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Abstract. As shown by V. Vassilyev [V], D±4 singularities of arbitrary Lagrangian mappings
of three-folds form no integral characteristic class. We show, nevertheless, that in the pseudoop-
tical case the number of D±4 singularities counted with proper signs forms an invariant. We give
a topological interpretation of this invariant, and its applications. The results of the paper may
be considered as a 3-dimensional generalization of the results due to V. I. Arnold [A].

1. Main theorem. A Lagrangian mapping is defined to be a diagram L
i→T ∗M

π→M .
The first map i in this diagram is an embedding (or immersion) of a smooth Lagrangian
submanifold L of the total space T ∗M of the cotangent bundle over a smooth manifold M
(with respect to the natural symplectic structure on T ∗M given by ω =

∑
dpi∧dqi, where

qi are the coordinates of the point q ∈M and pi are the corresponding coordinates of the
impulse p ∈ T ∗qM). The second map π:T ∗M →M is the natural projection. Throughout
the paper we will use the letter f for the composition π◦i and, by a slight abuse of
notation, we call sometimes f :L→M itself a Lagrangian mapping.

If L is 3-dimensional and generic, all possible pointed singularities are those of types
A4, D+

4 , D−4 . In general, as shown by V. Vassilyev [V], it is impossible to define an integral
invariant of a Lagrangian mapping, which is calculated in terms of D±4 singularities.
Nevertheless it can be done if we restrict ourselves to the class of pseudooptical manifolds.

1.1. Definition. A Lagrangian manifold L ⊂ T ∗M is called pseudooptical if there
exists a vector field ξ on L whose image on M under df does not vanish at any point

1991 Mathematics Subject Classification: Primary 57R45; Secondary 53C15.
Research supported by International Science Foundation grant MSD000 and by Russian

Foundation for Basic Research (Project Nr. 94–01–01203).
The paper is in final form and no version of it will be published elsewhere.

[161]
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of L. This vector field ξ will be referred to as the framing or characteristic vector field of
the pseudooptical Lagrangian manifold L.

For example, an optical (i.e. lying on the level surface of a Hamiltonian which is
convex in impulses) Lagrangian manifold is always pseudooptical: for a framing one may
take the Hamiltonian vector field. More generally, assume that the generating function
S =

∫
p dq : L→ R, where p dq is the Liouville 1-form, has no critical points on L; then

L is pseudooptical as well: for a framing take the gradient of S (in any metric on L).
If L is optical there is a natural way to define a sign of every D±4 singularity (see

Definition 2.2 below). Both D+
4 and D−4 singularities may have both positive and nega-

tive signs. We will use the notation D++
4 , D+−

4 and D−+
4 , D−−4 , respectively, for these

singularities.
We call two pseudooptical immersed Lagrangian submanifolds of T ∗M isotopic if

they may be connected by a continuous family of pseudooptical immersed Lagrangian
submanifolds with framing continuously depending on the parameter and such that the
caustic (the set of critical values of the Lagrangian mapping) of every manifold of the
family is compact.

1.2. Theorem. The algebraic number of D±4 singularities of a pseudooptical 3-fold L
counted with their signs

d(L) = #D++
4 −#D+−

4 + #D−+
4 −#D−−4

is an invariant of the isotopy class of immersed pseudooptical Lagrangian submanifolds
of T ∗M .

1.3. Example. The standard Lagrangian cylinder ([A]) is a Lagrangian submanifold
L0 of the standard symplectic space R6 = T ∗R3 diffeomorphic to R× S2 and given by

L0 =
{

(p, q) ∈ R6 | |p| = 1, q = sp, s ∈ R}.

The standard Lagrangian cylinder is obviously pseudooptical (with framing ∂/∂s)
and its caustic (just one point) is compact. Let L ⊂ T ∗R3 be a generic pseudooptical
Lagrangian manifold isotopic to L0.

1.4. Proposition. d(L) = 4. In particular , the caustic of L has at least 4 points of
singularity D±4 .

1.5. N o t e s. 1. We do not know if there are any topological obstacles to continuous
extension of a framing when deforming a given Lagrangian submanifold.

2. Though we give in Section 8 some higher-dimensional analog to the invariant d(L)
we failed to find its reasonable applications. Thus, the number 4 in Proposition 1.4 and
that in Arnold’s symplectic interpretation of the problem about 4 vertices of a convex
plain curve [A] seem to have different nature.

