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Abstract. A smooth mapping f : Ln → (M2n, ω) of a smooth n-dimensional manifold L
into a smooth 2n-dimensional symplectic manifold (M,ω) is called isotropic if f∗ω vanishes.
In the last ten years, the local theory of singularities of isotropic mappings has been rapidly
developed by Arnol’d, Givental’ and several authors, while it seems that the global theory of
their singularities has not been well studied except for the work of Givental’ [G1] in the case of
dimension 2 (cf. [A], [Au], [I2], [I-O]). In the present paper, we are concerned with typical sin-
gularities with corank 1 of isotropic maps f :Ln→(M2n, ω) (arbitrary dimension n), so-called
open Whitney umbrellas of higher order, investigated by Givental’ [G2], Ishikawa [I1] and Zaka-
lyukin [Z], and our purpose is to give their topological invariants from the viewpoint of “Thom
polynomial theory” (cf. [T], [P], [K], [AVGL]). These are obtained as a variant of Porteous’
formulae on Thom polynomials for Ak-singularities [P]. Throughout this paper, manifolds are
assumed to be paracompact Hausdorff spaces and of class C∞, and maps are also of class C∞.

1. Introduction. To begin with, we describe local models of singularities of isotropic
map-germs, according to Ishikawa [I1]. Consider Rn with coordinates x1, . . . , xn and R2n

(= Cn) with canonical coordinates p1, . . . , pn; q1, . . . , qn defining the standard symplectic
structure as ω0 =

∑n
i=1 dpi ∧ dqi. For 1 ≤ k ≤ [n2 ], a map-germ fn,k : Rn, 0 → R2n, 0 is

defined by
qi ◦ fn,k = xi (1 ≤ i ≤ n− 1),

u = qn ◦ fn,k =
xk+1
n

(k + 1)!
+
k−1∑
i=1

xi
xk−in

(k − i)!
,

v = pn ◦ fn,k =
k−1∑
i=0

xk+i
xk−in

(k − i)!
,
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pj ◦ fn,k =
xn∫
0

(
∂v

∂xj

∂u

∂xn
− ∂v

∂xn

∂u

∂xj

)
dxn (1 ≤ j ≤ n− 1).

Each fn,k is isotropic with respect to ω0, and has corank 1 (kernel rank 1) singularities.
We remark that fn,k can be considered as an “isotropic lifting” of (q1, . . . , qn, pn) ◦ fn,k :
Rn → Rn+1, which is the normal form of Morin singularity of order k.

Let L be an n-manifold, (M,ω) a symplectic 2n-manifold and f : L→M an isotropic
mapping. Throughout this paper, we say that the germ of f : L, p → M,f(p) at p is
of open Whitney umbrella type of order k if it is transformed to the normal form fn,k
by means of suitable choices of local coordinates of L centered p and a symplectic local
coordinate of M centered at f(p).

We intend to represent singularities of f of open Whitney umbrella type in a ge-
ometrical way, as Thom-Boardman singularities Σ1k(f) (= Σ1,...,1(f) with 1 repeated
k times). The intuitive meaning of this notation is as follows. First, set Σ1(f) to be
{x ∈ L | dim ker dfx = 1}. If Σ1(f) becomes a C∞ submanifold of L, then consider-
ing the restriction of f to Σ1(f), which is also an isotropic mapping into M , set again
Σ1,1(f) :=Σ1(f |Σ1(f)). Inductively, we define Σ1k(f) by Σ1(f |Σ1k−1 (f)) as far as possible,
and then we obtain a sequence of submanifolds: L ⊃ Σ1(f) ⊃ Σ1,1(f), . . . In §2 and §3 we
will make this procedure rigorous in terms of intrinsic derivatives associated to f and cer-
tain transversality conditions, so that the germ of f at each point of Σ1k(f)−Σ1(k+1)(f)
is of open Whitney umbrella type of order k. Then, it turns out that Σ1k(f) becomes a
closed submanifold in L with codimension 2k, which is canonically co-oriented (the normal
bundle is oriented). Hence, in particular, for oriented L, it defines (n− 2k)-dimensional
homology class of L with Z-coefficients.

