, Lp(Ω) is the closure of C0(Ω) with respect to the norm
(
∫

Ω
|u(x)|pdx)1/p. L2 is of course a Hilbert space, and regardless of domain and range we

will denote its scalar product by (· , ·). For any positive integer k we denote by Hk
p (Ω) the

set of all functions that have distributional derivatives in Lp(Ω) up to order k. For other
ν ≥ 0 we define these spaces by complex interpolation. We will often write Hν

2 as Hν .
Now we must devote some attention to the definition of function spaces for sections on

V. AsM is a compact manifold, we can find a finite collection of relatively open subsets
Oi of Rn+ = {x ∈ Rn : xn ≥ 0} and C3-embeddings Ti : Oi → M (i = 1, ...,m) such
that

⋃m
i=1 Ti(Oi) = M. For any section V the composition V (Ti(x)) : Oi → V can be

considered as a vector function on Oi, and we can then define the norm for sections as

‖V ‖B =
m∑
i=1

‖V ◦ Ti‖B

for any function space B.
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2. Existence and stability theorems for abstract evolution equations. In this
chapter we consider a somewhat more abstract situation, but we borrow heavily from the
notation so far introduced. Objects with the same notation will play entirely analogous
roles, although the constants denoted by the same letters will not necessarily have the
same values. Again we are considering an equation

(EQ) Ut +AU = F (U, t),

where now A is a positive self-adjoint operator on an abstract Hilbert space H with a
domain of definition D(A), and F : D(A)×[0,∞)→ H. We assume that A has a compact
inverse and we define also

λ0 = inf
‖U‖=1

(AU,U).

Assume we are given numbers η ∈ [0, 1), µ ∈ [ 1
2 , 1), C6 < ∞, ν1, ν2 ∈ [0, 1) with

ν1 + ν2 <
3
2 , such that

(4) (F (U, t), U)+ ≤ η[(F (U, t), U)− + ‖A1/2U‖2] + C1(t)‖U‖2 + C2(t)

with some functions C1(t), C2(t) ≤ C6,

(5) ‖F (U, t)‖ ≤ C3(‖A1/2U‖)(‖AµU‖+ 1),

and

(6) ‖F (U, t)− F (U ′, t′)‖ ≤ C5(‖AµU‖+ ‖AµU ′‖)(‖Aµ(U − U ′)‖+ |t− t′|)

with increasing functions C3, C5. We can of course immediately extend F to [0,∞) ×
D(Aµ) by virtue of inequality (6), and from now on we will denote this extension by F .
We call a function U : [t0, t1]→ H a solution of (EQ) if U belongs to C0([t0, t1], D(Aµ))∩
C0((t0, t1], D(A))∩C1((t0, t1], H), and solves (EQ) on (t0, t1]. Let S = {Lω : ω ∈ R} also
be a group of linear isomorphisms ofH into itself, and also LωD(A) = D(A), ALω = LωA,
and LωF (U, t) = F (LωU, t) for all ω ∈ R. Let also H̃ = {U ∈ H : LωU = U for all
ω ∈ R}, and in addition to inequality (5) let us also assume there is a number C∗3 < ∞
such that

(7) ‖F (U, t)‖ ≤ C∗3 (‖Aν
∗
1U‖+ 1)(‖Aν

∗
2U‖+ 1)

with ν∗1 + ν∗2 ≤ 1 for all U ∈ H̃.
We will first prove a collection of lemmas, which will then allow us to prove more

abstract versions of Theorems 1 and 2.

Lemma 3. Assume U is a solution of (EQ) on a time interval having t as an interior
point. Then

(8)
d

dt

(
1
2
‖U(t)‖2

)
+ (1− η)‖A1/2U(t)‖2 ≤ C1(t)‖U(t)‖2 + C2(t),

(9)
d

dt

(
1
2
‖U(t)‖2

)
≤ (C1(t)− λ0(1− η))‖U(t)‖2 + C2(t).