3. Results similar to 1.2 were found by Yu. Chekanov and V. Zakalyukin independently.
In fact, the definition of the invariant d(L) (for the optical case) is implicitly contained
in [Ch].

The proof of the main result of the paper, Theorem 1.2, is given in Section 2; the rest
of the paper may be considered as comments to this theorem.
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2. Proof of Theorem 1.2. A Lagrangian D±4 singularity is a germ of Lagrangian
mapping of 3-folds given by the germ of the generating family (see, for example, [AG])

(2.1) F (x, y; q1, q2, q3) = x2y ± y3 + q1x+ q2y + q3y
2

as follows:

L =
{

(p, q) ∈ T ∗M
∣∣∣∣ ∃(x, y),

∂F

∂x
=
∂F

∂y
= 0, pi =

∂F

∂qi
, i = 1, 2, 3

}
.

D±4 singularities called umbilical singularities appear as a type of possible stable sin-
gularities of Lagrangian mappings of 3-folds. Singularities of caustics (critical values of
f) at D+

4 and D−4 points are called also purse and pyramid respectively.
D±4 singularities may be characterized by the condition that at the corresponding

point the kernel of the tangent map df :TmL → Tf(m)M , m ∈ L, is 2-dimensional. The
one-dimensional image Imdf(TmL) ⊂ Tf(m)M is called the tangent line to the caustic
singularity D±4 .

The tangent line to the purse is that to its cuspidal edge and the tangent line to
the pyramid is the common one to its three cuspidal edges. The two branches of the
cuspidal edge of the purse are essentially distinguishable: one of them consists of points
of singularities of type A+

3 and the other of those of type A−3 . In the same way for the case
of pyramid we have three branches of cuspidal edges of type A+

3 on one side of the D−4
singularity and three of type A−3 on the other. Thus, the tangent line to the caustic D±4
carries a natural orientation.We choose this orientation in such a way that the orienting
vector is directed along the cuspidal edges of type A−3 . As an orienting vector of the
tangent line to the caustic given by the generating family 2.1 may be taken the one given
by ∂/∂q3.

Suppose that the Lagrangian manifold L is pseudooptical. Then the image under df
of the characteristic vector at a point of Lagrangian D±4 singularity always lays on the
tangent line to the caustic.

2.2. Definition. The sign of a Lagrangian D±4 singularity on a pseudooptical La-
grangian 3-fold is positive or negative depending on whether or not the orientation of the
tangent line to the caustic given by the characteristic vector coincides with the natural
one.

The condition of pseudoopticity implies that this sign is correctly defined. Note that
the definition of the sign does not depend on the orientation of L, moreover, L may even
not be orientable at all.

2.3. P r o o f o f T h e o r e m 1.2. The number d(L) may change only at the moments
of perestroikas of the caustic. All possible typical perestroikas of caustics in one-parameter
families on a 3-fold are described in [Z], [AG]. D±4 singularities taking part in these
perestroikas have close tangent lines, so, it is easy to follow their signs. Thus, during the
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perestroikas D+
4 and D−4 two singularities D+

4 , respectively, D−4 of opposite signs appear.
In the perestroika D5 the D+

4 singularity is being exchanged by the D−4 singularity of the
same sign. This completes the proof. Another proof is given in Section 5.

2.4. P r o o f o f P r o p o s i t i o n 1.4. To calculate the value 4 of the invariant
d(L) it is enough to calculate it for any small perturbation of L0. For a caustic of this
perturbation one may take the focal set of the ellipsoid close to the sphere, which has 4
umbilical points; see also Section 4.

3. A note about Maslov index. Let i:L→T ∗M be a typical Lagrangian immersion
of a connected 3-fold and Γ ⊂ L be the set of critical points of the Lagrangian projection
f :L→M . Then (see, for example, [AG]) Γ is a smooth surface in L except for points of
singularity D±4 at which Γ has conical singularity (diffeomorphic to the germ at the origin
of the surface a2 + b2− c2 = 0 in the space of triples (a, b, c)). A natural coorientation of
Γ turns it into a cycle. The intersection number of Γ with a curve γ with ends outside Γ
is called the Maslov index of the curve γ.

