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1. Introduction. A very important result in classical mechanics is Noether’s
Theorem, according to which, whenever a symplectic action of a Lie group G
consists of symmetries of a Hamiltonian H, then every element of the Lie algebra
of G gives rise to an integral of motion, i.e. a function that is conserved along
trajectories of the Hamiltonian vector field ~H associated to H. This is often a
very useful tool for solving the equations of motion, because finding integrals of
motion makes it possible to reduce the dimension of the system and, in extreme
cases for which the group of symmetries is very large, solve it completely.

In this note we state and prove a control-theory version of Noether’s theorem,
which says that every one-parameter group of symmetries of a control system
gives rise to a conservation law that is valid along biextremals. Equivalently, if M
denotes the state space of the system and G is a Lie group that acts as a group
of symmetries, then the “momentum map” µ from the cotangent bundle T ∗M to
the dual L(G)∗ of the Lie algebra of G is a vector-valued integral of motion along
biextremals. (The precise definition of “biextremals” is given in Section 4 below.
They are pairs consisting of a trajectory of the system and an extremal adjoint
vector, i.e. an “adjoint vector that minimizes the Hamiltonian.” In control theory,
these curves are sometimes known as “extremals,” or “Pontryagin extremals,”
although there is some confusion in the literature as to whether an “extremal”
is a trajectory of the system for which there exists an extremal adjoint vector,
or a pair consisting of a trajectory and an extremal adjoint vector. We choose to
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make precise the distinction between these two concepts, by reserving the word
“extremal” for the former, and using “biextremal” for the latter.)

As in the case of classical mechanics, integrals of motion can be used to reduce
the dimension of the system of equations that characterizes the biextremals, and in
some cases yield very detailed information on their structure. This phenomenon is
illustrated in Section 5 by analyzing the solution of the “Markov-Dubins problem”
in dimension 3, which exhibits some interesting features, such as the simultane-
ous occurrence of two families of optimal arcs, one of which consists of smooth
arcs, while the other one consists of nonsmooth arcs whose nonsmoothness has a
special structure, corresponding to the existence of a conserved quantity that is
the product of two functions that are not separately conserved.

The paper is organized as follows: in Section 2 we spell out our notational
conventions regarding manifolds and Hamiltonians, and review various versions
of the classical Noether Theorem, including a detailed discussion of the case when
the Hamiltonian H is only locally Lipschitz. In Section 3 we extend Noether’s
Theorem to a result about minimizing trajectories of a family of Hamiltonians
of class C1, and explain why this result does not extend to families of Lipschitz
Hamiltonians. In Section 4 we introduce the relevant definitions from control
theory and state and prove the control theory version of Noether’s Theorem.
Finally, in Section 5 we apply our result to the study of the Markov-Dubins
problem.

2. Review of Noether’s Theorem. Throughout this paper, the word
“smooth” will always mean “of class C∞.” A manifold is always, by definition,
smooth, finite-dimensional, Hausdorff, second countable, and without boundary.
If M is a manifold, we use TM , T ∗M to denote, respectively, the tangent and
cotangent bundles of M . If x ∈ M , then TxM , T ∗xM denote, respectively, the
tangent and cotangent spaces of M at x. Vector fields and 1-forms are continuous
by definition, and all additional smoothness requirements will be explicitly indi-
cated. We use Ck(M) to denote the space of all real-valued functions of class Ck

on M , and Γ k(E) to denote the space of sections of class Ck of a bundle E, so
for example Γ k(TM) and Γ k(T ∗M) are the spaces of vector fields and 1-forms
of class Ck on M . In particular, Γ∞(TM), equipped with the usual Lie bracket
operation for vector fields, is a Lie algebra.

The words “Lie algebra” mean “real, not necessarily finite-dimensional, Lie
algebra”. If L is a Lie algebra, then L∗ denotes the algebraic dual of L. A smooth
action of a Lie algebra L on a manifold M is a Lie algebra homomorphism θ from
L to Γ∞(TM).

A symplectic manifold is a manifold N equipped with a smooth closed non-
singular 2-form Ω.

From now on, N will always denote a symplectic manifold , and Ω will denote
the symplectic form of N .
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If k ≥ 1, then to every function H ∈ Ck(N) there is associated a vector field
~H ∈ Γ k−1(TN)—the Hamilton vector field of H—characterized by the property
that Ω( ~H,X) = 〈dH,X〉 for all X ∈ Γ 0(TN). A vector field X ∈ Γ 0(TN)
is Hamiltonian if X = ~H for some function H ∈ C1(N), and locally Hamilto-
nian if every x ∈ N has a neighborhood U on which X is Hamiltonian. We use
Γ kham,loc(TN) to denote the set of all locally Hamiltonian vector fields on N , and
Γ kham(TN) for the set of those Y ∈ Γ kham,loc(TN) that are globally Hamiltonian. If
H,K ∈ C1(N), then the Poisson bracket {H,K} is defined to be the function ~HK,
i.e. the derivative of K along the integral curves of ~H. The Poisson bracket is skew-
symmetric (i.e. such that {H,K} = −{K,H} for all H,K ∈ C1(N)), and satisfies
the Jacobi identity {H1, {H2, H3}} = {{H1, H2}, H3}+{H2, {H1, H3}} whenever
the Hi belong to C2(N). This implies that C∞(N), equipped with the Poisson
bracket, is a Lie algebra. Moreover, if H1, H2 ∈ C∞(N) and K = {H1, H2},
then ~K = [ ~H1, ~H2], so the map H → ~H from C∞(N) to Γ∞(TN) is a Lie-
algebra homomorphism, whose image is obviously Γ∞ham(TN). It follows that
both Γ∞ham(TN) and Γ∞ham,loc(TN) are Lie subalgebras of Γ∞(TN).