P r o o f. We multiply the equation

Ut +AU = F (U, t)
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by U and use (AU,U) = ‖A1/2U‖2 together with inequality (4) to obtain

d

dt

(
1
2
‖U(t)‖2

)
+ ‖A1/2U(t)‖2

= (F (U, t), U) = (F (U, t), U)+ − (F (U, t), U)−

≤ (η − 1)(F (U, t), U)− + η‖A1/2U(t)‖2 + C1(t)‖U‖2 + C2(t).

Thus,
d

dt

(
1
2
‖U(t)‖2

)
+ (1− η)‖A1/2U(t)‖2 ≤ C1(t)‖U(t)‖2 + C2(t),

and, as ‖A1/2U(t)‖2 ≥ λ0‖U(t)‖2,

d

dt

(
1
2
‖U(t)‖2

)
≤ (C1(t)− λ0(1− η))‖U(t)‖2 + C2(t).

Lemma 4. Assume U(t) is a solution of (EQ) on the time interval [t0, t1]. Then

(10) ‖U(t)‖ ≤ exp(C6(t− t0))
√
‖U(t0)‖2 + 1

and

(11) (1− η)
t∫

t0

‖A1/2U(τ)‖2dτ ≤ C6(t− t0) + exp(2C6(t− t0))(‖U(t0)‖2 + 1)

for t ∈ [t0, t1].

P r o o f. From inequality (8) we get

d

dt

(
1
2
‖U(t)‖2

)
≤ C6(‖U(t)‖2 + 1),

which implies
d

dt
(‖U(t)‖2 + 1) ≤ 2C6(‖U(t)‖2 + 1),

and therefore

‖U(t)‖2 + 1 ≤ exp(2C6(t− t0))(‖U(t0)‖2 + 1),

so

‖U(t)‖ ≤ exp(C6(t− t0))
√
‖U(t0)‖2 + 1.

This proves inequality (10). From inequality (8) we also have

d

dt

(
1
2
‖U(t)‖2

)
+ (1− η)‖A1/2U(t)‖2 ≤ C6(‖U(t)‖2 + 1)

and therefore

‖U(t)‖2 + 2(1− η)
t∫

t0

‖A1/2U(τ)‖2dτ ≤
t∫

t0

2C6(‖U(τ)‖2 + 1)dτ + ‖U(t0)‖2.

Using inequality (10) we get

2(1− η)
t∫

t0

‖A1/2U(τ)‖2dτ ≤ 2C6(t− t0) + exp(2C6(t− t0))(‖U(t0)‖2 + 1),

which immediately implies inequality (11).
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Now we turn to some lemmas which are more exclusively used to prove the abstract
version of Theorem 2.

Lemma 5. Given ε > 0 there is a δ > 0 such that for any K1,K2 < ∞ there is a
τ0 <∞ with the property that if U solves (EQ) on an interval [0, T ], ‖U(0)‖ ≤ K2, and
C1(t), C2(t) ≤ δ for t ≥ K1, then ‖U(t)‖ ≤ ε for all t ∈ [K1 + τ0, T ].

P r o o f. Choosing δ ≤ 1
2 (1− η)λ0 we obtain for t ≥ K1 using inequality (9), that

d

dt

(
1
2
‖U(t)‖2

)
≤ −1

2
(1− η)λ0‖U(t)‖2 + δ.

This means that ‖U(t)‖ decreases unless ‖U(t)‖ ≤
√

2δ
(1−η)λ0

. Therefore{
t ∈ [K1,∞) : ‖U(t)‖ ≥ 2

√
2δ

(1− η)λ0

}
is an interval, and on this interval

d

dt

(
1
2
‖U(t)‖2

)
≤ −1

4
(1− η)λ0‖U(t)‖2.

Thus
‖U(t)‖ ≤ exp(−(1− η)λ0(t−K1)/4)‖U(K1)‖

on this interval, and from the previous lemma ‖U(K1)‖ is of course bounded independent
of the specific solution, and we obtain in any case

‖U(t)‖ ≤ max(exp(−(1− η)λ0(t−K1)/4)‖U(K1)‖, 2
√

2δ((1− η)λ0)−1).

