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Abstract. This paper presents the variational approach to some optimization problems:
Mayer’s problem with or without constraints on the final point, local controllability of a trajec-
tory, time-optimal problems.

1. Introduction. Reachable sets of control systems are usually very diffi-
cult to compute. In dealing with optimization problems, a way to overcome this
difficulty consists in approximating the reachable set in a neighborhood of the
final point of the optimal trajectory by means of tangent vectors of the reachable
set. In this paper we want to review the use of tangent vectors in studying some
optimization problems. We will show that only subsets of tangent vectors with
suitable properties can be used and we will single out what kind of properties are
required to obtain necessary or sufficient conditions for the following problems:
the Mayer optimization problem with or without constraints on the final point,
the minimum time problem, the local controllability problem.

The motivation of this investigation is the search for a good definition of tra-
jectory variation. Given a reference trajectory x∗ of a control system, a variation
of x∗ is a tangent vector, v, at x∗(t) such that the transport of v along the refer-
ence flow from time t up to the final time, t1, is a tangent vector of the reachable
set at x∗(t1). There are several definitions of variation of x∗ (see [2] and the ref-
erences therein); in general they are very technical and it is difficult to compare
them. Therefore it is natural to look for a definition of variation which is simple,
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but provides sufficient information on the reachable sets in order to be used in
optimization theory. The starting point for this goal is to single out what kind
of information one needs in studying a particular problem.

The paper is organized as follows: in Section 2 we recall the definition of the
tangent cone of a subset of an n-dimensional manifold and the definitions of sub-
sets of it which have been used in optimization theory. In spite of the different
definitions, derived subsets and subsets of tangent vectors which can be contin-
uously summed are the same object; more general subsets are regular tangent
cones. These subsets of tangent vectors have been introduced by Polovinkin and
Smirnov and share important properties with the other subsets. In Section 3 we
review some standard optimization control problems and their variational ap-
proach. Our point of view unifies and generalizes the known theory. It points out
the interest in determining regular tangent cones of the reachable set at the final
point of a trajectory. Section 4 is devoted to the construction of a cone of this
type. We do not provide proofs. These will appear in a forthcoming paper. The
cone presented here is a generalization of the one in [2] and it provides high order
Maximum Principles. This topic however is beyond the scope of this paper.

The following notations will be used throughout the paper. M denotes a difi-
ferentiable manifold.

Given x ∈ M , we will denote by o(ε) a map defined on an Euclidian space
with values in TxM such that limε→0

o(ε)
‖ε‖ = 0.

For v ∈ TxM , we will write

y = x+ εv + o(ε)

if the equality holds in a chart at x and hence in any chart.
The symbols intK, clK, ∂K denote respectively the interior, the closure and

the boundary of a subset K of a topological space X. In the case where X is a
vector space, coK denotes the convex hull of K.

Given a convex subset K of TxM , we denote by intrelK the relative interior
of K. B stands for the unit closed ball of TxM and Dg(y) for the derivative of a
map g at the point y.

2. Tangent cones. Let Y be a subset of a C1 n-dimensional manifold M and
let x ∈ Y .

Definition 2.1. A vector v ∈ TxM is a tangent vector of Y at x if

x+ εv + o(ε) ∈ Y.
The set of tangent vectors of Y at x is named the intermediate tangent cone

of Y at x and it is denoted by Ix(Y ).

The intermediate tangent cone approximates Y in a neighborhood of x but
for some problems it is too large to provide a “good” description of the set, for
example Ix(Y ) may be equal to TxM even if x is a boundary point of Y , see
Example 3.1. Therefore we are interested in singling out particular subsets of
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Ix(Y ) which provide a more precise description of the set Y . Let us recall the
definitions of some subsets used in optimization theory.

Definition 2.2. A cone K ⊂ Ix(Y ) is a derived cone [5] if for each finite
subset {v1, . . . , vp} ⊂ K there exists a positive number δ′ and a continuous map
d : [0, δ′]p → TxM such that d(δ) = o(δ) and

x+
p∑
i=1

δivi + d(δ) ∈ Y.