More generally, Ω gives rise to a bijective correspondence JΩ : Γ 0(T ∗N) →
Γ 0(TN) between 1-forms and vector fields on N . The vector field JΩ(ξ) that cor-
responds to a 1-form ξ ∈ Γ 0(T ∗N) is characterized by the fact thatΩ(JΩ(ξ), X) =
〈ξ,X〉 for all X ∈ Γ 0(TN). The Hamiltonian vector fields are precisely those that
correspond to exact 1-forms, and the locally Hamiltonian ones are those associ-
ated to closed 1-forms. (A continuous 1-form ξ is closed if it is locally exact.)
The locally Hamiltonian vector fields can also be characterized as infinitesimal
generators of one-parameter groups of symplectic diffeomorphisms, provided that
they are smooth enough for these groups to exist. More precisely, for a C1 vec-
tor field X on N , the following conditions are equivalent: (i) J−1

Ω (X) is closed,
(ii) X is locally Hamiltonian, (iii) LXΩ ≡ 0, (iv) (etX)∗(Ω) = Ω for all t ∈ R.
(Here LX denotes Lie differentiation in the direction of X, {etX}t∈R is the flow
of X, (etX)∗(Ω) denotes the pullback of Ω by the map etX , and the equality
(etX)∗(Ω) = Ω is understood to hold on the domain of etX , which need not be
the whole manifold N , since X need not be complete.) If X is only of class C0,
then (i), (ii) and (iii) are still equivalent. (Recall that the Lie derivative LXT is
always well defined as a distributional tensor field if T is a smooth tensor field
and X is a distributional vector field.) However, (iv) need not make sense, since
X may fail to have unique trajectories.

The above characterization implies that to every local smooth one-parameter
group {gt} of symplectic diffeomorphisms of N there correspond, locally, smooth
functions h such that gt = et

~h. To make this completely precise, we should
establish a bijective correspondence between Γ kham,loc(TN) and the set of sections
of an appropriate sheaf Sk. (The correct choice of Sk is the sheaf of germs of
functions of class Ck+1 modulo the constant germs.) In the specific example of
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interest to us, we can avoid general sheaf language, and define the correspondence
directly, as follows. We define a local function on N to be a continuous real-valued
function K whose domain Dom(K) is an open subset of N . We then associate to
each vector field Y ∈ Γ 0(N) the collection ν(Y ) of all local functions K such that
K ∈ C1(Dom(K)) and ~K = Y on Dom(K). Then Y ∈ Γ 0

ham,loc(N) if and only if
the domains of the local functions in ν(Y ) cover N .

The identity {H,K} = −{K,H} says that {H,K} is also equal to minus the
derivative of H along the integral curves of ~K. This implies, in particular, that

(I) if H, K are functions of class C1 on N such that H is constant along all
trajectories of ~K, then K is constant along all trajectories of ~H.

Properly reinterpeted, the above statement remains true if H is only locally
Lipschitz, as we now show. A locally Lipschitz function H has a well defined
generalized gradient ∂H in the sense of F. Clarke (cf. [3]). By definition, ∂H is
a set-valued map that assigns to each x ∈ N the subset ∂H(x) of T ∗xN defined
as follows: we let D(H) denote the set of all points y ∈ N such that H is differ-
entiable at y, and let ∂H(x) be the convex hull of the set of all z ∈ T ∗xN that
can be expressed as a limit z = limj→∞ dH(xj), for some sequence {xj} in D(H)
such that xj → x as j → ∞. (The fact that many such sequences exist follows
from Rademacher’s Theorem, according to which H is differentiable almost every-
where.) Then it is well known that ∂H(x) is a nonempty compact convex subset
of T ∗xN . We then define ~H(x) = J−1

Ω (∂H(x)), so ~H(x) is a nonempty, compact
convex subset of TxN . A trajectory of ~H is now a solution of the differential
inclusion ẋ ∈ ~H(x), i.e. a locally absolutely continuous curve γ : I → N , defined
on an interval I ⊆ R, such that γ̇(t) ∈ ~H(γ(t)) for almost all t ∈ I.