So, if we choose δ small enough to make 2
√

2δ((1− η)λ0)−1 ≤ ε, then there will be a τ0
such that for all t ≥ τ0 +K1 we have ‖U(t)‖ ≤ ε.
Lemma 6. Given ε > 0 there is a δ > 0 such that if K1,K2 <∞ and C1(t), C2(t) ≤ δ

for t ≥ K1 then with the τ0 from Lemma 5 for every solution U of (EQ) with ‖U(0)‖ ≤
K2 on an interval [0, T ] containing at least [0,K1 + τ0 + ε], we have that for every
t0 ∈ [K1 + τ0, T − ε] there exists a t ∈ [t0, t0 + ε] with ‖A1/2U(t)‖ ≤ ε.

P r o o f. Integrating inequality (8) from t0 to t0 + ε we obtain
t0+ε∫
t0

‖A1/2U(τ)‖2 dτ(1− η) ≤
t0+ε∫
t0

(C1(τ)‖U(τ)‖2 + C2(τ)) dτ + ‖U(t0)‖2

≤ δ
( t0+ε∫
t0

‖U(τ)‖2 dτ + 1
)

+ ‖U(t0)‖2.

As, by choosing δ arbitrarily small, we can make the latter quantity as small as we please,
there has to be a t ∈ [t0, t0 + ε] such that ‖A1/2U(t)‖ ≤ ε.
Lemma 7. For every C < ∞ there is an ε > 0 such that if U is a solution of (EQ)

on the interval [t1, t2] with t2 ≤ t1 + ε, then ‖A1/2U(t1)‖ ≤ C implies ‖A1/2U(t)‖ ≤ 2C
for t ∈ [t1, t2].

P r o o f. It is easy to see that the proof of Corollary 2.3 in [15] can be adapted to the
situation prevailing here.
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Lemma 8. For any initial value U0 ∈ D(Aµ) there always is exactly one solution
U(t) of (EQ) with U(t0) = U0 on an interval [t0, t1] for some t1 > t0, and if [t0, t1) is
its maximal interval of existence, and t1 < ∞, then the quantity ‖A1/2U(t)‖ cannot be
bounded. Also if U and V are two solutions of (EQ) on the interval [t0, t2] (t0 < t2 <∞)
with

‖AµU(t)‖+ ‖AµV (t)‖ ≤M
on this interval , then there is a constant C only depending on M , such that

(12) ‖Aµ(U(t)− V (t))‖ ≤ exp(C(t− t0))‖Aµ(U(t0)− V (t0))‖
for t ∈ [t2, t0]. If U0 ∈ H̃ then the solution U(t) belongs to H̃ also.

P r o o f. Using Theorem 14.1 (p. 159) in [1] we can easily see that for any solution U
the function F (U(t), t) is at least locally Hölder continuous in (t0, t1). Then from Theorem
3.1 (p. 109) also in [1] we can see that U also solves the variation-of-constants formula

U(t) = exp(−(t− t0)A)U0 +
t∫

t0

exp(−(t− s)A)F (U(s), s) ds.

As is well known and can be seen using the theorems already quoted, every solution of
this integral equation in C0([t0, t1], D(Aµ)) is also a solution of (EQ). We can obtain such
solutions as fixed points of the mapping CU0 : C0([t0, t1], D(Aµ)) → C0([t0, t1], D(Aµ))
given by

CU0(U) = exp(−(t− t0)A)U0 +
t∫

t0

exp(−(t− s)A)F (U(s), s) ds.

As we will see it is a local contraction in a neighborhood of the function U(t) ≡ U0 in
the Banach space C0([t0, t1], D(Aµ)) with the norm

max
τ∈[t0,t1]

[‖AµU(τ)‖],

provided the time interval is chosen short enough. The Banach fixed point theorem then
gives us existence and uniqueness. To see we have a contraction consider U1 and U2, and
let Vi = CUi(0)(Ui). Also let W = V1 − V2, and Ŵ = U1 − U2. Then by inequality (6),

‖Wt(t) +AW (t)‖ ≤ C5(‖AµV1(t)‖+ ‖AµV2(t)‖)‖AµŴ (t)‖.
As we also have

W (t) = exp(−tA)W (0) +
t∫

t0

exp(−(t− s)A)(Wt +AW ) ds,

we get with M̂ = 2 max[t0,t1],i=1,2(‖AµVi(t)‖) that

‖AµW (t)‖ ≤ C‖AµW (0)‖+ CC(M̂)
t∫

t0

(t− s)−µ‖AµŴ (s)‖ ds.