Definition 2.3. A cone K ⊂ Ix(Y ) is a cone of tangent vectors which can
be continuously summed [6] if for each finite subset {v1, . . . , vp} ⊂ K there exist
positive numbers c, ε and a continuous map s : [0, ε] × [0, c]p → TxM such that
s(ε, c) = o(ε) uniformly with respect to c and

x+ ε

p∑
i=1

civi + s(ε, c) ∈ Y.

Definition 2.4. A cone K ⊂ Ix(Y ) is a regular tangent cone [7] if for
each ε ∈ [0, ε] there exists a continuous map rε : coK ∩ B → TxM such that
limε→0+ ‖rε(y)‖/ε = 0 uniformly with respect to y and

x+ εy + rε(y) ∈ Y ∀y ∈ coK ∩B.
A cone of tangent vectors K is said a local regular tangent cone of Y at x if for
each vector v ∈ intrel coK there exists a neighborhood W of v such that W ∩K
is a regular tangent cone of Y at x.

Derived cones and cones of tangent vectors which can be continuously summed
are not different objects. In fact we have:

Proposition 2.1. K is a derived cone if and only if it is a set of tangent
vectors which can be continuously summed.

P r o o f. Let us suppose that K is a derived cone and let {v1, . . . , vp} ⊂ K. By
definition there exists a continuous map d : [0, δ]p → TxM such that d(δ) = o(δ)
and

x+
p∑
i=1

δivi + d(δ) ∈ Y.

Set s : [0,
√
δ]×[0,

√
δ]p→TxM , s(ε, c) = d(εc1, . . . , εcp). By construction s(ε, c)=

o(ε) uniformly with respect to c and

x+ ε

p∑
i=1

civi + s(ε, c) ∈ Y

so that K is a set of tangent vectors which can be continuously summed.
Let K be a set of tangent vectors which can be continuously summed and

let {v1, . . . , vp} ⊂ K. Let ε, c and s be as in Definition 2.3. Let δ = cε/
√
p; set
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d : [0, δ]p → TxM ,

d(δ) = s(‖δ‖/c, cδ/‖δ‖), δ 6= 0,
d(0) = 0.

d is a continuous map such that d(δ) = o(δ) and

x+
p∑
i=1

δivi + d(δ) ∈ Y.

Therefore K is a derived set of tangent vectors.

By definition a cone of tangent vectors which can be continuously summed is a
local regular tangent cone, therefore the regular tangent cone is the most general
cone among the three defined above. Regular tangent cones have the important
property that the points interior to their convex hull pick out subsets of Y .

Definition 2.5. A vector v ∈ Ix(Y ) is a regular tangent direction [3] of Y if
there exists ε > 0 such that

x+ δ(v + εB) ⊂ Y, ∀δ ∈ [0, ε].

Proposition 2.2. The points belonging to the interior of the convex hull of a
regular tangent cone are regular tangent directions.

This property is probably known, but for the sake of completeness I am going
to sketch its proof.

P r o o f. Since all the properties we are dealing with are local, we can suppose
that M = Rn. Let K be a regular tangent cone and let v ∈ int coK. There exists
{v1, . . . , vp} ⊂ K ∩B and α > 0 such that

αv = w ∈ int co{v1, . . . , vp} = intH.

Let δ be such that w+δB ⊂ intH and let d > 0 be less than the distance between
w+ δB and ∂H. By definition of regular tangent cone, for all ε sufficiently small,
say ε < a , there exists a continuous map rε : H → TxM = Rn such that
limε→0+ ‖rε(y)‖/ε = 0 uniformly with respect to y ∈ H and

x+ εy + rε(y) ∈ Y, ∀y ∈ K.

Choose d such that ‖rε(y)‖/ε < d,∀ε ∈ [0, d] and ∀y ∈ H. Let fε : H → Rn be
defined by

fε(y) = y + rε(y)/ε, ε 6= 0,
f0(y) = y.

