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Abstract. The purpose of this paper is to develop the basics of a theory of Hamiltonian

systems with non-differentiable Hamilton functions which have become important in symplectic

topology. A characteristic differential inclusion is introduced and its equivalence to Hamiltonian

inclusions for certain convex Hamiltonians is established. We give two counterexamples showing

that basic properties of smooth systems are violated for non-smooth quasiconvex submersions,

e.g. even the energy conservation which nevertheless holds for convex submersions. This also

implies that the convexity assumption determines, although not symplectically invariant, a limit

case for symplectic geometry. Some applications of this theory are reviewed: symplectic capacities

for general convex sets, the symplectic product and a product formula for symplectic capacities.

1. Introduction. We consider the linear space R
2n with the standard closed non-

degenerate 2-form ω as symplectic manifold. One can describe ω by an almost com-

plex structure J : TR
2n → TR

2n, J2
p = −idp ∀p ∈ R

2n, and the standard scalar

product. Expressed in coordinate functions to be arranged in analogy to complex ones,

x=(x1, . . . , xn) with xi = (pi, qi), Jp is given by a constant matrix (denoted again by J)

J =





�
. . .

�



 , � =

(

0 −1
1 0

)

∼= i.

The standard scalar product and the symplectic form are then represented by

x.y =

2n
∑

i=1

xiyi, ω(x, y) = Jx.y.
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A differentiable map is called symplectic if ϕ∗ω = ω, or in the above coordinates if

dϕ(x)T Jdϕ(x) = J. We denote the set of symplectic embeddings of open sets in R
2n into

R
2n by Eω(R2n) and the symplectic diffeomorphisms of R

2n by Dω(R2n).

Let B(r) = B2n(r) = {x ∈ R
2n | |x| ≤ r} be the ball and Z(r) = B2(r) × R

2n−2 =

{x ∈ R
2n | q2

1 + p2
1 ≤ r2} be a cylinder with a symplectic base disc.

Now we can state two theorems about symplectic embeddings and diffeomorphisms

as motivation for our considerations, quoted in R
2n only although they hold for general

symplectic manifolds.

Theorem A [G 85]. If the ball B(r) can be symplectically embedded into the cylinder

Z(R), then r ≤ R.

In other words, B(r) cannot be squeezed symplectically into an infinitely long cylinder

Z(R) if r > R, whereas this can be done for r ≤ R by the identity map, expressing a

rigidity of symplectic embeddings. Gromov showed that a symplectic invariant defined

with J-holomorphic curves is the obstruction for such embeddings. It is different from the

well known Liouville volume vol
(

D
)

=
∫

D ωn which cannot be the obstruction because

vol
(

B(r)
)

< ∞ and vol
(

Z(R)
)

= ∞, independently of r and R.

Such an invariant, nowadays called symplectic capacity, or more precisely symplectic

capacity for F and Dω is a map c of a family F of subsets of (R2n, ω) to R+ satisfying

(assuming D, D′, B(r), Z(r) ∈ F)

(a) D ⊂ D′ ⇒ c(D) ≤ c(D′),

(b) ϕ ∈ Dω ⇒ c
(

ϕ(D)
)

= c(D),

(c) c
(

B(r)
)

= πr2 = c
(

Z(r)
)

.

The axioms are designed in the way that the existence of a symplectic capacity im-

plies readily theorem A. The next theorem is another consequence of the existence of a

symplectic capacity.

Theorem B [G85], [El87]. The set of symplectic diffeomorphisms of R
2n is closed in

the set of diffeomorphisms of R
2n with respect to the C0-compact-open topology.

In other words, a topological rigidity is stated. This raised the question whether one

can define notions of C0-symplectic manifolds and maps as a framework for symplectic

topology.

Towards the notion of C0-symplectic manifolds, a step has been done in [K90], namely

the case of convex sets with non-smooth boundaries, which we report in the present article.

In order to extend the notion of symplectic maps to non-differentiable continuous

maps, one can, for a given capacity c, consider a subgroup Gc of homeomorphisms of R
2n

conserving the capacities of a certain class of subsets of R
2n. Consider for example for F

the set of sub-level sets Sq = {x | q(x) < 1} where q varies over the set of all quadratic

forms. Let B be the open ball {x | |x|2 < 1}, then it is possible to formulate the local

symplectic rigidity theorem.

Theorem C [EH 89]. Let ϕk in C0(B, R2n) conserve the capacities c(ϕk(Sq)) = c(Sq)

for all quadratic forms q and converge to ϕ in the sup-norm. Then, for every point x
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where dϕ(x) exists , dϕ(x) is either symplectic or antisymplectic:

dϕ(x)T Jdϕ(x) = ±J.

Images of smooth hypersurfaces by such maps are non-smooth in general. It is possible

to explain, by the theory presented in this article, what Hamiltonian dynamics on such

singular hypersurfaces means.

Hamiltonian dynamics is in fact related to symplectic capacities: Ekeland and Hofer

showed in their papers [EH89] and [EH90] that both the embedding and topological rigidy

can also be understood by means of periodic solutions of Hamiltonian systems instead of

J-holomorphic curves. We give a very short review of their construction.