This makes the fact that we have a contraction clear as for fixed initial values the first
expression is zero. The local stability inequality (12) then also follows easily.

Now using an argument analogous to that of Lemma 2.2 in [15] it is easy to see that
a solution can only cease to exist if ‖A1/2U(t)‖ goes to infinity.
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If U(t) is a solution then of course Ut + AU = F (U, t), and so LωUt + LωAU =
LωF (U, t) and (LωU)t + ALωU = F (LωU, t) by our assumptions. So LωU(t) is also a
solution, and if LωU(0) = U(0), which is true if U(0) ∈ H̃, then by uniqueness also
LωU(t) = U(t).

The following lemma is familiar from the theory of ordinary differential equations.

Lemma 9. Assume a function U ∈ C0((0, T ], D(A)) ∩C0([0, T ], D(Aµ)) solves (EQ).
Then there is an ε > 0 such that the solution V (t) with initial value V (0) = V0 exists on
[0, T ] also if ‖Aµ(V0 − U(0))‖ < ε.

P r o o f. Let M = 2 maxt∈[0,T ] ‖AµU(t)‖. For an arbitrary ε < M/2 we can find at
least a TC > 0 such that for t ∈ [0, TC ] the solution V exists and fulfills ‖AµV (t)‖ ≤M .
Then from (12) we get, as the time interval we consider is finite,

‖Aµ(U(t)− V (t))‖ ≤ C‖Aµ(U(0)− V (0))‖

at least as long as ‖AµV (t)‖ ≤ M . Taking ε ≤ M
2C we see that ‖AµV (t)‖ ≤ 3

4M if
‖AµV (t)‖ ≤ M . For continuity reasons this is then true as long as V exists. So V can
never cease to exist on this interval.

The following is an abstract version of Theorem 1. We prove it by the same method
as in [2].

Theorem 10. Assume U0 ∈ H̃. Then there is exactly one solution of (EQ) and it
exists for all times.

P r o o f. By Lemma 8 the solution U(t) stays in H̃ as long as it exists. Therefore
inequality (7) is valid for all t. It stays valid of course if we enlarge ν1 or ν2, though
perhaps with a different constant, so we can assume ν1 + ν2 = 1. The case ν1 = ν2 = 1/2
is left to the reader. So assume now ν1 < 1/2 < ν2. Then, as

‖Aν1U‖ ≤ C‖U‖1−2ν1‖A1/2U‖2ν1 ,

‖Aν2U‖ ≤ C‖A1/2U‖2(1−ν2)‖AU‖2ν2−1,

we obtain

‖F (U, t)‖ ≤ C(‖U‖1−2ν1 + 1)(‖A1/2U‖2+2(ν1−ν2) + 1)(‖AU‖2ν2−1 + 1),

and

|(F (U, t), AU)| ≤ C(‖U‖1−2ν1 + 1)(‖A1/2U‖2+2(ν1−ν2) + 1)(‖AU‖2ν2 + 1).

Using Young’s inequality we get

(‖U‖1−2ν1 + 1)(‖A1/2U‖2+2(ν1−ν2) + 1)(‖AU‖2ν2 + 1)

≤ ε‖AU‖2 + C(ε)(‖U‖
1−2ν1
ν1 + 1)(‖A1/2U‖

2+2(ν1−ν2)
ν1 + 1).