Then fε is a continuous map. Let z ∈ w + δB and let u ∈ ∂H. If ε < min{a, d}
then

‖fε(u)− u‖ = ‖rε(u)‖/ε < d < ‖z − u‖.
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By the scolium lemma, [6, page 251], z ∈ fε(H), that is there exists b ∈ H such
that z = b+ rε(b)/ε. Since

x+ εz = x+ εb+ rε(b) ∈ Y

the property is proved.

There is another subcone of Ix(Y ) which has the property that its interior
points are regular tangent directions: the Clarke tangent cone.

Definition 2.6. A vector v ∈ TxM is a Clarke tangent vector of Y at x if for
all sequences {εn} ⊂ R+ converging to 0 and all sequences {xn} ⊂ Y converging
to x, there exists a sequence {vn} ⊂ TxM converging to v such that

xn + εnvn ∈ Y.

The set of Clarke tangent vectors of Y at x is the Clarke tangent cone.

Proposition 2.3 [8]. The Clarke tangent cone of Y at x is a convex cone
whose interior points are regular tangent directions of the closure of Y at x.

The Clarke tangent cone is very different from the other ones defined above;
it is a convex cone which provides information on the boundary of the closure of
Y near x. However the Clarke tangent cones of reachable sets of a control system
are difficult to compute.

Definition 2.5, Propositions 2.2 and 2.3 imply the following important prop-
erty:

Proposition 2.4. A point x is an interior point of Y if and only if there exists
a local regular tangent cone K ⊂ Ix(Y ) whose convex hull coincides with TxM . If
there exists a set of Clarke tangent vectors of Y at x whose convex hull coincides
with TxM , then x is interior to the closure of Y .

In dealing with some optimization control problems it is important to obtain
information on the intersection of two sets from the tangent vectors of the two
sets at a common point. Regular tangent cones are suitable for this purpose.

Proposition 2.5. Let Y1, Y2 ⊂M and x ∈ Y1∩Y2; if N1, N2 are local regular
tangent cones respectively of Y1 and Y2 at x which cannot be separated , then

∅ 6= intrel coN1 ∩ intrel coN2 ⊂ Ix(Y1 ∩ Y2).

P r o o f. By the properties of convex sets, N1 not separable from N2 implies
intrel coN1∩intrel coN2 6= ∅ and spanN1∪N2 = TxM . Without loss of generality
we can suppose that N1, N2 are regular tangent cones. Let v ∈ intrel coN1 ∩
intrel coN2, ‖v‖ < 1; there exist {v1, . . . , vp} ⊂ N1 ∩ B, {w1, . . . , ws} ⊂ N2 ∩ B
and non-negative numbers a1, . . . , ap, b1, . . . , bs such that (v1, . . . , vp, w1, . . . , ws)
contains a basis of TxM and v =

∑p
i=1 aivi =

∑s
j=1 bjwj . We can suppose that

{v1, . . . , vm, w1, . . . , wl} is a basis for TxM . By definition of regular tangent cone
there exist ε and for all ε ∈ [0, ε] two continuous maps gε : coN1 ∩ B → TxM ,
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hε : coN2 ∩B → TxM such that

x+ εy + gε(y) ∈ Y1 and x+ εy + hε(y) ∈ Y2.

Let δ be such that ∀di, cj ∈ [−δ, δ],
m∑
i=1

(ai + di)vi +
p∑

i=m+1

aivi ∈ coN1 ∩B and

l∑
j=1

(bj + cj)wj +
s∑

j=l+1

bjwj ∈ coN2 ∩B.

For all δ ∈ (0, δ], let

Wδ =
{ m∑
i=1

divi +
l∑

j=1

cj(−wj)
}
, di, cj ∈ [−δ, δ].