For any bounded domain D ⊂ R
2n and any function H from the following restricted

set

H(D) = {H ∈ C3(R2n, R+) | ∃ open U ⊃ D̄ such that H |U = 0,

H(x) = a|x|2 for x large, a > π, a 6∈ Nπ},
Ekeland and Hofer construct a minimax critical value c(H) of the Hamiltonian ac-

tion functional φH(x) = 1
2

∫ 1

0
Jx(t).ẋ(t) dt −

∫ 1

0
H(x(t)) dt on the space of loops E :=

H1/2(S1, R2n). This value corresponds to a 1-periodic solution of the Hamiltonian equa-

tion ẋ = JH ′(x) running somewhere in Dc. One shows the monotonicity H1 ≥ H2 ⇒
c(H1) ≤ c(H2). The real number

cEH(D) := inf
H∈H(D)

c(H)

being independent of H , is a good candidate for a symplectic “size” of the set D: In fact

cEH is shown to satisfy (a), (b) and (c), the axioms of symplectic capacities.

One would like to be able to define the capacity with the ideal limit Hamiltonian

ID, the characteristic function of D with value 0 on D and ∞ elsewhere, which satisfies

ID ≥ H ∀H ∈ HD; then no infimum on Hamiltonian functions had to be taken: a

simplification which also needs non-smooth Hamiltonian systems. This application is

presented in sections 3.1 and 9 and was one of the basic ideas for [K90].

It is not evident that the Hamiltonian equation should pass to the above infimum.

But it does so in the case where the hypersurface ∂D is C1 and of restricted contact type,

which means that it is regularly submersed in a family of hypersurfaces {H(x) = E}
generated by a transversal ω-contraction, LXω = ω: The solutions of different levels are

equivalent through the contraction, i.e. existence of a solution on a nearby level means

existence on ∂D.

In this situation (containing the special case of convex hypersurfaces) Ekeland and

Hofer get a useful representation result for the capacity: cEH(D) is a multiple of the

symplectic action A(x) = 1
2

∫

ẋ(t).Jx(t)dt of a T -periodic solution x (with unknown

T ) of ẋ = JH ′(x) on the level ∂D, i.e. cEH(D) = nA(x) for some unknown n ∈ N+,

representing the action of an n-fold iteration of x.

The factor n could not be controlled in [EH 89] and [EH 90], even not in the case of a

smooth convex domain D where one conjectured n = 1. This has been done by Sikorav

in August 1990 for the Ekeland-Hofer capacity cEH , at least for smooth convex sets.

Before and independently, a converse statement has been shown in [K90], namely that the



174 A. F. KÜNZLE

least characteristic action c0 on convex hypersurfaces is a symplectic capacity for possibly

non-smooth convex domains in R
2n. To this aim we studied Hamiltonian type differential

inclusions as presented in sections 2 and 3 and used the dual Hamiltonian functional. In

another, different approach, Hofer and Zehnder [HZ90] introduced a capacity cEZ , whose

restriction to smooth convex sets is also equal to c0, i.e. cEH = cEZ = c0 on smooth

convex sets.

A further motivation is the idea that symplectic capacities are possibly calculable by

lower and upper sums in analogy to measure theory. This would be an important tool,

because capacities are quite difficult to calculate on examples. The idea is to determine

the capacity of special cubes, which has been done in [K90], and then give a lower bound

for the capacity of a general set D by calculating the capacity of a disjoint union of

cubes contained in D. But also for this construction, one juxtaposes - most economically

- domains with corners and therefore one needs an examination of Hamiltonian dynamics

on non-smooth hypersurfaces.

Moreover, one hopes that it would be easier to determine the Hamiltonian dynamics

on piecewise linear (PL) hypersurfaces in order to increase the number of known examples.

In fact, the capacity c0 can be calculated for symplectic products, see [K90]. To

obtain this, we introduced a characterization of closed characteristics on products, which

implies a symplectic characterization of polydiscs, see [K95a]. Products having evidently

non-smooth boundaries present an other motivation for the present article.

As a summary, we showed in [K90] that a capacity on convex sets can be obtained

without an infimum on a set of Hamilton functions and without approximations of ∂K

and solutions by a transversal flow. Moreover, no iterated solutions (n 6= 1) interfere.

For the monotonicity (b), we used the equivalence of Hamiltonian and characteristic

differential inclusion in the convex case (see §3.1) to get an analytical definition by the

minimum of the dual Hamiltonian functional, an approach which is simpler than the one

in [EH89] but is restricted to convex sets.

In sections 2 to 7, the main results of this paper are presented. The last three sections

consist of a survey of applications to symplectic capacities and symplectic products. More

details on these applications are given in [K95] and [K95a].

In [K91], the capacity c0 on convex sets is extended to all subsets in R
2n. We got, using

[EH90] together with [Si90], or alternatively [EZ90], two distinct symplectic capacities u

and ℓ which are shown to present an upper and lower bound for all capacities extend-

ing the least action on convex sets. For instance the Ekeland-Hofer and Hofer-Zehnder

capacities are estimated above and below by u and ℓ and can be calculated in certain

cases by means of these. The observation that u and ℓ are distinct has two interesting

consequences: lower and upper sums do not converge to the same value in general, and

one conjectures that cEH is different from cHZ .