Recall that every symplectic manifold (M,ω) admits an almost complex structure J ,
unique up to homotopy, such that ω(∗, J∗) is positive definite (see [W]). In particular, we
can define the Chern classes ci(TM) ∈ H2i(M ; Z), which depend only on the symplectic
structure.

We now state our results. Let L be always assumed to be compact without boundary.

Theorem (1.1). Let f : Ln →M2n be an isotropic map whose differential dfx at each
x ∈ L has corank at most 1. Assume L is oriented. Then

2ci(f∗TM − TLC) = 0 for all i ≥ 2.

(Here TLC denotes the complexification of the tangent bundle TL, and the Chern class
ci(f∗TM − TLC) ∈ H2i(L; Z) is the i-th term of c(f∗TM)c̄(TLC).)

We shall express the cohomology classes dual to Σ1k(f) by some polynomials of the
standard characteristic classes of the bundles TL and f∗TM , that may be called Thom
polynomials for higher open Whitney umbrellas. These provide characteristic classes for
isotropic mappings, which constitute topological obstructions to the existence of the
corresponding open umbrellas.

Theorem (1.2). Let f : Ln → M2n be an isotropic map whose singularities are only
of open Whitney umbrella type, Σ1k(f) (1 ≤ k ≤ [n2 ]). Then:
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(1) if L is oriented , the Poincaré dual to Σ1k(f) is [Σ1k(f)]c = f∗c1(TM)k modulo
2-torsion elements for each k;

(2) if L is unoriented , taking (co)homology with Z2-coefficients, the dual to Σ1k(f) is
[Σ1k(f)]c2 =

∑k
i=1

(
[k/2]
i−1

)
wk−i2 w2i where wi means the i-th Stiefel-Whitney class wi(f∗TM

− TL⊕ TL).

Theorem (1.1) implies a restriction on the Pontryagin classes of L. For example, it is
straightforward that

Corollary (1.3). If L has some non-trivial rational Pontrjagin classes, then any
proper isotropic mapping g from L into R2n (furnished with any symplectic structure)
has singularities of corank greater than 1, i.e., Σr(g) (= {x ∈ L | dim ker dgx = r}) 6= ∅
for some r ≥ 2.

We can also see that the dual classes to open umbrellas give homotopy invariants of
the isotropic map f :

Corollary (1.4). Let f and g be two isotropic maps Ln → (M2n, ω) which have
only singularities of open Whitney umbrella type. If f is continuously homotopic to g,
then their singularity sets of order k define the same homology class of L for each k (i.e.
[Σ1k(f)] = [Σ1k(g)] ∈ Hn−2k(L; Z) for oriented L).

Note that to more degenerate rank singularities of isotropic maps, Σr(f) (r ≥ 2), we
cannot apply our approach because of the lack of transversality theorems, see §2. Recall
that we are far from a classification of generic isotropic map-germs with corank greater
than 1, see [A].

In the case of dimension 2, we can derive from our theorems some integral formula
of “local Maslov indices” first introduced by Givental’ (see also [I-O], [I2]). Consider an
isotropic mapping f from a closed surface S to a symplectic 4-manifold (M,ω) such that
singular points of f are all isolated (not necessarily of corank 1). For each point p of S, we
can define the index m(f, p) ∈ Z (resp. m(f, p)2 ∈ Z2) if L is oriented (resp. unoriented),
see §5. We can see that summing m(f, p) over all points of L yields some characteristic
numbers.

Corollary (1.5). Let f be an isotropic mapping from a closed surface S to a 4-
dimensional symplectic manifold (M,ω). Assume that the singularities of f are all iso-
lated. Then:

(1)
∑
p∈S

m(f, p) = c if S is oriented ,

(2)
∑
p∈S

m(f, p)2 ≡ χ+ w (mod 2) if S is unoriented.

Here χ denotes the mod 2 Euler number of S, and c (resp. w) denotes the characteristic
number 〈f∗c1(TM), [S]〉 (resp. 〈f∗w2(TM), [S]2〉).

R e m a r k (1.6). We note that m(f, p) = 0 for non-singular points p of f , hence the
left hand sides of the above formulae make sense. In particular, if the germ of f at p is of
open Whitney umbrella type of order 1, then m(f, p) = ±1. If the tangent bundle TM4
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admits some Lagrangian subbundle, then the Chern number c vanishes, hence the sum
of Maslov indices is zero. This fact has been indicated by Givental’ ([G1]). We should
remark that in the same paper, Givental’ proved a strong formula on the number of
open umbrellas and of transversal double points, with which we do not deal here. A
generalization of the formulae is given in [I-O].