Wδ is a compact convex subset of TxM which has 0 as an interior point. Let
d(δ) = min ‖w‖, w ∈ ∂Wδ; d(δ) is a positive number. By the properties of gε and
hε it follows that there exists σ(δ) such that, for all ε ∈ [0, σ(δ)], ∀u ∈ coN1 ∩B,
∀v ∈ coN2 ∩B, ‖gε(u)‖/ε and ‖hε(v)‖/ε are less than d(δ)/2. Set δ(ε) = inf{δ :
ε ≤ σ(δ)}. δ(·) is a non-decreasing map; let a = limε→0+ δ(ε). If a > 0, then
0 < σ(a/2) < ε, ∀ε > 0, an absurd. Therefore δ(ε) goes to zero with ε. For all
ε ∈ [0, ε], let fε : Wδ(ε) → TxM be the map defined by:

f0

( m∑
i=1

divi −
l∑

j=1

cjwj

)
=

m∑
i=1

divi −
l∑

j=1

cjwj ,

fε

( m∑
i=1

divi −
l∑

j=1

cjwj

)
=

m∑
i=1

divi −
l∑

j=1

cjwj

+ (1/ε)gε
( m∑
i=1

(ai + di)vi +
p∑

i=m+1

aivi

)

− (1/ε)hε
( l∑
j=1

(bj + cj)wj +
s∑

j=l+1

bjwj

)
= fε(w) = w + (1/ε)(gε(v(w))− hε(u(w))).

By construction fε is a continuous map. For all w ∈ ∂Wδ(ε)

‖fε(w)− w‖ =
‖gε(v(w))− hε(u(w))‖

ε
< d(δ(ε)) ≤ ‖w‖.

By the scolium lemma there exist di(ε), cj(ε), |di(ε)| ≤ δ(ε), |cj(ε)| ≤ δ(ε), such
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that

1
ε
gε

( m∑
i=1

(ai + di(ε))vi +
p∑

i=m+1

aivi

)

−1
ε
hε

( l∑
j=1

(bj + cj(ε))wj +
s∑

j=l+1

bjwj)
)

+
m∑
i=1

di(ε)vi −
l∑

j=1

cj(ε)wj = 0.

Therefore

Y1 3 x+ ε
(
v +

m∑
i=1

di(ε)vi
)

+ gε

( m∑
i=1

(ai + di(ε))vi +
p∑

i=m+1

aivi

)

= x+ ε
(
v +

l∑
j=1

cj(ε)wj
)

+ hε

( l∑
j=1

(bj + cj(ε))wj +
s∑

j=l+1

bjwj

)
∈ Y2.

Since δ(ε) goes to zero with ε, the proposition is proved.

R e m a r k. For derived sets Proposition 2.5 has been proved by S. Mirica.

3. Control problems and tangent cones. Let us consider a control process
on M

(1) ẋ = f(t, x, u)

satisfying the following assumptions:

A. the control maps u(·) belong to an assigned subset U of the locally integrable
maps from R to a set U ⊂ Rm;

B. J is an open interval of R and f : J ×M × U → TM is such that for all
u(·) ∈ U the time-dependent vector field f(t, x, u(t)) is a quasi-C1 vector
field, [4], i.e.
for almost all t ∈ J , x 7→ f(t, x, u(t)) is C1;
for each x ∈M , t 7→ f(t, x, u(t)) is measurable;
in each chart (ϕ,U) of M for each compact set K ⊂ ϕ(U) there exists an
integrable map ψ such that

‖f(t, x, u(t))‖+ ‖Dxf(t, x, u(t))‖ ≤ ψ(t) ∀x ∈ K.
Under these assumptions, for each (t0, x0) ∈ J ×M and each u ∈ U there exists
only one maximal solution of (1), S(·, t0, x0, u), such that x0 = S(t0, t0, x0, u).

Let S0 be a subset of M ; for all (t0, t) ∈ J × J we will denote by R(t, t0, S0)
the set of points reachable at time t by means of the solutions of (1) which at
time t0 belong to S0, that is

R(t, t0, S0) = {x(t) : x(·) solution of (1) such that x(t0) ∈ S0}.
Notice that R(t, t0, S0) may be the empty set for some t.