As a simple corollary, two inequalities by Ekeland and Croke-Weinstein respectively

are improved.

Another result is for example that all sets D with B(r) ⊂ D having a periodic orbit

(in the general sense of §§2 and 8) on ∂D with action strictly less than πr2 cannot be

symplectomorphic to a convex set, see [K91].
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A rule for the capacities of some unions and differences of sets is determined, showing

that a capacity does not behave like a measure theory. Moreover isotropic tori and sets

with codimension 1 are calculated. Until [K90], no examples other than the ball, the

cylinder Z(r) and the ellipsoid which are trivial as they are given by or follow from

properties (a), (b) and (c), were known.

2. Characteristic differential inclusions. In order to explain what we mean by

Hamiltonian type systems with non-differentiable Hamilton functions, we introduce the

characteristic differential inclusion of a Lip-submersed hypersurface S. To do this we

recall first the differentiable case.

If H ∈ C1 and S := {H(x) = 1} is regular, H ′(x) 6= 0 ∀x ∈ S, one can show that

(H) ẋ(t) = JH ′(x(t)), H(x(0)) = 1,

has the same trajectories as the so called “characteristic equation” of the hypersurface S

with outward normal n(x), x ∈ S:

(C) ẋ(t) = Jn(x(t)) with x(t) ∈ S ∀t.

The equation (C) is characteristic for S in the sense that the set of its solutions (also

called “characteristic curves” or “characteristics”) is determined by the hypersurface only,

more precisely by the restriction of the symplectic structure to S, and does not depend

on the Hamilton function H generating S as regular hypersurface. Its solutions are

parametrizations by arc length of the integral leaves of the field kerω|S. Two solutions

x1 and x2 of (H) for different Hamilton functions H1 and H2 are called geometrically

equivalent if Imx1 = Im x2; (C) together with the choice of an initial point fixes a

representative of every equivalence class.

To show the equivalence (H) ⇔ (C), we just used some basic properties of smooth

Hamiltonian systems, which however are violated—see §§5 to 7—for non-smooth systems.

In spite of these problems, a similar equivalence is proved for convex non-smooth systems

in §3.1.

Our aim is to introduce a natural characteristic equation in the case where S is

submersed by a Lipschitzian function.

First, the hypersurface may have edges and corners, where the outward normal is not

unique (i.e. a set valued function). Such a generalized normal can be defined if S is given

by a Lipschitz function, in particular if S is the boundary of a convex set.

For the last case, the idea is to take, at a given point x, all normals of the hyperplanes

passing through x whose negative half spaces contain the convex set.

Definition. The (outward) normal cone and the normalized (outward) normal set

of a convex set K at a point x ∈ R
2n are given by

NK(x) = {p ∈ R
2n | p.(x − y) ≥ 0 ∀y ∈ K},

nK(x) = {p ∈ NK(x) | |p| = 1}.
It is easy to see that NK(x) is a cone for all x, i.e. p ∈ NK(x) ⇒ λp ∈ NK(x) ∀λ ∈

R+, and that NK(x) = {0}, nK(x) = ∅ for all x ∈ K̊. Furthermore, for a smooth point

x of ∂K, NK(x) = R+n, nK(x) = {n}, where n is the usual normalized outward normal
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vector at x. One sees readily that NK is a set valued vector field in K with support

on ∂K, thus suitable for our aim to construct a system which is characteristic for the

hypersurface ∂K.

Secondly, it is clear that for instance curves passing through a corner of ∂K cannot be

differentiable. The idea is to ask that γ should be differentiable only almost everywhere.

One would therefore like to study

(i) γ̇(t) ∈ JnK(γ(t)) a.e.,

where a solution γ is asked to be parametrized by arc length and Lipschitzian with

constant 1: |γ(t) − γ(t′)| ≤
∫ t

t′ |γ̇(t)|dt = |t − t′|; Lipschitzian functions are almost every-

where differentiable (by Rademacher’s theorem), so that the system is consistent. Here it

is already plausible that the non-uniqueness problem is present, because nK(x) is set val-

ued and also JnK(x) may intersect the generalized tangent space of ∂K in a (non-trivial)

family of directions.

But is not clear yet whether a submersed family of convex hypersurfaces would define

a field with energy conserving solutions. The answer is given in section 5: It is negative.

Therefore, a natural idea to generalize (C) is to consider (i) together with the ad-

ditional constraint (ii) which is automatically satisfied in the smooth case, see §3. It is

called characteristic differential inclusion for ∂K:

(CI)
(i) γ̇(t) ∈ JnK(γ(t)) a.e.,

(ii) γ(t) ∈ ∂K ∀t ∈ [0, Tγ ].

3. Hamiltonian inclusions. Some new facts on convex Hamiltonian systems are

established in this section.

Definition. The subdifferential of a locally Lipschitz function H is defined by

∂H(x) =

{

p ∈ R
2n

∣

∣

∣

∣

∀v ∈ R
2n p.v ≤ D+H(x)(v) := lim

h→0+

H(x + hv) − H(x)

h

}

.

Its elements are called subgradients. x is called a critical point of H if 0 ∈ ∂H(x).

