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Let, for i = 1, 2, pi ≥ 1 with p1p2 > 1 and let αi = pi+1
p1p2−1 . Let Li be a uniformly

elliptic second order operator on RNi (Ni ≥ 1) viewed as a subspace of RN where N =
N1 +N2 − dim(RN1 ∩RN2). The coefficients of the Li are assumed to be independent of
time. We consider nonnegative solutions of

(1.1)

ut = −L1u+ vp1 ,

vt = −L2v + up2 ,

u(x, 0) = u0(x), v(x, 0) = v0(x),

where (x, t) ∈ RN × [0, T ), which are locally (in time) in L∞. We discuss the following
conjecture:

Conjecture. If max(α1 − 1
2N1, α2 − 1

2N2) < 0 then there are both global nontrivial
and nonglobal solutions of this problem. If max(α1− 1

2N1, α2− 1
2N2)≥0 then all nontrivial

solutions are nonglobal.

The local (in time) existence of locally L∞ solutions of (1.1) has been established in
[U1] by a simple modification of the contraction mapping argument used in [EH] when
L1 = L2 = −∆N . Therefore, we will not be concerned with this issue here.

Our interest in this problem arises from the following observations: If we consider
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nonnegative solutions of the initial value problem

(1.2)
ut = −L1u+ up,

u(x, 0) = u0(x),

(x, t) ∈ RN × (0, T ),

x ∈ RN ,

where u0 ∈ L∞(RN ), then it is well known that if L1 = −∆, we have the following results
of Fujita and others:

(1) If 1<p<1 + 2
N , all nontrivial, nonnegative solutions of (1.2) are nonglobal. (This

is called the subcritical case and 1 + 2
N is called the critical blow up exponent.)

(2) If p = 1 + 2
N , all nontrivial, nonnegative solutions of (1.2) are nonglobal. (This is

called the critical case.)
(3) If p > 1 + 2

N , there are both global nontrivial and nonglobal solutions of (1.2).
(This is called the supercritical case.)

R e m a r k 1. Fujita’s result says the following: If 1
p−1 , which is the blow up rate for

solutions of y′ = yp, is not smaller than the decay rate for solutions of ut = ∆u, then no
nontrivial global solutions of (1.2) are possible while if the blow up rate is smaller than
the decay rate, global, nontrivial solutions are possible. Our conjecture says something
related to this. The system of ordinary differential equations y′ = zp1 , z′ = yp2 has in fact
two blow up rates, one for the first component, y(t), and one for the second component,
z(t), given by the numbers αi. Our conjecture says that if the blow up rate for either
component of this system exceeds the decay rate for the corresponding linear equation
(ut = −L1u corresponding to y(t) for example) then the system does not possess global,
nontrivial solutions, whereas if both blow up rates are smaller than the decay rates for
the corresponding linear problem, there are global, nontrivial solutions.

It is a consequence of some estimates of [A1, A2, N] and the “variation of constants
formula” that the above results of Fujita et al. also hold for second order uniformly elliptic
operators of the form

L1u = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
−

N∑
i=1

bi(x)
∂u

∂xi

where the coefficients are uniformly bounded on RN . In order to see this, one notes that
we can represent the solution of (1.2) in the form

u(x, t) =
∫

RN
Γ(x, t; ξ, 0)u0(ξ) dξ +

t∫
0

∫
RN

Γ(x, t; ξ, s)up(ξ, s) dξds

where Γ(x, t; ξ, s) is the fundamental solution of the linear parabolic equation ut = −L1u.
The estimates to which we just alluded assert the existence of positive constants c, δ1, δ2
such that

(1.3) c−1Sδ1,N (t− s)(x− ξ) ≤ Γ(x, t; ξ, s) ≤ cSδ2,N (t− s)(x− ξ)

where for t > 0,

(1.4) Sδ,N (t)(x) = (4πδ2t)−
N
2 e−

|x|2
N

4δ2t .
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(| · |N denotes the Euclidean length in RN .) In [EH], the authors proved that when
L1 = L2 = −∆, then for 1.1 we have

(1) If max(α1, α2) > N
2 , all nontrivial, nonnegative solutions of (1.1) are nonglobal.

(Subcritical case.)
(2) If max(α1, α2) = N

2 , all nontrivial, nonnegative solutions of (1.1) are nonglobal.
(Critical case.)

(3) If 0 < max(α1, α2) < N
2 , there are nontrivial global, as well as nonglobal solutions

of (1.1). (Supercritical case.)