Now 2+2(ν1−ν2)
ν1

= 2+2ν1−2(1−ν1)
ν1

= 4, and so we get, using inequality (10),

|(F (U, t), AU)| ≤ ε‖AU‖2 + C(ε)(‖U‖
1−2ν1
ν1 + 1)(‖A1/2U‖4 + 1)

≤ ε‖AU‖2 + C(ε, U(0))(‖A1/2U‖4 + 1).
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Multiplying (EQ) by AU(t) we obtain then

d

dt

(
1
2
‖A1/2U(t)‖2

)
+ ‖AU(t)‖2 = (F (U, t), AU) ≤ 1

2
‖AU‖2 + C(‖A1/2U‖4 + 1).

Thus
d

dt
(‖A1/2U(t)‖2 + 1) ≤ C(‖A1/2U‖4 + 1) ≤ C(‖A1/2U‖2 + 1)2

We divide by ‖A1/2U‖2 + 1 and obtain
d

dt
log(‖A1/2U(t)‖2 + 1) ≤ C(‖A1/2U(t)‖2 + 1).

So

log(‖A1/2U(t)‖2 + 1) ≤ C
t∫

0

(‖A1/2U(s)‖2 + 1) ds+ log(‖A1/2U(0)‖2 + 1).

From inequality (11) we also know that on any finite interval [0, T ] we have
t∫

0

‖A1/2U(s)‖2 ds ≤ C

for all t ∈ [0, T ] with a fixed constant C <∞. This gives us the estimate

‖A1/2U(t)‖2 ≤ C,

for t ∈ [0, T ], and with Lemma 8 we obtain our claim.

Theorem 11. There is a number δ > 0 such that if max(C1(t), C2(t)) ≤ δ for t ≥ K1

with some K1 < ∞, then every solution U(t) of (EQ) on [0,∞) has the property that
there is an ε > 0 such that if W0 ∈ D(A) and ‖A(W0 − U(0))‖ < ε, then the solution
W (t) of (EQ) with initial value W0 also exists for all times.

P r o o f. Combining Lemma 6 and Lemma 7 we can see that if δ is chosen sufficiently
small, then any solution which exists at least until the time K1 + τ0 + 1 cannot cease to
exist anymore. By Lemma 9 we can see that we can assure existence up to this point by
starting out sufficiently close to U(0).

3. Proof of Theorems 1 and 2. In order to prove Theorems 1 and 2 we now
only have to relate their hypotheses to those of Sec. 2 and then apply Theorems 10 and
11. For this we will initially only use the Sobolev imbedding theorem in 3-space (see
Theorem 4.6.2 in [17]).

The role of A is largely the same in the introduction and Sec. 2, and the nonlinearity
F : [0,∞)×H1

5 (V )→ H can easily be restricted to D(A9/10), as D(A9/10) ⊂ H9/5
2 (V ) ⊂

H1
5 (V ) and ‖U‖H1

5
≤ C‖A9/10U‖. (See Theorem 1.15.3, (p.103) and Theorem 4.3.2.2 (p.

318) in [17].) Now inequality (1) is the same as inequality (4), and from the theorems
just quoted we can immediately get (6) with µ = 9/10 from (3). In the same way we can
prove (5) from (2) as with ν1 = 3/8 and ν2 = 7/8 we have ν1 + ν2 = 10/8 < 3/2, as also

‖U‖L4 ≤ C‖A3/8U‖, ‖U‖H1
4
≤ C‖A7/8U‖.

Now we also need to prove (7) for elements of H̃. This is made possible by
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Lemma 12. There is a constant C such that

‖U‖L4 ≤ C‖U‖H1/2
2

and ‖U‖H1
4
≤ C‖U‖

H
3/2
2

for all U ∈ H3/2
2 (M) with LωU = U (ω ∈ R).

P r o o f. Let m0 ∈ M be an arbitrary point. We can introduce a chart T : O → M ,
where O is either B3 = {x ∈ R3 : |x| < 1} or B ∩R3+, for a neighborhood of m0 so that
T (0) = m0. As (T̃−1

ω )′(m0) 6= 0, we can introduce a new coordinate system around m0

by first choosing two vectors v1 and v2 which form a linearly independent system with
the vector d

dω |ω=0 (T −1T̃−1
ω T (0)), and then letting X(y1, y2, y3) = T̃−1

y1 (T (y2v1 + y3v2))
for (y1, y2, y3) ∈ Õ for a suitable domain Õ. Now for any function U ∈ H̃ we have by
definition of H̃,

Ty1U(X(y1, y2, y3)) = U(X(0, y2, y3)).