For convex functions, ∂H(x) is non-empty and bounded for all x ∈ R
2n (see [A84]). At

a point where H is differentiable, ∂H(x) reduces to {H ′(x)}: p.v ≤ H ′(x).v ∀v ∈ R
2n ⇒

p = H ′(x).

The subdifferential is thus a generalization of the gradient in the same way as the

normal cone generalizes the outward normal. In fact, we will show now that, for some

convex “gauge functions” H of a bounded convex domain K, ∂H(x) and nK(x) differ

only by the length of their elements.

3.1. Equivalence. For convex sets K containing 0 in their interior we now choose

H(x) = (jK(x))α as Hamilton function, where jK(x) = inf{λ | x
λ ∈ K} is the so called

gauge function of K, and for α we assume α ≥ 1. H is convex, finite and α-homogeneous.

Moreover K̊ = {x | H(x) < 1}.
With this choice of H the following fixed energy problem is equivalent to (CI):

(HI)

{

− Jẋ(t) ∈ ∂H(x(t)) a.e.

H(x(t)) = 1 ∀t ∈ [0, T ]
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where x(t) is assumed Lipschitz.

Theorem 1 (Equivalence of (CI) and (HI)). For H as above:

(a) n ∈ NK(x) ⇔ α
n.xn ∈ ∂H(x) for x ∈ ∂K,

(b) (CI) and (HI) have the same solutions up to monotone absolutely continuous

reparametrizations.

P r o o f. (a) Observe beforehand that there is a small ball Bε(0) ⊂ K, therefore there

is r > 0 such that rx ∈ K ∀x ∈ ∂K, and conclude n.x ≥ n.rn > 0 for all non-zero

n ∈ NK(x) and for all x ∈ ∂K. Division by n.x is then well-defined; in the case n = 0,

the quotient n.y
n.x is defined to be 0 by continuity.

As a first step, we prove the equivalence (for x ∈ ∂K):

n ∈ NK(x) ⇔ jK(y) ≥ n.y

n.x
∀y ∈ R

2n,

namely

n ∈ NK(x) ⇔ n.(x − y) ≥ 0 ∀y ∈ K

⇒ n.(x − y) ≥ 0 ∀y ∈ ∂K

⇔ n.

(

x − y

jK(y)

)

≥ 0 ∀y ∈ R
2n

⇔ jK(y) ≥ n.y

n.x
∀y ∈ R

2n.

Conversely, using 1 ≥ jK(y) ∀y ∈ K, we get

jK(y) ≥ n.y

n.x
∀y ∈ R

2n ⇒ 1 ≥ n.y

n.x
∀y ∈ K

⇔ n ∈ NK(x).

Therefore the above implications are equivalences.

As a second step, we apply the equivalence (true because H is convex)

p.x − H(x) = min
y∈R2n

(

p.y − H(y)
)

⇔ p ∈ ∂H(x)

(Legendre duality) for the choice p = 1
n.xn with given n ∈ NK(x):

n ∈ NK(x) ⇔ 0 ≥ n.y

n.x
− jK(y) ∀y ∈ R

2n

⇔ 1

n.x
n.x − H(x) = 0 ≥ 1

n.x
n.y − jK(y) ∀y ∈ R

2n

⇔ 1

n.x
n ∈ ∂jK(x).

Finally, the right derivative of H(x) =
(

jK(x)
)α

for α ≥ 1 is given by

D+H(x)(v) = α
(

jK(x)
)α−1

D+jK(x)(v) ∀v ∈ R
2n,

its subdifferential is therefore ∂H(x) = α∂jK(x), from where we conclude

n ∈ NK(x) ⇐⇒ α

n.x
n ∈ ∂H(x).
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It is remarkable that NK(x) is a cone whose rays correspond to exactly one element

of ∂H(x), namely p = α n
n.x . By normalization we get

n ∈ nK(x) ⇔ α

n.x
n ∈ ∂H(x) and |n| = 1.

(b) Problems (HI) and (CI) are restricted to the same energy hypersurface ∂K, so

that (a) applies:

−Jẋ(t) ∈ ∂H(x(t)) ⇒ −Jẋ(t)

| − Jẋ(t)| ∈ nK(x(t)),

−Jγ̇(s) ∈ nK(γ(s)) ⇒ α

−Jγ̇(s).γ(s)
·
(

−Jγ̇(s)
)

∈ ∂H(γ(s)) ,

where vanishing numerators are excluded. The reparametrizations are thus given by the

monotone functions τ and τ−1:

τ(t) =
t∫

0

α

−Jγ̇(s).γ(s)
ds, x(t) := γ(τ(t)),

τ−1(s) =
s∫

0

1

|ẋ(t)| dt, γ(s) := x
(

τ−1(s)
)

.

If we fix the domain of τ to be [0, Tγ ], then the minimality of the period Tx follows

from the minimality of Tγ , and conversely. It is obvious that τ and τ−1 are absolutely

continuous.

R e ma r k. Observe that also the characteristic function of a set

IK(x) =

{

0 if x ∈ K,
∞ otherwise,

and the normal cone are related: ∂IK(x) = NK(x). This is (morally) used for symplectic

capacities as explained in §9.