Clearly, using the same estimates on fundamental solutions, if the Li satisfy the same
conditions as in [A], the same statement holds for (1.1).

The authors of [EH] rely for the proofs of the global nonexistence statements above on
some modifications of the iteration arguments developed in [AW] for (1.1) when L1 = −∆.
Unfortunately, in the degenerate case considered here, these iteration arguments do not
appear to carry over. Therefore, we shall take the subsolution approach used in [L1] in
order to prove global nonexistence in the subcritical case. This argument, for a system,
has as its motivation the argument used in [W] for the single equation ut = ∆Nu + up.
However, in order to employ this argument we must restrict ourselves to the Lipschitz
case (pi ≥ 1).

In order to set the stage for a “near proof”, we note that comparison theorems applied
to the “variation of constants” representation formula for (1.1) coupled with (1.3), (1.4)
applied to each Li with N = Ni for i = 1, 2 allow us to replace (1.1) by the simpler
problem:

ut = ∆Mu+ ∆M1u+ vp1 ,

vt = ∆Mv + ∆M2v + up2 ,(1.5)

u(x, 0) = u0(x), v(x, 0) = v0(x),

where now we write RN = RM ⊕ RM1 ⊕ RM2 with N = M + M1 + M2, N1 = M + M1,
N2 = M +M2.

We shall write, for points x ∈ RN , x = (y, z1, z2) with y ∈ RM and zi ∈ RMi .
In order to attempt to establish the global nonexistence portion of our conjecture in

the subcritical case (the case for which αi >
Ni
2 for i = 1 or i = 2), we will investigate

what happens to solutions of

uεt = ∆Mu
ε + ∆M1u

ε + ε2∆M2u
ε + (vε)p1 ,

vεt = ∆Mv
ε + ε2∆M1v

ε + ∆M2v
ε + (uε)p2 ,(1.6)

uε(x, 0) = u0(x), vε(x, 0) = v0(x),

as ε→ 0+.
We give a proposed proof here which is a consequence of a series of lemmas, the proofs

of which are sketched. There is one gap in the proof which we are unable to fill at present.

Lemma 1. If the solution of (1.5) is global for given nonnegative u0, v0 ∈ L∞(RN )
then, for every ε > 0, so is the solution of (1.6) with the same initial values.
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The idea of the proof is as follows: Define

Uε(x, t, τ) = Uε(y, z1, z2, t, τ)

≡
∫

RM1+M2

u(y, z′1, z
′
2, t)Sε,M1(τ)(z1 − z′1)Sε,M2(t)(z2 − z′2) dz′1dz

′
2,

V ε(x, t, τ) = V ε(y, z1, z2, t, τ)

≡
∫

RM1+M2

v(y, z′1, z
′
2, t)Sε,M1(t)(z1 − z′1)Sε,M2(τ)(z2 − z′2) dz′1dz

′
2.

Then it is not too hard to see that this pair (when t = τ) forms a global supersolution
with the same initial values as when ε = 0.

Consider the following initial value problem on some interval (0, T ):

(IVP)
y′(t) = zp1(t),

y(0) = y0 > 0,

z′(t) = yp2(t),

z(0) = 0,

where pi ≥ 1, p1p2 > 1. Let αi be as above and let λ1 = p1+1
p2+1 , λ2 = 1

λ1
. Set, for

r1 ≥ 0, r2 > 0,

G1(r1, r2) = λ
− p1
p1+1

1 r
− 1
α1

2

r1
r2∫
1

(σp2+1 − 1)−
p1
p1+1 dσ,

G2(r1, r2) = r
− 1
α1

2

r1

r
λ2
2∫

0

(σp1+1λ2 + 1)−
p2
p2+1 dσ.

We have the following two lemmas whose proofs are quite standard:

Lemma 2. Let y(t), z(t) solve (IVP) (uniquely) on some interval [0, T ). Then they
satisfy t = G1(y(t), y0) and t = G2(z(t), y0) and conversely.

Lemma 3. For i = 1, 2 the partial derivatives Gi,j , Gi,jk satisfy the following :

(1) Gi,1 > 0, Gi,2 < 0,
(2) Gi,11G2

i,2 − 2Gi,12Gi,1Gi,2 +Gi,22G
2
i,1 ≤ 0.