In this section we want to review some classical optimization control problems.
Let us start with the Mayer control problem
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MP. Let g0 : M → R be a C1 map and let t1 > t0 be an assigned point of J .
Find among the trajectories x(·) of (1) satisfying the condition x(t0) ∈ S0

a trajectory x∗ which minimize g0 over R(t1, t0, S0), i.e.

g0(x∗(t1)) = min{g0(y) : y ∈ R(t1, t0, S0)}.

The intermediate tangent cone of R(t1, t0, S0) provides necessary conditions for
a trajectory to solve the Mayer control problem. In fact it is easy to prove that

Proposition 3.1. If x∗ solves the Mayer problem, then

Dg0(x∗(t1))v ≥ 0, ∀v ∈ Ix∗(t1)(R(t1, t0, S0)).

Different is the case in which there are constraints on the final point of the
trajectory. The Mayer control problem with constraints on the end points is the
following:

CMP. Let S1 be a subset of M , find among the trajectories x(·) of (1) satisfying
the conditions x(t0) ∈ S0, x(t1) ∈ S1 a trajectory x∗ which minimizes g0,
i.e.

g0(x∗(t1)) = min{g0(y), y ∈ S1 ∩R(t1, t0, S0)}.

Notice that Ix∗(t1)R(t1, t0, S0) may coincide with the whole tangent space even if
x∗ solves the CMP problem. For example consider the following bilinear system
on R2:

Example 3.1.{
ẋ = u1(−x− y + 0.0278) + u2(−x+ y + 0.0278) + u3(139− 105x),
ẏ = u1(x− y) + u2(−x− y),

(u1, u2, u3, ) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

The reachable set from (0, (1.027, 0)) at time 3.92 is contained in a heart-
shaped set, K, whose boundary is the union of two arcs of spiral symmetric with
respect to the x-axis. The point (0, 0) belongs to R(3.92, 0, (1.027, 0)) and it is the
cupsidal point of the set K. The intermediate tangent cone of R(3.92, 0, (1.027, 0))
at (0, 0) is equal to the whole R2 but if S1 = {(α, 0) : α ∈ R} and g0(x, y) = x,
then (0, 0) is a minimum.

A necessary condition for the CMP control problem can be deduced from the
tangent vectors of the intersection of the reachable set with the set S1; therefore
Proposition 2.5 suggests the use of local regular tangent cones.

Theorem 3.1. Let x∗ solves the CMP. If K is a local regular tangent cone of
R(t1, t0, S0) at x∗(t1) and N is a local regular tangent cone of S1 at x∗(t1), then
there exist λ0 ≤ 0 and a cotangent vector ν ∈ T ∗x∗(t1)M such that

νw ≥ 0, ∀w ∈ N ,
(λ0Dg0(x∗(t1)) + ν)v ≤ 0, ∀v ∈ K.
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P r o o f. If N and K can be separated, then there exists ν ∈ T ∗x∗(t1)M such
that νw ≥ 0, ∀w ∈ N and νv ≤ 0, ∀v ∈ K. The theorem is proved with λ0 = 0.
In this case the problem is called abnormal.

If N and K cannot be separated, then by proposition 2.5

(2) ∅ 6= intrel coN ∩ intrel coK ⊂ Ix∗(t1)(S1 ∩R(t1, t0, S0)).

Since x∗ solves the CMP, then

Dg0(x∗(t1))w ≥ 0, ∀w ∈ Ix∗(t1) (S1 ∩R(t1, t0, S0)) .

Therefore (2) implies that −Dg0(x∗(t1)) belongs to (N ∩K)∗ , the polar cone of
N ∩K, that is

−Dg0(x∗(t1))y ≤ 0, y ∈ N ∩ K.
But, see [1], (N ∩K)∗ = (N )∗+ (K)∗, so that there exists −ν ∈ (N )∗ ⊂ T ∗x∗(t1)M
such that −Dg0(x∗(t1)) + ν ∈ (K)∗, that is,

νw ≥ 0, w ∈ N ,
(−Dg0(x∗(t1)) + ν)v ≤ 0, ∀v ∈ K.