Now, if H is constant along trajectories of K, then 〈dH(x), ~K(x)〉 = 0 when-
ever x ∈ D(H), because 〈dH(x), ~K(x)〉 = d

dt

∣∣
t=0

(H(γ(t))), where γ is any integral
curve of ~K such that γ(0) = x. If x ∈ N , and {xj} is a sequence in D(H) such that
xj → x and {dH(xj)} converges to a limit z ∈ T ∗xN , then 〈z, ~K(x)〉 = 0, since
~K is continuous. Therefore 〈z, ~K(x)〉 = 0 for all z ∈ ∂H(x). So Ω(v, ~K(x)) = 0
for all v ∈ ~H(x), so that vK = 0 whenever v ∈ ~H(x). If γ is a trajectory of ~H, it
follows that the derivative of the function t → K(γ(t)) vanishes for almost all t.
So K is constant along γ, since K ◦ γ is locally absolutely continous.

So we have shown that

(II) if H is a locally Lipschitz function on N , and K is a function of class C1

on N such that H is constant along all trajectories of ~K, then K is constant
along all trajectories of ~H.

From now on, we will be primarily interested in functions K of class C∞. For
an arbitrary function H : N → R, define ΛH (or Λ(N,Ω,H) if we wish to spell
out the explicit dependence on N and Ω) to be the set of all K ∈ C∞(N) such
that H is constant along all integral curves of ~K. We then have
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Proposition 2.1. ΛH is a Lie subalgebra of C∞(N).

P r o o f. If H ∈ C2(N), then the conclusion follows easily from the basic
properties of the Poisson bracket, since K ∈ ΛH if and only if {K,H} = 0. If H
is an arbitrary function, then we cannot use Poisson brackets, so we use instead
the orbit teorem of [10]. According to this result, if S is any set of vector fields
on a smooth manifold M , then M is partitioned into connected, immersed (but
not necessarily embedded) submanifolds—the S-orbits—such that (a) two points
x1, x2 of M belong to the same S-orbit if and only if x2 can be reached from x1 by
means of a finite concatenation of integral curves of members of S, and (b) every
integral curve γ of an X ∈ S is smooth as a map into the S-orbit O that contains
γ. From these properties it follows that every X ∈ S is tangent to all the S-orbits.
If we let L(S) denote the Lie algebra of vector fields generated by S, then every
X ∈ L(S) is tangent to all the S-orbits. Since the S-orbits constitute a partition
of M , it follows that every integral curve of an X ∈ L(S) is entirely contained in
an S-orbit. Now, if ϕ : M → R is an arbitrary function which is constant along
all integral curves of members of S, then Property (a) implies that ϕ is constant
on every S-orbit, so ϕ is constant along all integral curves of members of L(S).
If we apply this with M = N , S = ΛH , ϕ = H, we find that L(ΛH) ⊆ ΛH , and
our conclusion follows.

We define a map µH : N → Λ∗H by letting

(2.1) µH(x)(K) = K(x) for K ∈ ΛH , x ∈ N .

Then (II) implies

(III) if H is a locally Lipschitz function on N , then µH(x) is constant along all
trajectories of ~H.

The above results can be stated in terms of infinitesimal symmetries, by using
the relationship between Hamiltonian vector fields and one-parameter groups of
symplectic diffeomorphisms. We define an infinitesimal symmetry of H to be a
smooth vector field Y on N such that (i) the flow maps etY arising from Y are
symplectic (i.e. (etY )∗(Ω) = Ω on the domain of etY for all t ∈ R), and (ii) H
is constant along all integral curves of Y . We use LH to denote the set of all
infinitesimal symmetries of H. It is clear that a vector field Y ∈ Γ∞(TN) is in
LH if and only if it is locally Hamiltonian and satisfies (ii). Therefore, if Y ∈ LH
and K ∈ ν(Y ), then H is constant along all integral curves of ~K. So (II) applies,
and we get

(IV) if H is a locally Lipschitz function on N , and Y is an infinitesimal symmetry
of H, then (i) every x ∈ N belongs to the domain of a local function K such
that K ∈ ν(Y ), and (ii) every local function K ∈ ν(Y ) is constant along all
trajectories of ~H that are contained in Dom(K).

Now suppose L is a real Lie algebra. A symplectic action of L on N is a
Lie algebra homomorphism θ from L to Γ∞ham,loc(TN), i.e. a smooth action of L
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on N such that every vector field θ(X), X ∈ L, is locally Hamiltonian. A local
momentum map for a symplectic action θ is a L∗-valued map µ, defined on an
open subset V of N , such that for every X ∈ L the function µX : Dom(µ) → R
given by µX(x) = µ(x)(X) is smooth on V and satisfies the identity θ(X) = ~µX
throughout V . (Equivalently, a local momentum map is a way of assigning to each
X ∈ L a smooth function µX on some fixed open set V , such that ~µX = θ(X) on
V , and µX depends linearly on X.) It is clear that every point x ∈ N belongs
to the domain of a local momentum map, since we can always choose V to be
a neighborhood of x which is diffeomorphic to a ball, and define µX to be the
unique smooth function ϕ on V such that ϕ(x) = 0 and ~ϕ = θ(X) on V .