3.2. Energy conservation. After we showed that there exist non-differentiable quasi-

convex Hamilton functions having solutions which do not conserve the energy (cf. section

5), I. Ekeland asked R. T. Rockafellar whether this would happen with convex functions

also. The answer was the following theorem, the proof of which is given and reformulated

for convenience. An earlier proof can be found in [Cl80], as pointed out by F. Clarke.

Theorem 2 [R89]. Let H be a finite convex function from R
2n to R and x ∈

W 1,1([0, T ], R2n) a solution of

(H0) ẋ(t) ∈ J∂H(x(t)) a.e. in [0, T ].

Then H(x(t)) = H(x(0)) ∀t ∈ [0, T ].

P r o o f. A solution x is Lipschitzian with a Lipschitz constant bounded by max{|p| |
p ∈ ∂H(x(t)), t ∈ [0, T ]} < ∞ and H is locally Lipschitzian by [A84, p. 19–21]. There-

fore θ(t) = H(x(t)) is locally Lipschitzian and thus almost everywhere differentiable

(Rademacher). With this regularity, one can establish θ̇(t) = 0 almost everywhere; this

is done in an analogous way as in the C1-case: Let us denote by T the set of full measure
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where θ(t) and x(t) are differentiable and ẋ(t) ∈ J∂H(x(t)). For all t ∈ T , the right and

left derivatives coincide, in particular for v = ẋ(t):

θ̇(t) = D+H(x(t))(ẋ(t)) = −D+H(x(t))(−ẋ(t)).

Because of −Jẋ(t) ∈ ∂H(x(t)), we get

−Jẋ(t).v ≤ D+H(x(t))(ẋ(t))

for both v = ±ẋ(t). The antisymmetry of J yields

0 = −Jẋ(t).ẋ(t) ≤ D+H(x(t))(ẋ(t)),

0 = −Jẋ(t).ẋ(t) ≥ D+H(x(t))(ẋ(t)).

Therefore D+H(x(t))(ẋ(t)) = 0 = θ̇(t) ∀t ∈ T and θ(t) = H
(

x(t)
)

= const.

4. Quasiconvex submersions. Now consider a family of sets K(s) ⊂ R
N , s ∈ R,

continuous with respect to the Hausdorff metric on sets.

Definition. A family K(s) is called regular if ∂K(s) ∩ ∂K(s′) = ∅, ∀s 6= s′.

This generalizes the notion of a C1-submersed family of hypersurfaces to the non-

differentiable case. In fact, it implies that ∂K(s) can be given as levels of a continuous

function f :
⋃

s K(s) → R defined by

f(x) = s ⇔ x ∈ K(s).

If f is C1, then f ′(x) 6= 0 ∀x ∈ K(s), which is the classical definition of the regularity

of the hypersurface K(s).

Now the relation between f and K(s) is examined if K(s) consists of convex sets.

Definition. A function f and the family {x | f(x) = s}s∈R are called quasiconvex

if the sublevels {x | f(x) ≤ s} are convex for all s ∈ Im f . The family K(s) or ∂K(s)

is called convexifiable in the interval I if there is a convex function H : R
N → R and a

reparametrization h : I → R such that

∂K(s) = {x = R
N | H(x) = h(s)} ∀s ∈ I.

It is easy to give quasiconvex families which are convexifiable, e.g. f(r) =
√

r or f(r) =
√

supi |xi|. In section 5, we present a quasiconvex example which is not convexifiable,

together with a proof of this property using the energy conservation of Hamiltonian

inclusions as established in theorem 2.

5. A quasiconvex example (CE1). Let c(s) =
(

− sin s
−1+cos s

)

be the parametrization

by arc length of the unit circle with center
(

0
−1

)

and ns :=
(

− sin s
+ cos s

)

the outward unit

normal. Then consider the family

K(s) := {x ∈ R
2||x| ≤ |c(s)| and ns.x ≤ 0}, s ∈ [0, π],

of convex sets given by intersection of halfplanes and discs of radii |c(s)| = sin s
2 .
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Fig. 1. A quasiconvex family in R 2 violating energy conservation (CE1)

It is easy to show that the distance between the boundaries is positive:

dist(∂K(s′), ∂K(s)) = 2
(

sin
s′ − s

2

)2
> 0 ∀s, s′ ∈ [0, π], s′ > s,

which means that ∂K(s) are mutually disjoint and K(s) defines a regular family of convex

sets: For all x ∈ B(2) = K(π) there is a unique value s =: f(x) such that x ∈ ∂K(s).

One gets the representation of K(s) by

{f(x) ≤ s} = K(s).

f is a quasiconvex function which is at least of class C0 (by the continuity of ns and

|c(s)| in s) but not C1 because there are two curves of corners, the first one being c(s).

The characteristic differential inclusion adapted to the family K(s) is

(1) γ̇(t) ∈ JnK(E(t)) (γ(t)) a.e.,

which has to be solved for (E, γ) ∈ C0([0, T ], [0, π]) × Lip([0, T ], B(2)) including the a

priori unknown energy function.

We examine two special solutions:

(i) The parametrization by arc length γs of ∂K(s), for s fixed, defines a solution

(γs, s) with constant energy E(t) = s. The inclusion (1) is in fact solved for all but two

exceptional points; one observes moreover that the right and left derivatives satisfy it

even everywhere.