The proof is complete.

Corollary 3.1. Let gi, i = 0, . . . , p, be C1 maps from M to R such that
Dg1, . . . , Dgp are linearly independent at any point of M . If x∗(T1) minimizes
g0 over the set {y ∈ R(t1, t0, S0) : gi(y) = 0, i = 1, . . . , p} and K is a local
regular tangent cone of R(t1, t0, S0) at x∗(t1) then there exists λ = (λ0, . . . , λp) 6=
(0, . . . , 0), λ0 ≤ 0 such that

p∑
i=0

λiDgi(x∗(t1))v ≤ 0, ∀v ∈ K.

P r o o f. Let S1 = {y : gi(y) = 0, i = 1, . . . , p}, S1 is a differentiable manifold.
Our assumptions imply [5], that Tx∗(t1)(S1) is a derived set of tangent vectors, and
hence a regular tangent cone, of S1 at x∗(t1). Since the polar cone of Tx∗(t1)(S1)
is the set

span{Dgi(x∗(t1)) : i = 1, . . . , p}
Theorem 3.1 proves the statement.

Let us consider now the local controllability problem.

LC. A trajectory x∗ is locally controllable in the interval [t0, t1] ⊂ J if

x∗(t1) ∈ intR(t1, t0, x∗(t0)).

Example 3.1 shows that a trajectory x∗ may be not locally controllable in
[t0, t1] even if Ix∗(t1) (R(t1, t0, x∗(t0)))=Tx∗(t1)M . To obtain sufficient conditions
of local controllability of a trajectory one has to look for sets of tangent vec-
tors which pick out regular tangent directions. Notice that for this property the
separation property of Proposition 2.5 is not required.
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Proposition 3.2. A trajectory x∗ is locally controllable in the interval [t0, t1]
if either there exists a local regular tangent cone of R(t1, t0, x∗(t0)) at x∗(t1)
whose convex hull contains zero as an interior point , or intR(t1, t0, x∗(t0)) =
int clR(t1, t0, x∗(t0)) and there exists a set of Clarke tangent vectors whose convex
hull contains zero as an interior point.

Let us consider the time-optimal problem.

OT. A trajectory x∗ is time-optimal in the interval [t0, t1] if

x∗(t1) 6∈ R(t, t0, S0), ∀t, t0 ≤ t < t1.

If the control process ((1)) is autonomous, i.e. f does not depend on t and
if u(·) ∈ U implies uτ = u(· + τ) ∈ U for any τ , then x∗ is time-optimal only
if x∗(t) ∈ ∂R(t, t0, S0), ∀t ∈ [t0, t1). In fact if there exists t such that x∗(t) ∈
intR(t, t0, S0), then

(3) x∗(t+ ε) ∈ R(t, t0, S0)

for ε sufficiently small. But (3) implies x∗(t1) = S(t1 − ε, t, x∗(t + ε), u∗ε ) ∈
R(t1 − ε, t0, S0), a contradiction. Therefore by Proposition 3.2 we get:

Proposition 3.3. Let the process (1) be autonomous and let U be such that
for each u ∈ U and each τ the map uτ : t 7→ u(t + τ) belongs to U . If x∗ is
time-optimal in the interval [t0, t1], t ∈ (t0, t1) and K is a local regular tangent
cone of R(t, t0, S0) at x∗(t), then there exists a cotangent vector λ ∈ T ∗x∗(t)M such
that :

λv ≤ 0, ∀v ∈ K.

4. Variational cone of a reference trajectory. Let x∗ be a given trajec-
tory of (1) such that x∗(t0) ∈ S0. In the previous section we have shown that
local regular tangent cones of R(t, t0, S0) are of great interest in solving some
optimization control problems. In this section we want to describe a way to con-
struct a local regular tangent cone of R(t, t0, S0) at the point x∗(t). The cone we
are going to present is a generalization of the one introduced by G. Stefani and
myself in [2]. We will give only the main results without proofs. The proofs will
be given in a forthcoming paper.