An infinitesimal group of symmetries of a function H : N → R is a symplectic
action θ on N of a real Lie algebra L, such that H is constant along all integral
curves of the vector fields θ(X), X ∈ L. Then

(V) if H is a locally Lipschitz function on N , and θ : L→ LH is an infinitesimal
group of symmetries of H, then (i) every x ∈ N belongs to the domain of a
local momentum map µ, and (ii) every local momentum map µ is constant
along all trajectories of ~H that are contained in Dom(µ).

There is one important situation when there exists a canonical, globally de-
fined momentum map. This is the case when N is the cotangent bundle T ∗M
of a smooth manifold M , and the symplectic action θ of L on N is the action
T ∗(τ) : L → Γ∞ham(T T ∗M) on T ∗M obtained by lifting to T ∗M a smooth ac-
tion τ of L on M . (Recall that every vector field X ∈ Γ∞(TM) gives rise
to a smooth function hX on T ∗M , defined by letting hX(x, z) = 〈z,X(x)〉 for
x ∈ M , z ∈ T ∗xM . It is easy to verify that the identity {hX , hY } = h[X,Y ]

holds, so the map X → hX is a Lie algebra homomorphism from (Γ∞(TM), [·, ·])
to (C∞(T ∗M), {·, ·}). Also, the map h→ ~h is a Lie algebra homomorphism from
(C∞(T ∗M), {·, ·}) to (Γ∞ham(T T ∗M), [·, ·]). The action T ∗(τ) is then defined by
letting T ∗(τ)(X) = ~hτ(X).) In this case, the obvious choice of a momentum
map is given by letting µ(x, z)(X) = hθ(X)(x, z), i.e. µ(x, z) = 〈z, θ(X)(x)〉, for
(x, z) ∈ T ∗M . We use µτ to denote this canonical momentum map, so µτ is an
L∗-valued function on T ∗M . Then (V) implies

(VI) if M is a smooth manifold , H : T ∗M → R is a locally Lipschitz function,
and τ : L→ Γ∞(TM) is a smooth action of a Lie algebra L on M such that
the induced symplectic action T ∗(τ) is an infinitesimal group of symmetries
of H, then the momentum map µτ is constant along all trajectories of ~H.

Statements (I), (II), (III), (IV), (V) and (VI) are versions of Noether’s Theorem.

3. Minimizing trajectories of Hamiltonian families. We now present a
form of Noether’s Theorem for minimizing trajectories of a family of Hamiltonian
functions. This will be the crucial ingredient needed for the statement and proof—
in Section 4—of the control-theoretic analogue of Noether’s Theorem.
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If N is a symplectic manifold, a Hamiltonian family on N is a parametrized
family H = {Hu : u ∈ U} of continuous real-valued functions on N . We call H
locally Lipschitz, or of class Ck, if each Hu is locally Lipschitz, or of class Ck. If
H is a Hamiltonian family of class C1, then we define set-valued maps ~H, ~Hmin,
that assign to each x ∈ N the subsets ~H(x), ~Hmin(x), of TxM given by

(3.1) ~H(x) = { ~Hu(x) : u ∈ U} .
(3.2) ~Hmin(x) = { ~Hu(x) : u ∈ U , Hu(x) = min {Hv(x) : v ∈ U} } .
A trajectory of a Hamiltonian family H of class C1 is a locally absolutely contin-
uous map γ : I → N , defined on an interval I ⊆ R, such that γ̇(t) ∈ ~H(γ(t)) for
almost all t ∈ I. A trajectory γ : I → N of H is minimizing if γ̇(t) ∈ ~Hmin(γ(t))
for almost every t ∈ I. We use T (H), T min(H) to denote, respectively, the class
of all trajectories of H, and that of all minimizing trajectories of H.

If H = {Hu : u ∈ U} and H̃ = {H̃u : u ∈ Ũ} are two Hamiltonian families on
N , we write H ⊆ H̃ if every function Hu also occurs in H̃, i.e. if for every u ∈ U
there exists a ũ ∈ Ũ such that Hu = H̃ũ. If V is an open subset of N , H is a
Hamiltonian family on N , and ρ : V → N is a continuous map, then the pullback
ρ∗H of H by ρ is the family {Hu ◦ ρ : u ∈ U}. The restriction HdV of H to V is
the pullback of H by the inclusion map from V to N . A smooth diffeomorphism
ρ from an open subset V1 of N to another open subset V2 is a symmetry of a
Hamiltonian family H if ρ∗H ⊆ HdV1 and (ρ−1)∗H ⊆ HdV2.

An infinitesimal symmetry of a Hamiltonian family H on N is a smooth lo-
cally Hamiltonian vector field X on N such that the diffeomorphisms etX are
symmetries of H for all t ∈ R.

The following result is the analogue of Version (II) of Noether’s Theorem for
minimizing trajectories of Hamiltonian families:

Theorem 3.1. Let N be a symplectic manifold and let H = {Hu : u ∈ U}
be a Hamiltonian family of class C1 on N . Let K be a smooth function on N
such that ~K is an infinitesimal symmetry of H. Then K is constant along every
minimizing trajectory of H.