Acknowledgements. The author wish to express his gratitude to Professor G. Ishi-
kawa for his help and interest in this paper motivated by his papers [I1], [I2] and Givental’s
[G1], and also to Professor S. Izumiya for his encouragement.

2. Intrinsic derivatives of isotropic bundle maps. Let W be a real vector space
with a symplectic structure ω (i.e. non-degenerate skewsymmetric bilinear form). For a
subspace I of W , the ω-orthogonal space I⊥ is defined to be the set of w in W such that
ω(w, v) = 0 for any v ∈ I, and we always have dim I + dim I⊥ = dimW . A subspace
I is called isotropic if I ⊂ I⊥. We remark that for isotropic I, the quotient I⊥/I has
the natural symplectic structure ωI⊥ defined by p∗ωI⊥ = ω|I⊥ where p is the projection
I⊥ → I⊥/I.

A linear map from a real vector space V to W is also called isotropic if its image
is an isotropic subspace of W , and let IL(V,W ) denote the set of all isotropic linear
maps from V to W . Then IL(V,W ) becomes a real homogeneous subvariety of the space
HomR(V,W ), since it is defined by quadratic equations h∗ω = 0, where h ∈ HomR(V,W ).
In particular, IL(V,W ) coincides with HomR(V,W ) if and only if dimV = 1.

Let Σr(V,W ) denote the submanifold consisting of linear maps V → W with corank
r, and set IΣr(V,W ) := Σr(V,W ) ∩ IL(V,W ). Then

IL(V,W ) =
⋃
r≥0

IΣr(V,W ), IΣs(V,W ) =
⋃
r≥s

IΣr(V,W ).

Here bar means closure in HomR(V,W ). Clearly, IΣr(V,W ) is a semi-algebraic subset,
which is an orbit of the canonical right-left actions of the general linear transformations
on V and the symplectic linear transformations on W . Let h be a point of IΣr(V,W ).
To see the local geometric structure of IL(V,W ) around h, it is useful to define a kind
of “tangent cone” of IL(V,W ) at h: let Coner(h) denote the set of velocity vectors
dc
ds (0) ∈ T (HomR(V,W ))h for all smooth curve-germs c : (R, 0)→ (IL(V,W ), h).

It is well-known (see e.g. [P], [G-G]) that over Σr(V,W ) the kernel bundle K, the
image bundle I and the cokernel bundle C are canonically defined, and there exists an
exact sequence of bundle morphisms

0→ TΣr(V,W )→ T (HomR(V,W )) π→ HomR(K,C)→ 0.

The projection π is given by assigning to each vector α the composite linear map
Kh ↪→ V

α→ W → Ch through the natural identification between T (HomR(V,W ))h
and HomR(V,W ).

Proposition (2.1). (1) For any h ∈ IΣr(V,W ), π(Coner(h)) = IL(Kh, (I⊥/I)h)
where Kh = kerh and Ih = imageh.



THOM POLYNOMIALS 291

(2) The singular locus of IL(V,W ) coincides with IΣ2(V,W ), while IΣ1(V,W ) is a
smooth submanifold of the regular locus of IL(V,W ) whose normal bundle is isomorphic
to HomR(K, (I⊥/I)) (= IL(K, (I⊥/I))).

P r o o f. (1) We show π(Coner(h)) ⊂ IL(Kh, (I⊥/I)h). For any α ∈ Coner(h), choose
a smooth curve c(s) in IL(V,W ) such that c(0) = h and dc

ds (0) = α. Also set β = d2c
ds2 (0),

and consider α and β as elements of the linear space HomR(V,W ). Since ω(c(s)u, c(s)v)
is constantly zero for u, v ∈ V , taking derivatives at s = 0 gives ω(αu, hv)+ω(hu, αv) = 0
and 2ω(αu, αv)+ω(βu, hv)+ω(hu, βv) = 0. It follows that ω(αu, hv) = 0 for u ∈ Kh, v ∈
V, and that ω(αu, αv) = 0 for u, v ∈ Kh. The former implies that α(Kp)⊂Ip⊥, and hence
π(ξ) is defined as a linear map Kh → I⊥h /Ih. By the latter, we see π(ξ) is isotropic with
repect to ωI⊥

h
. To see the converse inclusion is easy.