Fix a point m0 ∈ L \ Γ. Let the subset Lk ⊂ L \ Γ consist of points m ∈ L \ Γ such
that the curve connecting m0 with m has Maslov index equal to k. In fact, the index k
takes values in the group Zµ0 = Z/µ0Z where µ0 is the minimal positive value of the
Maslov index on closed curves. In what follows, we assume that µ0 > 1 (for example, if
L is orientable then µ0 is even).

L\Γ is a disjoint union of Lk for different k. Let Γk ⊂ Γ be a part of the critical set Γ
formed by Γk = Lk−1 ∩Lk. Then Γ =

⋃
Γk and points of intersection of different Γk and

Γl are those of type D±4 and this intersection is non-empty only if |k − l| = 1. We say
that an umbilical point has Maslov index k if it is an intersection point of Γk and Γk+1.

Consider an isotopy L(t) ⊂ T ∗M of immersed pseudooptical Lagrangian 3-folds and
suppose that for given k and all t at least one of the two components Γk and Γk+1 of the
critical set Γ of L = L(t) is compact and belongs to some compact domain in T ∗M .

3.1. Theorem. The algebraic number of D±4 singularities of Maslov index k counted
with their signs

dk(L) = #D++
4 (k)−#D+−

4 (k) + #D−+
4 (k)−#D−−4 (k), k ∈ Zµ0 ,

is an isotopy invariant.

This theorem generalizes Theorem 1.2; the invariant d(L) is the sum over k of the
invariants dk(L).

The proof is similar to that of Theorem 1.2. One should observe only that the Maslov
indexes of any two umbilical points taking part in a typical perestroika of caustics in
one-parameter families are always the same.

3.2. Example. ([A]; Geodesic flow on Riemannian 3-folds). Let M be a Riemannian
manifold diffeomorphic to S3 equipped with a generic metric g. The metric g considered
as a Hamiltonian function on T ∗M generates the geodesic flow on M . Fix a point q0 ∈M .
Then the union of all characteristics passing through the unit sphere in T ∗q0M forms a
pseudooptical (in fact, optical) Lagrangian manifold L. In this case the part f(Γk) of the
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caustic is called the kth focal set of the point q0. At any umbilical point of the caustic
the kth and (k + 1)th focal sets meet for some k.

3.3. Proposition. For a Lagrangian manifold L as above we have

d(k) =
{

4, k odd ,
0, k even.

In particular , for k odd , the kth and (k+1)th focal sets meet at least at 4 umbilical points.

P r o o f. It is enough to calculate the invariants dk for the case when M is a small
perturbation of the unit sphere in the Euclidean space. The focal sets of the point q0
in this situation are concentrated in neighborhoods of the two poles of the sphere—the
point q0 and its antipode. The Lagrangian manifold L is locally equivalent to the small
perturbation of the standard Lagrangian cylinder defined in Section 1 and we can get the
values of the invariants applying Proposition 1.4. In Section 4 we will see that the same
result holds for any compact Riemannian 3-fold.

4. Umbilical points of optical Lagrangian manifolds. A Lagrangian manifold
L ⊂ T ∗M is called optical if it lies on the level surface of a Hamiltonian whose restriction
to every fiber of the cotangent bundle is convex. As noticed in [Ch] the sign of a D−4 point
of an optical Lagrangian manifold is always negative: at such a point m ∈ L the kernel
of df :TmL → Tf(m)M separates the two components of the cone Γ, the characteristic
vector ξ belongs to the component of L \Γ having maximal Maslov index and the curves
of singularities A−3 lie on the component of Γ having minimal Maslov index. Therefore,
they belong to the different halfspaces bounded by the kernel.

It was also shown in [Ch] that the characteristic vector field is transversal both to the
surface Γ and to the direction field kerdf along Γ. The projection of this direction field
to Γ gives a direction field on Γ itself. At a D±4 point this direction field has a singularity
on both components of the cone Γ.

Lemma 4.1. The index of the obtained direction field on each of the two components
of Γ at a D±4 point is equal to ± 1

2 depending on the sign of the D±4 singularity.

The proof of this lemma given in [Ch] consists in drawing pictures for the correspond-
ing direction fields. This proof is not complete because were two cases considered only
while, in fact, there are three possible types of behavior of this direction field see below.