P r o o f. Let γ : I → N be a minimizing trajectory of H. Let f(t) = K(γ(t)).
Then f is locally absolutely continuous, so our conclusion will follow if we show
that the derivative of f vanishes almost everywhere. Let E be the set of those
t ∈ I such that γ̇(t) exists and belongs to ~Hmin(γ(t)). Then E is of full measure
in I. So it suffices to show that f ′(t) = 0 for t ∈ E. Pick a t ∈ E. Let p = γ(t).
Pick u ∈ U such that γ̇(t) = ~Hu(p) and

(3.3) Hu(p) = min {Hw(p) : w ∈ U} .

Clearly, f ′(t) = ( ~HuK)(p), i.e. f ′(t) = {Hu,K}(p). So we need to prove that
{Hu,K}(p) = 0, and this will follow if we show that

(3.4)
d

ds

∣∣∣∣
s=0

Hu(es ~K(p)) = 0 .
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Now, since the map ρs = es
~K is a symmetry of H, there exists, for every s such

that es ~K(p) is defined—and in particular for every s in some interval (−δ, δ),
δ > 0—a v(s) such that Hu ◦ ρs = Hv(s) on the domain of ρs. This implies that
Hu(ρs(p)) = Hv(s)(p) for s ∈ (−δ, δ). On the other hand, Hv(s)(p) ≥ Hu(p), be-
cause of (3.3). So Hu(ρs(p)) ≥ Hu(p) for s ∈ (−δ, δ). Therefore the continuously
differentiable function (−δ, δ) 3 s→ Hu(ρs(p)) has a minimum at s = 0. So (3.4)
follows, and our proof is complete.

R e m a r k 3.1. An alternative proof of Theorem 3.1 is possible if H satisfies
the additional requirement that the function Hinf : N → [−∞,∞] given by

Hinf (x) = inf {Hu(x) : u ∈ U}

is everywhere finite and locally Lipschitz. Indeed, in that case it is easy to see that
Hinf is constant along trajectories of ~K, so Version (II) of Noether’s Theorem
implies that K is constant along every trajectory of ~Hinf . On the other hand,
every minimizing trajectory of H is a trajectory of ~Hinf . (Indeed, suppose that
γ : I → N and γ ∈ T min(H). Let E be the set of those t ∈ I such that γ̇(t) exists
and is equal to ~Hu(γ(t)) for some u ∈ U for which Hu(γ(t)) = min {Hw(γ(t)) :
w ∈ U}. Then E is of full measure in I. Let t ∈ E, and write p = γ(t). Then
the function x→ ψ(x) def= Hu(x)−Hinf (x) vanishes at x = p, and is everywhere
nonnegative. Therefore ψ has a local minimum at p. Since ψ is locally Lipschitz, it
follows from standard properties of the generalized gradient that 0∈∂ψ(p). More-
over, ∂ψ(p) = {dHu(p) − v : v ∈ ∂Hinf (p)}. So dHu(p) ∈ ∂Hinf (p). Therefore
~Hu(p) ∈ ~Hinf (p). So γ̇(t) = ~Hu(γ(t)) ∈ ~Hinf (γ(t)). Since this is true for every
t ∈ E, γ is a trajectory of ~Hinf , as stated.) Combining these two observations,
we see that K is constant along every minimizing trajectory of H.

R e m a r k 3.2. If H is a locally Lipschitz Hamiltonian family, then we can
still define a set-valued map ~H, by letting

(3.5) ~H(x) =
⋃
{ ~Hu(x) : u ∈ U} .

One can then define trajectories, and minimizing trajectories, exactly as in the
C1 case. However, Theorem 3.1 need not be true if the Hamiltonians Hu are
only locally Lipschitz , even if the minimized Hamiltonian Hinf is smooth. For
an example of this, let N be an arbitrary symplectic manifold, and let U be the
set of all nonnegative locally Lipschitz real-valued functions on N . Then define
H = {Hu : u ∈ U} by just letting Hu = u. It is clear that Hinf ≡ 0, which is
obviously smooth. Moreover, given any x̄ ∈ N and any vector v ∈ Tx̄N , it is easy
to show that there exists u ∈ U such that u(x̄) = 0 and v ∈ ~u(x̄). (It suffices to
construct a nonegative locally Lipschitz function w : N → R that, for some chart
x→ κ(x) near x̄ such that κ(x̄) = 0, coincides with ||κ(x)|| near x̄. Then ∂w(x̄)
is a neigborhood of 0 in T ∗x̄N , so ~w(x̄) is a neigborhood of 0 in Tx̄N . It follows
that, if r > 0 is sufficiently large, and we take u = rw, then v ∈ ~u(x̄).) This
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implies that every absolutely continuous curve in N is a minimizing trajectory of
H. On the other hand, if K is an arbitrary smooth function on N , then ~K is an
infinitesimal symmetry of H. So, if Theorem 3.1 was true for H, it would follow
that every smooth function on N is constant along every absolutely continuous
curve on N , a fact that is obviously false if dimN > 0.