(2) Define τ : HomR(V,W )→ V ∗∧V ∗ by τ(h) := h∗ω. Then τ−1(0) = IL(V,W ). For
h ∈ IL(V,W ), it can be shown that the differential dτ at h is surjective if and only if h
has corank at most 1, see [I2]. Hence any points of strata IΣ0 and IΣ1 are regular points
of IL(V,W ). If the corank of h is greater than 1, IL(Kh, (I⊥/I)h) is not a linear space,
hence Coner(h) is also not linear. Thus each point of IΣ2(V,W ) is a singular point of
IL(V,W ). Thus the assertion (2) follows.

Next, we shall work in the category of C∞ vector bundles. Assume that we are given a
real vector bundle E → X over a manifold X, and a vector bundle F → X with a smooth
symplectic structure ω, that is, a smooth section of F ∧ F which is non-degenerate at
each x ∈ X. Let IL(E,F ) be the union of IL(Ex, Fx) over all x ∈ X. We call a smooth
section of IL(E,F ) an isotropic bundle map.

Let h : E → F be a bundle map. We denote by Σ(h) the set of points in X at which
h is not injective. Let p be a point of Σ(h), and recall the intrinsic derivative (Dh)p of h
at p (e.g. [G-G]) which is given by the composition

TXp → T (HomR(E,F ))h(p)
π→ HomR(kerhp, cokerhp).

When h is an isotropic bundle map, from (1) of Proposition (2.1) we easily have the
following restriction of the derivative. For simplicity, set Kp = kerhp, Ip = imagehp and
Cp = cokerhp (= Fp/Ip).

Proposition (2.2). An isotropic bundle map h : E → F induces the canonically
defined intrinsic derivative

(Dh)p : TXp → HomR(Kp, (I⊥/I)p)

such that the image (Dh)p(TXp) is contained in IL(Kp, (I⊥/I)p).

Let IΣ1(E,F ) denote the union of IΣ1(Ex, Fx) over all x ∈ X. Propositions (2.1)
and (2.2) yield

Proposition (2.3). Let h : E→F be an isotropic bundle map, and p a singular point
of h with dimR Kp = 1. Then the following properties are equivalent :

(1) (Dh)p : TXp → HomR(Kp, (I⊥/I)p) (= IL(Kp, (I⊥/I)p)) is surjective,
(2) the section h : X → IL(E,F ) is transverse to IΣ1(E,F ) at p.
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R e m a r k (2.4). (1) By standard arguments on transversality, we can see that any
isotropic bundle map E → F with corank at most 1 can be approximated by isotropic
bundle maps transverse to IΣ1(E,F ).

(2) If dimR Kp is greater than 1, then (Dh)p : TXp → HomR(Kp, (I⊥/I)p) is never
surjective.

3. Higher order singularities. For an isotropic mapping f : Ln → M2n, we now
consider the isotropic bundle map d1 := df : TL → f∗TM defined over L. We simply
denote f∗TM by TM ′.

Let Σ1(f) denote the set of points of L at which dim ker d1 = 1. Assume that the
intrinsic derivative of d1, (Dd1)p : TLp → HomR(Kp, (I⊥/I)p), is surjective for any
p ∈ Σ1(f). Then by Proposition (2.3), Σ1(f) is smooth and we have the exact sequence

0→ TΣ1(f)→ TL|Σ1(f)
Dd1→ HomR(K, I⊥/I)→ 0 over Σ1(f).

Next, we let d2 denote the restriction of Dd1 to K,

d2 = (Dd1)|K : K → HomR(K, I⊥/I) over Σ1(f).