(ii) The corner curve c(s) is another solution for t ∈ ]0, π]. It satisfies (1) at every

time t although it consists of corners only:

d

dt
c(t) =

(− cos t

− sin t

)

= Jnt ∈ JnK(E(t))(c(t)) ∀t ∈]0, π]

with E(t) = t. But the solution c does not conserve the “energy”!
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As a consequence of (i) and (ii), one concludes that the initial value problem (IVP)

at x0 = c(s) possesses at least two solutions, γs(t + s0) and c(t + s). In fact, there are

infinitely many geometrically different solutions (γ, E) for

(IVP) γ̇(t) ∈ JnK(E(t))(γ(t)), γ(0) = x0,

for every initial point x0 ∈ A := int(B(2) \ {0}).
Moreover, the boundary value problem for x0, x1 ∈ A

(BVP) γ̇(t) ∈ JnK(E(t))(γ(t)), γ(0) = x0, γ(T ) = x1,

has infinitely many solutions (γ, E, T ) if and only if f(x0) ≤ f(x1).

One finds that the function E(t) is increasing for any solution (γ, E). This is due

to the special property of our example that Jn ∈ JnK points to the exterior of K.

Consequently, every solution for the boundary values x0, x1 on the same level ∂K(s)

conserves the energy f : f(x0) = f(x1) ⇔ E(t) = const = f(x0). Whence all periodic

solutions of (1) conserve the energy in this special example.

Now we apply the theorem of Rockafellar: If there were a convex function k para-

metrizing K(s), then all solutions of (HI) would conserve the energy and (HI) would be

equivalent to (1) by theorem 1, which is a contradiction. This implies that CE1 is not

convexifiable in [0, π]. We remark that this result is even more general than what can

be obtained by classical methods of convex analysis, see the proof of Crouzeix [C89] as

reported in [K90] that CE1 is not convexifiable in [0, π
2 ].

The study of singular Hamiltonian systems therefore provides a new tool to decide

whether a given family of convex sets in even dimensions is convexifiable or not.

6. A convex example (CE2). So far we have constructed a quasiconvex system

whose solutions of IVP and BVP may not be unique for certain points and at the same

time do not always conserve the energy; now we show that even in convex systems, where

the energy is always conserved, the IVP and BVP may have an infinity of solutions.

Proposition 1. All isotropic edges of dimension ≥ 2 of the standard cube in R
2n

have infinitely many solutions of the IVP at all its interior points. The BVP of a pair

of points has infinitely many solutions if the second point lies in a characteristic cone of

attainable points.

P r o o f. We study the fixed energy initial value problem

γ̇(t) ∈ J nK(s)(γ(t)) a.e.,

γ(t) ∈ ∂K(s), s fixed,

γ(0) = x0.

It is enough to study a 4-dimensional cube, which can be considered as a (restricted

symplectic) edge of a higher dimensional one.

Let K(s) = {(p1, q1, p2, q2) ∈ R
4 | pi, qi ∈ [0, s], s ∈ R+} be the cubes with side

lengths s. Its boundary ∂K(s) is composed of edges (strata) of dimension 0 (corners), 1,

2 and 3 (faces). At an interior point of such an edge, the set of normalized normals is 3,

2, 1 and 0-dimensional respectively.
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Fig. 2. Non-uniqueness in isotropic edges (CE2)
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To give a counterexample against the uniqueness on any energy level, consider for

example the 2-dimensional isotropic (Lagrangian) edge

A2 = {(p1, 0, p2, 0) | pi ∈ [0, 2]}
of K := K(2), see fig. 2. The set of normalized normals for an interior point x ∈ intA2

is

nK(x) = {(0,− cosϕ, 0,− sinϕ) | ϕ ∈ [0, π/2]}.
After application of J we get

JnK(x) = {(cosϕ, 0, sinϕ, 0) | ϕ ∈ [0, π/2]}.
The set of solutions with initial point x is parametrized by an infinite dimensional

function space {φ ∈ C0([0, T ], [0, π
2 ]) | |φ̇(t)| = 1∀t}:

γφ(t) := x + (cosφ(t), 0, sin φ(t), 0),

and the boundary value problem for two points x, y ∈ A2 possesses still infinitely many

solutions of this form if y lies in the “attainable cone”of points y satisfying x − y ∈
JnK(x) = JnK(y).

We remark that K is a symplectic product of two-dimensional squares and moreover

a (non-smooth) completely integrable system; a similar behaviour is observed in general

symplectic products (see [K94c]) even if the factors have smooth boundary.

Corollary 1. CE2 does not define a flow. Nevertheless , if at every point x ∈ A2

a preferred direction ∈ JNK(x) is assigned depending smoothly on x, we get a flow in

A2 which preserves the symplectic form. One observes therefore a non-uniqueness of the

Hamiltonian flow.
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P r o o f. This is immediate, because every vector field defines a flow, and the de-

formation of curves along isotropic edges preserves the symplectic area although the

Riemannian area is not conserved.

Corollary 2 (Regularity). The solutions of (CI) and (HI) may not be differentiable

from the right everywhere, whereas a convex function defining S is : The regularity of the

solutions is strictly smaller than that of the defining function.