R e m a r k 3.3. The preceding example shows, in particular, that when H
is a locally Lipschitz family, it need not be true that all minimizing trajectories
of H are trajectories of Hinf , even when Hinf is smooth. This explains why the
proof of Theorem 3.1 given in Remark 3.1 fails for locally Lipschitz families. More
precisely, the step where continuous differentiability is crucial is the passage from
“0 ∈ ∂ψ(p)” to “γ̇(t) ∈ ~Hinf (γ(t)),” which depends on the fact that ~Hu(t)(γ(t))
consists of a single point.

Naturally, Theorem 3.1 has several corollaries involving momentum maps. We
summarize these in the following

Theorem 3.2. Let N be a symplectic manifold and let H = {Hu : u ∈ U}
be a Hamiltonian family of class C1 on N . Let L be a Lie algebra, and let
θ : L→ Γ∞ham,loc(TN) be a smooth symplectic action of L on N such that every
θ(X), X ∈ L, is an infinitesimal symmetry of H. Then: (i) every x∈N belongs to
the domain of a local momentum map µ of θ, and (ii) every local momentum map
µ is constant along all minimizing trajectories of H that are contained in Dom(µ).
In particular , if N = T ∗M , where M is a manifold , and τ : L → Γ∞(TM) is a
smooth action of a Lie algebra L on M such that the induced symplectic action
T ∗(τ) is an infinitesimal group of symmetries of H, then the momentum map µτ

is constant along all minimizing trajectories of H.

4. An optimal control version of Noether’s Theorem. We now apply
Theorems 3.1 and 3.2 to optimal control problems.

First, we define a vector field system on a manifold M to be a parametrized
family f = {fu : u ∈ U} of vector fields on M . We call such a family locally
Lipschitz, or of class Ck, if every vector field fu is locally Lipschitz, or of class
Ck. The set U is called the control space of f . A Lagrangian on M is a family
f0 = {f0

u : u ∈ U} of continuous functions on M . Again, the set U is the control
space of f0, and we call f0 locally Lipschitz, or of class Ck, if every function f0

u

is locally Lipschitz or of class Ck.
An optimal control system is a 4-tuple P = (M,U, f, f0), where M is a smooth

manifold, U is a set, f is a vector field system on M with control space U , and
f0 is a Lagrangian on M with control space U . A control for P is a U -valued
map t → η(t), defined on a compact subinterval I of R. To a control η we
associate a time-varying vector field M × I 3 (x, t)→ fη(x, t) ∈ TxM by letting
fη(x, t) = fη(t)(x), and a function M × I 3 (x, t) → f0,η(x, t) ∈ R given by
f0,η(x, t) = f0

η(t)(x). A trajectory for a control η : I → U is an absolutely
continuous curve γ : I → M such that γ̇(t) = fη(γ(t), t) for almost all t ∈ I. If
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I = [a, b], then we write t−(γ) def= a, t+(γ) def= b, x−(γ) def= γ(a), x+(γ) def= γ(b), and
we refer to t−(γ), t+(γ), x−(γ), x+(γ), respectively, as the initial time, terminal
time, initial state and terminal state of γ. A controlled trajectory of P is a pair
(γ, η) such that η is a control and γ is a trajectory for η.

For a control η, we define F η(x, t) = (fη(x, t), f0,η(x, t)). A control η : I → U
is P-admissible if the map F η satisfies the following Lipschitz-Carathéodory con-
ditions: (i) F η(x, t) is Lebesgue measurable with respect to t for each fixed x, and
locally Lipschitz with respect to x for each fixed t, (ii) for each compact subset K
of the domain Dom(κ) of a coordinate chart κ = (x1, . . . , xn) of M there exists an
integrable function ϕ : I → R such that, if we let fη(x, t) =

∑n
j=1 f

j,κ,η(x, t) ∂
∂xj ,

for (x, t) ∈ Dom(κ) × I, and write f0,κ,η(x, t) = f0,η(x, t), then the inequalities
|f j,κ,η(x, t)| ≤ ϕ(t) and |f j,κ,η(x, t) − f j,κ,η(y, t)| ≤ ϕ(t)||κ(x) − κ(y)|| hold for
(x, y, t) ∈ K ×K × I, j = 0, . . . , n.

An admissible controlled trajectory of P is a controlled trajectory (γ, η) such
that η is admissible. We use ACT (P) to denote the set of all controlled admissible
trajectories of P. The cost C(γ, η) of a (γ, η) ∈ ACT (P) is given by

(4.1) C(γ, η) def=
t+(γ)∫
t−(γ)

f0,η(γ(t), t)dt .