Let x∗ : [t0, t1]→M be a trajectory of the system (1) relative to the control u∗

and such that x∗(t0) ∈ S0. The first step for defining a local regular tangent cone
of R(t, t0, S0) at x∗(t) consists in defining variations of x∗ at any time τ ∈ [t0, t].
We recall from section 3 that S(t, t0, x0, u) stands for the value at time t of the
solution of (1) relative to the control u which at time t0 is equal to x0.

Definition 4.1. A vector v ∈ Tx∗(τ)M is a right variation of x∗ at time
τ ∈ [t0, t) if there are positive numbers k, c, ε and a two-parameter control
variation

η : [0, c]× [0, ε]→ U
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such that the map

(ξ, c, ε) 7→ S(τ + 2ε
1
k , τ + ε

1
k , ξ, η(c, ε))

is continuous and continuously differentiable with respect to ξ in a neighborhood
of x∗ and

S(τ + 2ε
1
k , τ + ε

1
k , x∗(τ + ε

1
k ), η(c, ε) = x∗(τ + 2ε

1
k ) + εcv + o(ε)

uniformly with respect to c.

Left variations at time τ ∈ (t0, t1] can be defined in an analogous way. The
Pontryagin variations [6] are examples of such a type of variation.

Proposition 4.1. Let U contain the constant maps with values in U . If τ is
a Lebesgue point of the map t 7→ f(t, x∗(t), u∗(t)) and ω ∈ U is such that the map
t 7→ S(t, τ, x∗(τ), ω) is right derivable, then

f(τ, x∗(τ), ω)− f(τ, x∗(τ), u∗(τ))

is both a right and a left variation of (x∗, u∗) at τ .

In [2] it is proved that the variations at τ are local objects at x∗(τ); in the
same paper variations of the trajectory relative to the drift term of an affine C∞

control system are constructed using the relations in the Lie algebra associated
to the system at the point x∗(τ).

The second step consists in transporting the variations at τ from the time τ
to the time t by means of the reference flow in order to obtain a tangent vector
of R(t, t0, S0) at x∗(t). By assumption B the reference flow, that is, the map
(t, τ, ξ) 7→ S(t, τ, ξ, u∗), is differentiable with respect to ξ at any point (t, τ, x∗(τ)).
Let

G(t, τ) =
∂S

∂ξ
(t, τ, x∗(τ), u∗) .

It is known, [4], that G(t, τ) is the solution at time t of the linear differential
equation

(4)
d

dt
G(t) =

∂f

∂x
(t, x∗(t), u∗(t))G(t), G(τ) = Id.

Definition 4.2. Let t ∈ [t0, t1]. The variational cone, K(t), of (x∗, u∗) at time
t is the set

(5) K(t) = {G(t, τ)vτ : vτ variation at τ, τ ∈ [t0, t]}.

Notice that we take only right variations at t0 and only left variations at t1.

The main property of the variational cone is the following:

Theorem 4.1. K(t) is a set of tangent vectors of R(t, t0, S0) at x∗(t) which
can be continuously summed and therefore it is a local regular tangent cone.
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Definition 4.2 and Proposition 4.1 imply that K(t) contains the Pontryagin
tangent vectors

G(t, τ)(f(τ, x∗(τ), ω)− f(τ, x∗(τ), u∗(τ))) ∈ K(t).

Therefore Proposition 4.1, Theorem 4.1 and the results of the previous section
imply that the cone K(t) can be used for stating high order maximum principles
for Mayer control problems and for the time-optimal problem.

The variational cone K(t) can be used also for obtaining sufficient condition
of local controllability of a reference trajectory; in [2] it has been used for proving
a sufficient condition which unifies and generalizes almost all the ones previously
known.
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