P r o o f. A curve with γ(0) = x consisting of a sequence of connected vertical and

horizontal arcs accumulating at x describes a solution of the form γφ which is not differ-

entiable from the left nor from the right, as the limit

γ̇+(t) := lim
h→0+

γ(t + h) − γ(t)

h

does not exist at t = 0 because it would be composed of two vectors, a horizontal and a

vertical one. The maximal regularity one can hope for is strictly less than right differen-

tiability, whereas convex functions are right differentiable.

7. Conclusions. We showed that solutions of C0-systems in general

(1) don’t conserve the energy (CE1);

(2) don’t have unique solutions of the initial value problem (CE1,2);

(3) don’t have the same regularity as H (CE1,2);

(4) depend on the Hamilton function representing the hypersurface as energy level

(CE1).

These are four violations of very basic properties of C1+ε-systems, ε > 0, namely of

properties which were used to show the equivalence of (H) and (C). The example for

(1) could be made quasiconvex but not convexifiable, because of theorem 2. This reveals

that the convex Hamiltonians form a distinguished limit case in symplectic topology, at

least in C0-category, although convexity is not symplectically invariant. This also means

that (C) and (H) don’t have equivalent generalizations to the non-smooth case, unless

further assumptions on H are considered, namely H e.g. of the form (jK)α and the

explicit additional energy constraint, see §3.1. We therefore adopt the point of view that

the Hamiltonian description is secondary and that one should consider the characteristic

equation or inclusion as primary and more geometric.

8. Closed characteristics. To give a geometric definition of a symplectic capacity,

we are interested in periodic solutions of the characteristic differential inclusion (CI),

called closed characteristics . More precisely, we consider absolutely continuous prime

periodic solutions of

(∗)























(i) γ̇(t) ∈ JnK(γ(t)) a.e.

(ii) γ(t) ∈ ∂K ∀t ∈ [0, Tγ]

(iii) γ(t + Tγ) = γ(t) ∀t ∈ [0, Tγ]

and Tγ > 0 is the minimal period of γ
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namely the set

Γ(K) := {γ ∈ Lip ([0, Tγ ], R2n) | (∗)}.
Solutions of (∗) have the ambiguity of the choice of an initial value, so for every solution we

get an S1-orbit in Γ(K) with respect to the natural S1-action which leaves (∗) invariant.

We pass to the quotient

Γ∗(K) := Γ(K)/S1

to get the set of geometrically different solutions of (∗). Γ∗(K) can be regarded as the

set of representatives of the moduli space of prime closed characteristic curves.

A symplectic size of loops is given by their symplectic action

A(γ) =
1

2

Tγ∫

0

γ̇(t).Jγ(t) dt.

We will call loops small or big according to the absolute value of A(γ), and symplec-

tic actions of elements of Γ(K) (prime closed characteristics) are called characteristic

actions of ∂K. Observe that the parameter transformations preserving orientation and

mapping degree conserve the value of A(γ), therefore A(γ) passes to the quotient by such

reparametrizations.

A is not invariant with respect to the action of N given by the iteration γ 7→ γ(k), as

A(γ(k)) = kA(γ). For convenience we define

ΓN+(K) = {γ(k) | γ ∈ Γ(K), k ∈ N+}
as the set of iterated characteristic loops, which by definition don’t solve (∗). Their

minimal period is ℓ(γ(k))/k instead of ℓ(γ(k)).

9. Symplectic capacities

Definition. Let K = {K ⊂ R
2n | 0 ∈ K̊, convex} be the set of convex bodies, where

K̊ denotes the interior of K. Define c to be the map

c : K → R+, K 7→ c(K) = inf{A(γ) | γ ∈ Γ(K)},
assigning to K the minimal characteristic action of ∂K. We will call c symplectic capac-

ity * as soon as c(K) is shown to be well defined, attained by a γ∗ ∈ Γ(K) for bounded K,

positive and satisfying the defining properties (a), (b) and (c). By convention, c(K) = ∞
if Γ(K) = ∅, which does not occur if K is bounded.

To show that c(K) is positive, we used the gauge function jK(x) (§3) and the well

known dual Hamiltonian action functional of H = (jK)α, with α > 0, see [CE80] and

[E90]. We proved that c(K) is a monotone function of the minimum of this functional

[K90]. The well known fact that the dual functional is bounded from below as opposed

to the direct one, is a remarkable advantage of the dual formulation: a minimum can be

calculated by a computer whereas saddle points can’t in general.

We call this the geometric definition as it defines c independently of Hamiltonian

functions by a purely geometric term, the symplectic area of a surface Σ ⊂ K contoured

*It is the one we denoted in the introduction by c0.
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by the characteristic loop γ∗:

A(γ∗) =
1

2

∫

Im γ∗

γ∗.(−J)dγ∗ =
∫

Σ

ω.

It is independent of the choice of Σ with ∂Σ = Im γ∗, because K is contractible. For

arbitrary closed curves γ, A(γ) is a relative integral invariant in terms of Poincaré [P99,

p. 5]. Moreover, for closed characteristics γ ∈ Γ∗(K), A(γ) is a fundamental integral for

both canonical and geometric quantization and relates classical to quantum mechanics.