Considering d2 as a section of HomR(K ⊗K, I⊥/I), let Σ1,1(f) be the pull back of the
zero section d−1

2 (0). Clearly, if d2 is transversal to the zeros and d−1
2 (0) is not empty,

then Σ1,1(f) is smooth and we have

0→ TΣ1,1(f)→ TΣ1(f)|Σ1,1(f)
Dd2→ HomR(K ⊗K, I⊥/I)→ 0 over Σ1,1(f),

where Dd2 is the intrinsic derivative of d2. Inductively, for k ≥ 2, we define the kth order
intrinsic derivative of f by dk := Ddk−1|K , which is regarded as a section

dk : Σ1k−1(f)→ HomR(
k
⊗K, I⊥/I),

and define Σ1k(f) to be dk−1(0). Also the transversality of dk to the zeros implies that
Σ1k(f) is an empty set or becomes a submanifold of codimension 2k which is co-orientable
via the orientation of I⊥/I. In particular, Σ1k(f) = ∅ for 2k > n.

It is straightforward from [G2] and [I1] to see the following.

Proposition (3.1). The following properties are equivalent :

(1) the germ of f at p is of open Whitney umbrella type of order k,
(2) the intrinsic derivatives ds (1 ≤ s ≤ k) at p are well-defined (transversal properties

mentioned above are all fulfilled), and d−1
k+1(0) = ∅.

N o t e. Let p ∈ L be a singular point of an isotropic f : L → (M,ω) with corank
1. Choose a symplectic chart (U, (p1, . . . , pn, q1, . . . , qn)) of M centered at f(p) such that
the image Ip of the differential df at p is spanned by vectors ∂

∂q1
(0), . . . , ∂

∂qn−1
(0). The

ω-orthogonal space I⊥p is spanned by ∂
∂q1

(0), . . . , ∂
∂qn

(0), and ∂
∂pn

(0). Then our intrinsic
derivative dk of the isotropic f at p is the same as the usual kth intrinsic derivative of
the map f ′ := (q1, . . . , qn, pn) ◦ f : U → Rn+1 at p, therefore (2) in Proposition (3.1) is
equivalent to the germ of f ′ at p being of Morin type of order k.

As a remark, Ishikawa proved the following genericity theorem (see also [Z]).
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Theorem (3.2) [I1]. There exists an open and dense subset O in the space of isotropic
mappings L→M with corank at most 1 (furnished with Whitney C∞ topology) such that
for any element f ∈ O, and for any p ∈ L, the germ of f at p is of open Whitney umbrella
type of order k (for some 0 ≤ k ≤ [n/2]).

4. Proofs of theorems. Before starting the proofs, we state an elementary lemma
in linear algebra. Let V , W be vector spaces treated in §2. We can choose an arbitrary
complex structure J : W → W compatible with ω, i.e. J2 = −1 and ω(∗, J∗) > 0.
Associated to an R-linear map l : V → W , we define a C-linear map ρ(l) : VC (:=
V ⊗R C)→W by ρ(l)(u+

√
−1v) := l(u) + Jl(v).

Lemma (4.1). If a linear map l : V → W is isotropic, then ker ρ(l) = (ker l)C in
VC, and I⊥/I (where I denotes image l) is isomorphic to the underlying real space of
coker ρ(l).

P r o o f. For isotropic l, its image I is totally real with respect to J , i.e. I ∩JI = {0}.

R e m a r k (4.2). HomR(V,W ) is identified with HomC(VC,W ) via ρ. Let Σr(VC,W )
be the submanifold which consists of all C-linear maps with complex corank r. Then the
normal space to Σr(VC,W ) at an element σ is (C-) isomorphic to HomC(kerσ, cokerσ),
and in particular, if σ = ρ(l) where l is isotropic, by Lemma (4.1) the underlying real
space is HomR(K, I⊥/I). When corank r = 1, IΣ1(V,W ) is the transverse intersection
of Σ1(VC,W ) and the regular locus of IL(V,W ).

Now let f : L→M be an isotropic map whose singularities are only of (generalized)
open umbrella type. Fix an almost complex structure J on the bundle TM ′ compatible
with ω. Then we can apply in the same way as above the tautological identification ρ to
the isotropic bundle map d1 (= df), d2, . . . described in the previous section, and hence
we have smooth complex bundle maps

φ1 (:= ρ(d1)) : TLC → TM ′,

φk (:= ρ(dk)) : KC → HomC(
k−1
⊗ KC, Q) over Σ1k−1(f) (2 ≤ k ≤ [n/2]),

where KC = (ker df)C = kerφ1 and Q := cokerφ1(' I⊥/I). It easily follows from Lemma
(4.1), Proposition (2.3) and Remark (4.2) that the section φ1 of HomC(TLC, TM

′) is
transverse to Σ1(TLC, TM

′), and that Σ1(f) coincides with the pull buck Σ1(φ1). For
each 2 ≤ k, Σ1k(f) is now represented by φ−1

k (0) as well.
In what follows, we shall apply Porteous’ method ([P]) to the complex bundle maps φk

(k = 1, 2, . . .) in order to compute the dual classes [Σ1k(f)]c ∈ H2k(L; Z) (and [Σ1k(f)]c2 ∈
H2k(L; Z2)). We assume that L is oriented.