Lemma 4. Suppose v0 ≡ 0. Let D × [0, T ) be a parabolic cylinder in RN × [0, T ) and
suppose wε(x, t) ≥ 0 is given on (and positive on the interior of ) this cylinder such that
wε(x, 0) ≤ u0(x) and such that

wε,t = min[(∆M + ∆M1 + ε2∆M2)wε, (∆M + ε2∆M1 + ∆M2)wε]

on the interior of this cylinder. Let (u, v) be defined by t = G1(u,wε), t = G2(v, wε) on
D × [0, T1) for some T1 ≤ T . Then, on this smaller cylinder , (u, v) is a subsolution of
(1.6), i.e. u ≥ u and v ≥ v on D × [0, T1).

The following corollary is an immediate consequence of this lemma and the properties
of G1.

Corollary 4. If (u, v) is a global subsolution on D and wε is as in the previous
lemma, then there is a constant C = C(p1, p2) such that wε(x, t) ≤ Ct−α1 on D× (0, T1).
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Lemma 5. There exist initial values u0, v0 ∈ L∞(RN ) such that the corresponding
solution of (1.5) is nonglobal.

This is seen using Lemma 1 and the results of [EH, FLU]. By the same argument we
obtain

Lemma 6. If max(α1, α2) ≥ 1
2 (M +M1 +M2), every nontrivial , nonnegative solution

of (1.5) is nonglobal.

Now we wish to define a function wε and a region D for which we may apply Lemma 4.
We consider the case M1M2 > 0 only. Let

Wε(x, t) = S1,M (t)(y)S1,M1(t)(z1)Sε,M2(t)(z2).

Lemma 7. The function Wε satisfies

Wε,t = min[(∆M + ∆M1 + ε2∆M2)Wε, (∆M + ε2∆M1 + ∆M2)Wε]

on the following subset of RN × (0,∞):

S = {(x, t) = (y, z1, z2, t) | 2tε2(1− ε2) ≤ |z2|2M2
− ε4|z1|2M1

}.

(This is the region on which ∆M1Wε ≤ ∆M2Wε.)

Assume that we have a global solution of (1.5). We may assume at the outset, by
comparison, that the initial values have compact support (in z1, z2) and are of class C∞.
Moreover, from the variation of constants formula for (1.5), a second application of the
comparison principle and the autonomy of the system in time, we may assume that v0 ≡ 0
and that u0 > 0 has support in {x ∈ RN | |z1|2M1

+|z2−z0
2|2M2

≤ R2} where z0
2 is such that

for some δ > 0, we have |z0
2|M2−(1+δ)R > 0 and vanishes otherwise. (The latter may be

accomplished by a translation.) For x ∈ D whereD = {x ∈ RN | |z1|2M1
+|z2|2M2

≤ δ2R2},
we define for 2tε2(1− ε2) < (|z0

2|M2 − (1 + δ)R)2 ≡ K,

wε(x, t) =
∫

RM

∫
{|z′2|

2
M2
≥2tε2(1−ε2)}

∫
{|z′1|

2
M1
≤ε−4(|z′2|

2
M2
−2tε2(1−ε2))}

Wε(x′, t)u0(x− x′) dx′.

Lemma 8. The function we satisfies the hypotheses of Lemma 4 on D × (0, T1(ε))
where

T1(ε) ≤ T (ε) ≡ K

2ε2(1− ε2)
.

Moreover , on D, wε(x, 0) = 0 although for t > 0, wε > 0 on D.

R e m a r k 2. It is at this point that our proof of the conjecture is incomplete. We
would like to be able to assert that lim infε→0+ T1/T = c(u0, D,M,Mi) > 0. If we could
do this, then our conjecture would be completely established.

Suppose that the statement in Remark 2 is in force so that T1(ε) = cε−2 as ε → 0.
We may then apply Lemma 4 with (wε(x, 0), 0) as initial values for (u, v). We set 2ε2t =
C ≤ K

2 . We have from the corollary of Lemma 4 and the definition of Wε, wε that when
x = 0,
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C−
M2
2

∫
RM

∫
{|z′2|

2
M2
≥C(1−ε2)}

∫
{|z′1|

2
M1
≤ε−4(|z′2|

2
M2
−C(1−ε2))}

e−
|y′|2

M
+|z′1|

2
M1

4t −
|z′2|

2
M2

2C

u0(y′, z′1, z
′
2)) dz′1dz

′
2dy
′ ≤ C ′(M,M1,M2, p1, p2)t

M+M1
2 −α1 .

Thus as t → ∞ and ε → 0 we obtain the desired contradiction if the power of t on the
right hand side of the last inequality is negative. If M1M2 = 0, the above argument is
easily modified.

Finally,

Lemma 9. If αi < Ni
2 for i = 1, 2, then (1.5) has global , small data solutions.

This was established in [U1] by standard comparison arguments.
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