A (γ, η) ∈ ACT (P) is optimal if C(γ, η) ≤ C(γ̂, η̂) for all (γ̂, η̂) ∈ ACT (P) such
that x−(γ̂) = x−(γ) and x+(γ̂) = x+(γ), and fixed-time optimal if C(γ, η) ≤
C(γ̂, η̂) for all (γ̂, η̂) ∈ ACT (P) that satisfy x−(γ̂) = x−(γ), x+(γ̂) = x+(γ) and
have the same duration as (γ, η), i.e. are such that t+(γ̂)−t−(γ̂) = t+(γ)−t−(γ).

To an optimal control system P = (M,U, f, f0) we associate, for each real
number c, a Hamiltonian family Hc(P) on T ∗M , by letting Hc(P) = {Hc,P

u : u ∈
U}, where

(4.2) Hc,P
u (x, z) = 〈z, fu(x)〉+ cf0

u(x) for x ∈M, z ∈ T ∗xM .

Then it is clear that, if f and f0 are locally Lipschitz, or of class Ck, the same is
true of the Hamiltonian families Hc(P). If (γ, η) ∈ ACT (P), an extremal adjoint
vector, or multiplier, along (γ, η) is a pair (ζ, c) such that c ∈ R, c ≥ 0, and the
following three conditions are satisfied:

(EAV1) ζ is an absolutely continuous field of covectors along γ, i.e. a map
that assigns to each t ∈ [t−(γ), t+(γ)] a covector ζ(t) ∈ T ∗γ(t)M ;

(EAV2) the curve t→ Ξ(t) = (γ(t), ζ(t)) satisfies the “adjoint equation”

(4.3) Ξ̇(t) ∈ ~Hc,P
η(t)(Ξ(t))

and the “Hamiltonian minimization condition”

(4.4) Hc,P
η(t)(Ξ(t)) = min{Hc,P

u (Ξ(t)) : u ∈ U} = constant

for almost all t ∈ I;
(EAV3) (ζ(t), c) 6= (0, 0) for all t ∈ I.
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A triple (γ, ζ, η) such that (γ, η) ∈ ACT (P) and (ζ, c) is an extremal adjoint
vector along (γ, η) will be called a controlled c-biextremal of P. If (γ, ζ, η) is a
controlled c-biextremal for some c, then we will say that (γ, ζ, η) is a controlled
biextremal. A (γ, η) ∈ ACT (P) will be called a controlled extremal if there exists
an extremal adjoint vector along (γ, η), i.e. if there exist ζ such that (γ, ζ, η) is a
controlled biextremal. A curve Ξ = (γ, ζ) in T ∗M is a biextremal if there exist η
such that (γ, ζ, η) is a controlled biextremal.

The Pontryagin Maximum Principle (cf. [1], [2], [3], [5], [6], [8], [13]) says
that (a) if (γ, η) ∈ ACT (P) is fixed-time optimal, then it is a controlled extremal,
and (b) if in addition (γ, η) is optimal, then the multiplier (ζ, c) can be chosen so
that the constant of (4.4) vanishes.

It is clear that, if (γ, ζ, η) is a controlled c-biextremal, and r > 0, then (γ, rζ, η)
is a controlled rc-biextremal. In particular, we can restate the first part of the
Maximum Principle by restricting c to be either 0 or 1: if (γ, η)∈ACT (P) is fixed-
time optimal, then there exist c, ζ such that (γ, ζ, η) is a controlled c-biextremal
and c = 0 or c = 1.

If (γ, ζ, η) is a controlled c-biextremal, then (γ, ζ) is a minimizing trajectory of
the Hamiltonian family Hc(P). This means that Theorem 3.1 is applicable in any
situation where we can produce interesting infinitesimal groups of symmetries of
Hc(P). We now explain how such symmetries of the Hamiltonian families Hc(P)
associated to an optimal control system P arise from symmetries of P itself.

A symmetry of an optimal control system P = (M,U, f, f0) is a diffeomor-
phism σ : V1 → V2, where V1, V2 are open subsets of M , such that for ev-
ery u ∈ U there exist u1, u2 ∈ U for which (i) dσ(x)(fu(x)) = fu1(σ(x)) and
dσ(x)(fu2(x)) = fu(σ(x)) for all x ∈ V1, and (ii) f0

u1
◦ σ = f0

u and f0
u ◦ σ = f0

u2
.

An infinitesimal group of symmetries of P is a smooth action τ : L→ Γ∞(TM)
on M of a Lie algebra L, such that every diffeomorphism etτ(X), X ∈ L, is a
symmetry of P.

To an infinitesimal group of symmetries τ : L → Γ∞(TM) of an optimal
control system P = (M,U, f, f0) we associate the momentum map µτ : T ∗M →
L∗, given by µτ (x, z)(X) = 〈z, τ(X)(x)〉.

We are now ready to state and prove the control theory version of Noether’s
Theorem:

Theorem 4.1. Assume that P = (M,U, f, f0) is an optimal control system of
class C1, L is a Lie algebra, and τ : L → Γ∞(TM) is an infinitesimal group of
symmetries of P. Let Ξ be a biextremal of P. Then the function µτ : T ∗M →
L∗ is constant along Ξ, that is, all the scalar Hamiltonian functions (x, z) →
〈z, τ(X)(x)〉, X ∈ L, are constant along Ξ.