Let P (TLC) π→ L be the smooth CPn−1-bundle associated to TLC, and ξ the tau-
tological complex line bundle over P (TLC). As usual, ξ̄ denotes the dual to ξ. Now we
consider the Cn-bundle HomC(ξ, π∗TM ′) over P (TLC), and we define a smooth section
Φ of this bundle by Φ(x, λ) = (φ1)x|λ : λ → TM ′x where x ∈ L and λ is a complex line
in TLxC. Let Z be the pull buck of the zero section via Φ, Z := Φ−1(0). By the same
argument as in §1 of [P] (and as in Proposition (1.1) of [R]), we see that the transversality
of φ1 and the submanifold Σ1(TLC, TM

′) yields the following properties.
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Proposition (4.3). (1) The section Φ is transverse to the zero section of the bun-
dle HomC(ξ, π∗TM ′), and hence the pull back Z of zeros becomes a C∞ submanifold of
P (TLC).

(2) Z is diffeomorphic to Σ1(f) via the projection π|Z .

Thus, the Poincaré dual to the homology class [Z] of H2n(P (TLC); Z), denoted by
[Z]c, is equal to the top Chern class cn(ξ̄⊗π∗TM ′) (cf. [MS], [K]). Now we let π! denote
the Gysin homomorphism H2(m+n)(P (TLC); Z)→ H2(m+1)(L; Z).

Proposition (4.4). We have

π!(c1(ξ̄)mcn(ξ̄ ⊗ π∗TM ′)) = cm+1(TM ′ − TLC), m ≥ 0.

It follows from (4.4) that

(4.5) [Σ1(f)]c (= π![Z]c) = c1(TM ′ − TLC).

P r o o f. This proposition follows directly from Porteous’ projection formula.

Lemma (4.6) ([P]). Suppose E
p→ X is a Cn-bundle over an oriented manifold X.

Let ν denote the canonical line bundle over P (E). Then p!(c1(ν̄)s) = c̄s−n+1(E). (Here
c̄s−n+1(E) are the normal Chern classes of E.)

This is immediately proved from p!(c1(ν̄)n−1) = 1 (Proposition 0.3 of [P]) and∑n
i=0 p

∗ci(E)c1(ν̄)n−i = 0. Hence, we have

π!(c1(ξ̄)mcn(ξ̄ ⊗ π∗TM ′)) = π!

( n∑
i=0

π∗cn−i(TM ′)c1(ξ̄)m+i
)

=
n∑
i=0

cn−i(TM ′)c̄m+i−n+1(TLC) = cm+1(TM ′ − TLC).

R e m a r k (4.7). In Lemma (4.6), if X is unoriented, then we consider underlying
real bundles of E and ν. By using the Gysin homomorphism between Z2-cohomology
groups we have p!(w2(ν̄)s) = w̄2(s−n+1)(E) (cf. [MS]).

P r o o f o f T h e o r e m (1.1). We define a section j : Σ1(f) → P (TLC) to be the
inverse of π|Z : Z → Σ1(f). Then j∗ξ = kerφ1 = KC and c1(ξ)mj!(1) (m ≥ 1) are
2-torsion elements of H∗(P (TLC); Z): 2c1(ξ)mj!(1) = j!(2j∗c1(ξ)m) = j!(2c1(KC)m) = 0.
Since j!(1) = [Z]c = cn(ξ̄ ⊗ π∗TM ′), it follows from (4.4) that

(4.8) 2cm+1(TM ′ − TLC) = 0 (m ≥ 1).

Considering (1) of Remark (2.4) for d1 (or Theorem (3.2)), (4.8) implies the assertion of
Theorem (1.1).