4.2. Example (Focal sets of convex surfaces). Let V ⊂ R3 be a convex surface in
Euclidean 3-space. Let n(x) be the unit normal vector to V at a point x ∈ V . Consider
the mapping f :V ×R→ R3, (x, t) 7→ x+ tn(x). In fact, this mapping is Lagrangian, and
its caustic is called the focal set of V . The optical Lagrangian manifold of this mapping is
the union of all characteristics l(x) of the Hamiltonian H = p2 passing through covectors
n(x), x ∈ V . Every characteristic l(x0) intersects the critical set Γ at two (possibly
coinciding) points, the corresponding values of t being equal to the values of the two
main curvatures of the surface at x0.

D±4 singularities of the focal set correspond to umbilical points of V where both main
curvatures coincide. The projection of the direction field ker df on the two branches of
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Γ along the characteristics gives two direction fields on V which coincide with the two
fields of directions of the main curvatures on V . Singularities of this direction field are
studied in [D], [P1], [P2]. The three possible types of behavior of this direction field are
called lemon, (le)monstar and star. D+−

4 singularities and D−−4 are always of star form
(with index − 1

2 ), while D++
4 singularities may be of either lemon or monstar form (with

index 1
2 ).

Interpretation of the Euler characteristic of a compact manifold as the sum of indexes
of a vector (or direction) field on it gives

4.3. Proposition. Suppose that the component Γk of the optical Lagrangian manifold
L is compact. Then

dk−1(L) + dk(L) = 2χ(Γk).

Summing these formulae over all k gives the formula due to Chekanov [Ch] χ(Γ) =
d(L)−#D±4 =−2#D±−4 , Γ being compact. If the manifold L is simply connected then ev-
ery characteristic meets Γk at a unique point. Hence, Γk is homeomorphic to the space of
characteristics. Thus, under the hypotheses of Propositions 1.4 and 3.3 we have Γk ∼ S2,
and dk−1(L) + dk(L) = 4. So, the number 4 in Propositions 1.4 and 3.3 is the doubled
Euler characteristic of a 2-sphere.

4.4. Corollary. The kth and (k + 1)th focal sets of any point in any 3-dimensional
manifold with respect to any generic Riemannian metric meet at 4 (for odd k) and 0 (for
even k) umbilical points, counted with their signs.

5. Geometric interpretation of the invariant. Consider a Lagrangian 3-fold L

in the standard symplectic space T ∗R3 = R6 with coordinates (pi, qi). Denote by Λ+
3

the manifold of all oriented Lagrangian subspaces of R6. The Gauß mapping G:L→ Λ+
3

assigns to every point m ∈ L the tangent plane TmL ⊂ R6. Let V ⊂ R6 = T ∗R3 be the
“vertical” plane T ∗0 R3 = { q = 0 }. Put

D = {λ ∈ Λ+
3 | dimλ ∩ V ≥ 2}.

The Lagrangian projection of L has D±4 singularity at a point m ∈ L if and only
if G(m) ∈ D. The set D ⊂ Λ+

3 is smooth of codimension 3, except for a subset of
codimension 3 in D. Hence, D defines a cycle of codimension 3. Unfortunately, D is not
coorientable and the intersection index with D is defined only modulo 2.

5.1. Definition. The framed Lagrangian Grassmannian FΛ+
3 is the set of pairs (λ, ξ)

where λ ⊂ R6 is an oriented Lagrangian subspace and ξ ∈ λ is a vector transversal to
the fixed Lagrangian plane V ⊂ R6.

Let D̃ ⊂ FΛ+
3 be formed by the set of pairs (λ, ξ) such that dimλ ∩ V ≥ 2. Again, D̃

is a cycle of codimension 3 in FΛ+
3 .

5.2. Proposition. The cycle D̃ has a natural coorientation.

P r o o f. Consider a curve (ξ(t), λ(t)) on FΛ+
3 . Set K = λ(0) ∩ V and assume that

(ξ(0), λ(0)) belongs to the smooth part of D̃, i.e. dimK = 2. The curve λ(t) may be
generated by a Hamiltonian flow with a quadratic Hamiltonian function. Calculations
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show that the curve (ξ(t), λ(t)) touches D̃ exactly when the restriction of the Hamiltonian
to K vanishes. This gives the isomorphism

T(λ(0),ξ(0))FΛ+
3 /T(λ(0),ξ(0))D̃ ∼= S2(K∗).