Locally the expression Ty1U(X(y1, y2, y3)) can of course be considered as a vector func-
tion, and therefore from the Sobolev imbedding theorem (Theorem 4.6.2 in [17]) for
function spaces in R2 we get

‖Ty1U(X(y1, y2, y3))‖
L4(Õ)

≤ C‖Ty1U(X(y1, y2, y3))‖
H1/2(Õ)

.

As we have

‖U(X(y1, y2, y3))‖
H1(Õ)

≤ C‖Ty1U(X(y1, y2, y3))‖
H1(Õ)

and

‖U(X(y1, y2, y3))‖
L2(Õ)

≤ C‖Ty1U(X(y1, y2, y3))‖
L2(Õ)

,

by complex interpolation we immediately obtain

‖U(X(y1, y2, y3))‖
L4(Õ)

≤ C‖U(X(y1, y2, y3))‖
H1/2(Õ)

.

Then of course

‖U‖
L4(X(Õ))

≤ C‖U‖
H1/2(X(Õ))

,

and it is easy to conclude the remainder by patching the neighborhoods together.
Now combining Theorem 1.15.3, (p. 103) and Theorem 4.3.2.2 (p. 318) of [17], we get

inequality (7) of Lemma 12. This finally proves Theorem 1 and 2.

4. Some applications. In this section we discuss a class of applications in very gen-
eral terms, and then choose a specific example of a system from magneto-hydrodynamics.
The Navier–Stokes equation can be obtained from this by setting the initial magnetic field
equal to zero. All the applications we have in mind are characterized by the fact that the
vector bundle we consider is in fact trivial, and that the fibers consist of a collection of
3-vectors and scalars, and that the group of transformations Tω covers T̃ω(x) = Oωx+bω,
where the Oω are orthogonal matrices representing rotations, and the bω are vectors, and
that M is actually a subset of R3 with perhaps some boundaries glued together, to de-
scribe periodic flows in an infinite domain. The typical element of the bundle is then of
the form (x, s1, .., sm, v1, . . . , vn)T where x, v1, . . . , vn ∈ R3 and s1, . . . , sm ∈ R. Also the
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action of T is described by

Tω



x
s1

:
sm
v1

:
vn


=



Oωx+ bω
s1

:
sm
Oωv1

:
Oωvn


.

This is of course the usual transformation rule for vectors and scalars under coordinate
changes. If U(x) = (x, s1(x), . . . , sm(x), . . . , v1(x), . . . , vn(x))T is a section, then all ele-
ments of H̃ must have the invariance property

U(x) =



x
s1(T̃−1

ω (x))
:

sm(T̃−1
ω (x))

Oωv1(T̃−1
ω (x))

:
Oωvn(T̃−1

ω (x))


,

which is what is usually expected to be true in any physical system with a rotational-
translational symmetry. The verification of the equivariance of A and F with respect
to Lω is not usually difficult, and requires the same kind of calculations as one would
make to show that these equations are invariant under translations and rotations of the
coordinate system. Also self-adjoint principal parts are very common in the equations of
mathematical physics, not just in quantum mechanics. Examples are the Laplace operator
with Dirichlet boundary conditions and the Stokes operator.

Now we consider the equations of incompressible magneto-hydrodynamics with the
boundary conditions of superconductivity. So let us assume Ω is a bounded subset of R3

with a smooth boundary. Then the equation are (see [7] and [8])

(13)

vt − µ1∆v +∇p = −v · ∇v − 1
8π
∇H2 +

1
4π

(H · ∇)H+ f ≡ F1,

div(v) = 0,

Ht − µ2∆H = (v · ∇)H+ (H · ∇)v ≡ F2,

div(H) = 0,

in Ω with the boundary conditions

v = 0 and H · n = 0, curl(H)× n = 0

on ∂Ω = S with the initial values

v(x, 0) = v0(x), H(x, 0) = H0(x) (x ∈ Ω).