P r o o f o f T h e o r e m (1.2). Let us compute explicit forms of [Σ1k(f)]c for k ≥ 2
in terms of characteristic classes. Let ik denote the inclusion Σ1k(f) ↪→ Σ1(f) (i1 = id),
and i′ the inclusion Σ1k(f) ↪→ Σ1k−1(f).

Let ci stand for ci(TM ′ − TLC). Note that TLC −KC ' IC ' TM ′ −Q over Σ1(f).
Then, by the definition of φk,

i′!(1) = c1(KC
k ⊗Q) = kc1(KC) + c1(Q)

= kc1(KC) + c1 − c1(KC) = (k − 1)c1(KC) + c1.
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Hence

j!ik!(1) = j!ik−1!i
′
!(1) = j!ik−1!((k − 1)c1(KC) + c1)

= ((k − 1)c1(ξ) + c1)j!ik−1!(1)

= ((k − 1)c1(ξ) + c1)((k − 2)c1(ξ) + c1)j!ik−2!(1)

= ((k − 1)c1(ξ) + c1) . . . (c1(ξ) + c1)j!(1)

=
( k−1∑
t=0

σtc
k−t−1
1 c1(ξ̄)t

)
j!(1)

where σt is the parity of the value of the tth symmetric function of (k − 1)-variables
evalutated on the integers 1, . . . , k− 1. It turns out that σt ≡

(
[k/2]
t

)
modulo 2. By using

(4.4) we have

(4.9) [Σ1k(f)]c = π!j!ik!(1) = ck1 + σ1c2c
k−2
1 + σ2c3c

k−3
1 + . . .+ σk−1ck.

In particular,

(4.10) [Σ1k(f)]c ≡ f∗c1(TM)k modulo 2-torsion elements.

In the case of unoriented L, we use (co)homology with Z2-coefficients, and the formula
(4.9) remains valid after changing ci to w2i (:= w2i(TM ′−TL⊕TL)), see Remark (4.7).
Thus, for example,

[Σ1(f)]c2 = w2, [Σ1,1(f)]c2 = w2
2 + w4, [Σ1,1,1(f)]c2 = w3

2 + w2w4, etc.

This completes the proof of Theorem (1.2).

Finally, we note that by the form of (4.9), [Σ1k(f)]c ∈ H2k(L; Z) depends only on the
homotopy type of f , so this completes the proof of Corollary (1.4).

5. Local Maslov indices and characteristic numbers. In this section, we deal
with the case of n = 2, and redefine the local Maslov index according to [I-O]. Let f be
an isotropic mapping from a closed surface S to a symplectic 4-manifold M such that
the singularities of f are all isolated.

Fix an almost complex structure of TM compatible with ω, and consider the section
φ1 := ρ(df) : S → HomC(TSC, TM

′). For any point p ∈ S, choose a local trivialization of
HomC(TSC, TM

′) over a small disk D in S centered p such that φ1 is non-singular over
D−p. Then φ1 induces a map D−p→ GL(2,C). When we take a local orientation of D
(for oriented S, we take the compatible one), the local Maslov index of f at p, denoted
by m(f, p), is defined to be the homological degree of the composite map D − p →
GL(2,C)→ C− {0} where the second arrow is defined by taking the determinant. It is
easy to see that this index m(f, p) is independent of the choice of the compatible complex
structure and the local trivialization. We note that m(f, p) is half the value originally
defined by Givental’, since he used the square of the determinant. We let m(f, p)2 denote
the parity of m(f, p), which is independent of the choice of the local orientation.

Now Corollary (1.5) is easily proved as follows. Taking a small perturbation of φ1 to be
transverse to Σ1(TSC, TM

′) as in Remark (2.4), by the above definition of local Maslov
indices, the sum of indices over all singular points of f breaks into the transverse index
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of the perturbed section and Σ1(TSC, TM
′). This number is the same as the the Chern

number c = 〈c1(TM ′), [S]〉 by using the formula (4.5) and the fact that c1(TLC) = 0. For
the unoriented case, we note that w2(TS) = w1(TS)2 (by Wu’s formula, cf. [MS]), and
hence w2(TM ′ − TS ⊕ TS) = w2(TS) + w2(TM ′). Thus the sum of m(f, p)2 coincides
with the characteristic number χ+ w. This completes the proof.
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