The orientation of λ(0) and the vector ξ(0) define an orientation on K and, hence,
that on S2(K∗). This gives the desired coorientation of D̃.

5.3. N o t e. Curves on D changing coorientation of D are those changing orientation
of 2-dimensional λ ∩ V , λ ∈ D. In the case of D̃ the orientation of λ ∩ V is defined by
the vector ξ, (ξ, λ) ∈ D̃. This gives another proof of the Proposition.

Let now L be a pseudooptical Lagrangian submanifold of T ∗R3. Let G̃:L → FΛ+
3

map a point m ∈ L to the pair (tangent plane to L at m, the characteristic vector at m).
The following proposition is proved by straightforward calculations.

5.4. Proposition. The sign of the Lagrangian singularity D±4 defined in Section 2
coincides with the sign of the local intersection index of G̃(L) with the cycle D̃.

Note that a change of the orientation of L implies both a change of the orientation of
G̃(L) and a change of the coorientation of D̃. Hence, the local intersection index of G̃(L)
and D̃ does not depend on the orientation of L.

5.5. It is interesting to calculate the cohomology group of FΛ+
3 . The construction of

symplectic reduction in the skew-orthogonal hyperplane to ξ shows that FΛ+
3 is homotopy

equivalent to the total space of the bundle with base S2 and fiber Λ+
2 ∼ S2 × S1. It is

not difficult to construct a cell division of FΛ+
3 with comparatively few cells. Calculations

show that FΛ+
3 has the same integral cohomology group as S2 × S2 × S1 (at least as

Z-module). It is seen also from calculations that the cycle D̃ is a disjoint union of two
homological cycles, D̃ = D̃′ t D̃′′. It follows that

d(L) = d′(L) + d′′(L)

where d′(L) and d′′(L) are the intersection numbers of G̃(L) with D̃′ and D̃′′ respectively.
Moreover,

5.6. Corollary. If L is orientable and compact then d′(L) = d′′(L) and hence d(L)
is always even.

To determine whether a given (λ, ξ) ∈ D̃ belongs to D̃′ or to D̃′′ one should perturb
a little λ to λ̃ with the help of a negative definite Hamiltonian. Then (λ, ξ) ∈ D̃ belongs
to D̃′ or to D̃′′ depending on whether or not the orientation of λ̃ coincides with that of
R3 under the projection of λ̃ ⊂ T ∗R3 to R3. (Thus, a Lagrangian mapping of an oriented
pseudooptical L ⊂ T ∗R3 may have 23 = 8 essentially distinguishable kinds of singularity
D4!) In fact, d′(L) and d′′(L) are the sums of dk(L)’s defined in Section 3 with odd end
even k, respectively.

The standard Lagrangian cylinder L0 is not compact. Therefore d′′(L0) = 0 but
d(L0) = d′(L0) = 4.

6.Lagrangian manifolds given by generating families. A Lagrangian immersion
i:L→T ∗M is sad to be given by a generating family of functions if there exists a locally
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submersive mapping of manifolds ρ:N →M and a smooth function F :N → R such that L
is identified with the non-singular submanifold of N given by the equation: the differential
of F along the fibers of ρ equals zero, and the immersion i is given by i(m) = (p, q) ∈ T ∗M
where p = dF (m), q = ρ(m).

Consider on L the vector bundle TLN and its subbundle X = kerdρ of vectors tangent
to fibers of ρ. The second differential of the restriction of F to fibers of ρ at a point
m ∈ L ⊂ N is a well defined quadratic form s(m) on the vector space Xm.

Suppose that L and M are 3-dimensional and fibers of ρ are 2-dimensional and ori-
ented. Then Lagrangian D±4 singularities correspond one-to-one to zeros of the section s
of the bundle S2(X∗). This gives

6.1. Proposition. The number of Lagrangian D±4 singularities counted with proper
signs coincides with the intersection number of s with the zero section.

The following construction generalizes the characteristic numbers of D±4 singularities
of both Proposition 6.1 and Section 1.