Here v(x, t) is the velocity field, p(x, t) is the pressure, and H(x, t) is the magnetic field.
Finally µ1 is the constant viscosity, and µ2 has the role of a magnetic viscosity. We must
assume that div(v0) = 0, and div(H0) = 0. To construct the Hilbert space H we use here
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we need some building blocks. So let

H =
{
u ∈ L2(Ω) :

∫
Ω

u · ∇Ψdx = 0 for all Ψ ∈ H1
2 (Ω)

}
.

We assume that Ω is invariant under the group of transformations we are considering here.
Let P : L2(Ω)→ H be the orthogonal projector. It is easy to see that P commutes with
all the transformations in question, as the space of gradients of functions on Ω is invariant
under them. Then let S = −P∆ be the Stokes operator and D(S) = H ∩H1

20 ∩H2
2 . It

is elementary to check that Lω(D(S)) = D(S) and LωS = SLω. Also S is well known
to be self-adjoint (see, e.g., p. 104 in [16]). For the principal part of the equation for the
magnetic field let ∆s be the Laplace operator with

D(∆s) = {H ∈ H ∩H2
2 : curl(H)× n = 0,∆H ∈ H}

as domain of definition. From Chap. III, Sec. 3.4 in [16] we can also see that this operator
is self-adjoint. It of course has the same equivariance properties as S, as the normal vector
n(x) also does. Now let

H = H× {H ∈ H : H ⊥ ker(∆s)}.

Then we can define our self-adjoint and equivariant operator as

A =
[
S 0
0 −∆s

]
with domain D(A) = D(S) × {u ∈ D(∆s) : u ⊥ ker(∆s)}. Due to projecting out the
kernel we get a positive operator. Now let H1 be the component of H0 in the kernel of
−∆s. One can easily see that this kernel only consists of functions H with curl(H) = 0.
We can rewriteH asH(x, t) = H1(x)+H(x, t). It is easy to see using the form curl(u×H)
of the nonlinearity in the third equation in (13) that H1 is also the projection of H(x, t)
onto the kernel of −∆s as F2(v,H) ⊥ ker(−∆s). So we can introduce H as the new
variable for the magnetic field and define

F (U, t) =
[
PF1(v,H+H1,t)
F2(v,H +H1, t)

]
for U =

[
v

H

]
.

It is now a very elementary calculation to check that the equations have the claimed
equivariance under all rotations and translations in general, and therefore under all helical
motions, provided that the function f and the initial value for H does. Inequality (1)
follows in a way analogous to how the law of the conservation of energy is obtained. The
additional properties are easily obtained by the fact that

‖F (U, t)‖L2 ≤ C(‖U‖L4‖∇U‖L4 + 1).

Now assuming the required symmetry of the initial value, we get all the conclusions of
Theorems 1 and 2. It should be pointed out that the equations of magneto-hydrodynamics
with the boundary conditions used in [14] can be treated in a similar way.

Of course an example for a domain with one of the symmetries envisioned here is the
torus

{(x, y, z) : (
√
x2 + y2 −R1)2 + z2 < R2} (R1 > R2),
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which is symmetric under all rotations around the z-axis. In contrast to [5] there is no
need to confine the velocity vectors at any point to the plane through the point and the
x-axis, as is done there. One can also consider the manifold obtained by identifying all
points (x, y, 0) with (x, y, l) in the domain

{(x, y, z) :
√
x2 + y2 < R, 0 < z < l},

which describes a flow in an infinite pipe, which has both rotational and translational
symmetries, which can be combined as helical symmetries. This is the situation considered
in [10], and the existence part is covered here also for the Navier–Stokes and magneto-
hydrodynamics equations, but of course we do not study attractors here.

Finally U does not necessarily have to represent the physical quantities themselves,
but could rather be the difference to an energy-stable equilibrium with the right sym-
metry. Then it is easy to verify our assumptions, and thus to obtain the stability of all
time-dependent symmetric solutions.
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