Now we collect some properties of c.

Theorem 3 [K90]. The least characteristic action c is a symplectic capacity for convex

sets K and embeddings Eω:

(a) K ⊂ K ′ ⇒ c(K) ≤ c(K ′),

(b) φ ∈ Eω ⇒ c(φ(K)) = c(K),

(c) c(B(r)) = πr2 = (Z(r)),

for all K, K ′ ∈ K. Moreover , the following properties are satisfied :

(d) c is Hausdorff continuous on K,

(e) c(K × K ′) = min{c(K), c(K ′)} for symplectic products K × K ′,

(f) After continuous extension, c(K) = 0 for bounded convex sets K ⊂ R
2n−1 ⊂ R

2n.

As mentioned in the introduction, Sikorav [Si90] proved that the capacity by Ekeland

and Hofer, which was defined to be the infimum of a certain critical value over a set

of Hamiltonian functions, equals c on smooth convex bodies and is acheived by a non-

iterated solution. The characterization by a closed characteristic on non-smooth convex

sets was of course not possible there, because the notion of a characteristic system as

developed in the present article was not made precise yet.

10. The symplectic product. In [K90], we gave a representation of all characteris-

tic loops on ∂(K1 × K2) by characteristic loops on the factors ∂Ki and conversely. This

suggests a product formula for all capacities which are given by actions of characteris-

tic loops. Here we will only indicate what is needed to show formula (e) for the least

characteristic action c.

Consider two linear symplectic spaces (R2ni , ωi, gi) with ωi and gi as in the intro-

duction. In the canonical metric g = g1 ⊕ g2, denoted by x.y again, the splitting of

E = R
2n = R

2n1 ⊕R
2n2 = E1⊕E2 is orthogonal. Consider the orthogonal projections on

these factors, expressed in coordinates by P1x =
(

x1

0

)

which we identify with P1x = x1

for x =
(

x1

x2

)

.

The natural symplectic form is ω = ω1 ⊕ ω2, given by J = J1 ⊕ J2.

Now look at the symplectic product K := K1 ×K2 ⊂ R
2n1 ×R

2n2 . We suppose Ki ∈
K(R2ni) to simplify the proof and to fit the product formula in our convex framework:

K ∈ K(R2n) ⇔ Ki ∈ K(R2ni) for i = 1 and 2.

It is easy to show that NK(x1, x2) = NK1
(x1) ⊕ NK2

(x2) ∀x = (x1, x2) ∈ K1 × K2 and

that the operators J , Pi and d/dt commute.
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Theorem 4. For all γ ∈ Γ(K1×K2), Piγ belongs to ΓN+(Ki)∪Ki up to reparametriza-

tion of degree 1, where Ki denotes the set of constant functions with values in Ki.

R e ma r k. The lack of C1-regularity of the solutions of (∗) was handled by a careful

control of the differential inclusion almost everywhere, more precisely, we considered a

representative of the Lebesgue class of the derivative and controlled it pointwise on a set

of full measure.

As an alternative approach, we smoothened K1×K2 by Yoshida’s approximation and

followed the perturbed C1-solutions as the perturbation parameter changes. Just as in

the situation of Viterbo’s proof for contact manifolds [V87], these perturbed solutions

approach the hypersurface from the outside. But the notion of the characteristic differ-

ential inclusion still has to be made precise and examined for the limit, i.e. with the

smoothening approach one does not gain anything.

R e ma r k. A converse statement to theorem 4 can also be proved (see [K90]): Given

Γ(K1) and Γ(K2), one recovers Γ(K1 × K2) by an adapted family of parameter trans-

formations. Again, the interesting part is ∂K1 × ∂K2, where a non-resonance condition

has to be checked. This condition is similar to the usual non-resonance condition on La-

grangian tori; just remark that in fact ∂K1 × . . . × ∂Kn is a Lagrangian torus in R
2n if

Ki are 2-dimensional simply connected subsets of R
2.

R e ma r k. The symplectic product is physically non-trivial as it represents a com-

posed system with non-zero interaction. In terms of gauge functions, consider

hi(xi) = (jKi
(xi))

2,

H(x1, x2) = (jK1×K2
(x1, x2))

2 = max{hi(xi) | i = 1, 2}
= h1(x1) + h2(x2) + V1,2(x1, x2).

Use

jK1×K2
(x1, x2) = inf{λ ∈ R+ | x/λ ∈ K} = sup{λ | λ(x1, x2) ∈ K1 × K2}

≤ sup{λ ∈ R+ | λxi ∈ Ki} = jKi
(xi).

to show that the interaction term is V1,2(x1, x2) = −min{hi(xi) | i = 1, 2} and therefore

non-zero if x 6= 0.

R e ma r k. The symplectic product is also non-trivial for the theory of symplectic

capacities in the sense that in general there is no estimate B(r) ⊂ D ⊂ Z(r) for D =

K1 × K2. For all sets D with such an estimate, capacity is calculated trivially from the

axioms:

c(B(r)) = πr2 ≤ c(D) ≤ c(Z(r)) = πr2,

yielding c(D) = πr2. All examples (ellipsoid, ball and cylinder) whose capacity could be

calculated before [K90] were of this trivial kind.
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