6.2. Definition. A Lagrangian immersed 3-fold L ⊂ T ∗M is called 2-liftable if its
tangent bundle TL is represented as a cooriented subbundle of some 5-dimensional bundle
Y over L, and there is a submersive mapping of vector bundles ρ:Y → f∗TM over L
such that the restriction of ρ to TL coincides with the tangent map df :TL→ f∗TM .

6.3. Example. A pseudooptical Lagrangian manifold is 2-liftable: for Y one may
take the subbundle of TLT ∗M formed by the hyperplanes skew-orthogonal to the char-
acteristic vectors. A Lagrangian manifold given by a generating family of functions with
2-dimensional fibers is 2-liftable as well: for Y one may take TLN , the restriction to L of
the tangent bundle of the total space of the generating family.

6.4. Theorem. The characteristic number d(L) of Lagrangian D±4 singularities may
be extended to the class of 2-liftable Lagrangian 3-folds.

The proof is essentially the same as the proof of existence of the invariant in all
previous cases.

6.5. Example. The standard Lagrangian cylinder L0 ⊂ T ∗R3 may be given by the
generating family

F :S2 × R3 → R, F (v, q) = 〈v, q〉, v ∈ S2, q ∈ R3,

with fiber S2. It follows that any Lagrangian submanifold of R6 close enough to L0 may
be given by a generating family with fiber S2. As an illustration to Theorem 6.4 consider
the following result which follows from Propositions 6.1 and 1.4 but can also be proved
directly.

6.6. Proposition. Consider a generic family of differential quadratic forms st on S2

(sections of the vector bundle S2(T ∗S2) ) parameterized by t ∈ [0, 1] and assume that the
forms s0 are negative definite at any point of S2 and the forms s1 are positive definite at
any point of S2. Then there are at least 4 points (v, t) in S2×[0, 1] such that the quadratic
form st vanishes at the point v ∈ S2.
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7. Perestroikas of caustics on a plane. Suppose that a Lagrangian manifold L in
the standard symplectic space (p, q) ∈ R6 is transversal to every hyperplane q1 = const.
Then the gradient of the coordinate function q1 restricted to L (in any metric on L)
defines a framing in the sense of Section 1 and we are able to apply our invariant.

7.1. Proposition. Consider a generic family of immersed 2-dimensional Lagrangian
submanifolds Lt ⊂ T ∗R2 = R4 parameterized by t ∈ [0, 1] and assume that the caustic
of every Lt is compact and belongs to some compact domain of R2. Then the number of
perestroikas D±4 (see [Z], [AG]) counted with proper signs is an invariant of the family.

8. Some higher-dimensional generalizations. We call a Lagrangian n-fold L⊂
T ∗M k-liftable if its tangent bundle TL is represented as a cooriented subbundle of codi-
mension k in some vector bundle Y over L and there exists a submersive mapping of
vector bundles ρ:Y → f∗TM such that the restriction of ρ to TL coincides with df and
the subbundle kerρ of Y is orientable.

Similar to 6.3 if there exists an (n− k)-dimensional orientable subbundle of TL such
that the restriction of df to it is immersive then L is k-liftable. Another example of
k-liftable manifold is that given by a generating family of functions with k-dimensional
fibers.

For a generic Lagrangian manifold L ⊂ T ∗M the set mk of points x ∈ L at which the
tangent mapping df :TxL → Tf(x)M has at least k-dimensional kernel forms a cycle of
codimension k(k + 1)/2 (see [F]).

8.1. Theorem. For k odd the cycle mk has a natural coorientation. For k even this
cycle is coorientable on k-liftable manifolds.

Note that the coorientation of this cycle does not depend on orientations chosen on
L and M . Following [F] we call the cohomology class in Hk(k+1)/2(L,Z) given by the
intersection number with mk the Maslov-Arnold characteristic class.

P r o o f. For x ∈ mk ⊂ L set K = kerdf :TxL → Tf(x)M and suppose that x is a
smooth point of mk, that is, dimK = k. Then, similar to the proof of Proposition 5.2
the coorientation of mk is defined by the orientation of the space S2(K∗) of quadratic
forms on K. For k odd this space has a natural orientation and for k even its orientation
is defined by the orientation of the plane K which for k-liftable manifolds coincides with
the oriented kerρ.
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