P r o o f. Let Ξ = (γ, ζ), and assume that η, c are such that (γ, ζ, η) is a
controlled c-biextremal. Then the adjoint equation (4.3) and the minimization
condition (4.4) say that Ξ is a minimizing trajectory of Hc(P). On the other
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hand, it is easy to see that T ∗(τ) is an infinitesimal group of symmetries of
Hc(P). So we can apply Theorem 3.2, and our conclusion follows.

5. Shortest paths with a curvature bound. As an illustration of the
use of the Maximum Principle in conjunction with the control theory version of
Noether’s Theorem, we outline some of the basic steps of our recently obtained
solution of the three-dimensional version of the “Markov-Dubins-Reeds-Shepp
problem,” posed by Markov in [7], and solved completely in 1957 by L. Dubins in
[4] for the two-dimensional case. (Cf. also [9] for the solution of a related problem,
and [11] for a detailed treatment of both problems using optimal control. The
three-dimensional problem was open until May 1992.)

The problem is that of characterizing the shortest curves t → x(t) ∈ R3 of
class C1 that are parametrized by arc length, satisfy a curvature bound ||ẍ|| ≤ 1,
and go from a given initial position and velocity to a given terminal position and
velocity. Precisely, let A0 be the class of all curves t → x(t) that are defined on
some compact interval, and satisfy (i) x(·) is of class C1, (ii) ||ẋ(t)|| = 1 for all
t, (iii) ẋ is absolutely continuous, and (iv) ||ẍ(t)|| ≤ 1 for all t. For x̄, x̂ in R3,
and ȳ, ŷ unit vectors in R3, let A0(x̄, ȳ, x̂, ŷ) be the set of all those x(·) ∈ A0

that start at x̄ with velocity vector ȳ and end at x̂ with velocity vector ŷ. Let
M0(x̄, ȳ, x̂, ŷ) be the set of those curves in A0(x̄, ȳ, x̂, ŷ) that are of minimum
length (i.e. shorter than any other curve in A0(x̄, ȳ, x̂, ŷ)). Let M0 be the union
of the sets M0(x̄, ȳ, x̂, ŷ) over all pairs of initial and terminal conditions. The
problem is to characterize M0.

It is more convenient to introduce the velocity y as a new variable, taking
values in the unit sphere S2 in R3, and to consider the class A of arcs of the
form t → (x(t), ẋ(t)), where x(·) ∈ A0. Precisely, we let M = R3 × S2, and
define A as the class of all arcs t→ (x(t), y(t)) such that x is of class C1, y is
absolutely continuous, ẋ ≡ y, and ||ẏ|| ≤ 1 almost everywhere. Clearly, x is then
parametrized by arc-length since, by definition, y takes values in S2. So the length
of the arc x is the same as the time, i.e. the length of the interval Dom(x). We
let M be the class of all arcs (x, y) ∈ A that minimize time among all arcs with
the same initial and terminal conditions.

We can formulate this as a control problem of the kind considered in this
paper by writing the dynamical equations as

(5.1) ẋ = y, ẏ = y × w,

where the control w is restricted to taking values in B3, the closed unit ball in R3.
In other words, the control space U is B3, and the vector fields fw, for w ∈ U , are
given by fw(x, y) = (y, y×w). (Notice that y×w is tangent to S2, so fw(x, y) is
tangent to M .) The Lagrangian f0 = {f0

w : w ∈ U} is just given by f0
w ≡ 1. The

admissible controls then turn out to be the measurable functions t→ w(t) ∈ B3.
It is easy to see that the class of all trajectories of this system is exactly A.

To characterize the minimum-time trajectories, we use the Maximum Principle.
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The Hamiltonian is

(5.2) H = 〈λ, y〉+ 〈µ, y × w〉,
where we write a general covector z in R3 × S2 as the pullback of a covector z̃ in
R6, i.e. in R3 × R3, and write z̃ as (λ, µ), where λ and µ belong to R3. (Strictly
speaking, we should have written 〈λ, y〉 + 〈µ, y × w〉 + c, where c is a constant,
but c has no effect on the adjoint equation or the minimization condition, so we
omit it. Notice, however, that c has to be ≥ 0, and H + c must vanish, so H has
to be ≤ 0.)

To apply the Hamiltonian minimization condition we first use the cross-
product identity 〈A,B×C〉 = 〈B,C×A〉 to rewrite H as H = 〈λ, y〉+ 〈w, µ×y〉.
It is then clear that the minimization of H is achieved by letting

(5.3) w = − µ× y
||µ× y||

if µ× y 6= 0.

If µ × y = 0, then any value of w in B3 is minimizing. We can capture all these
possibilities by rewriting the minimization condition in the form

(5.4) ||µ× y||w = −µ× y.
At this point, we have—at least as long as µ × y 6= 0—a closed, smooth system
of ordinary differential equations for x, y, λ, and µ, consisting of our original
dynamical equations, plus the adjoint equations, plus the formula for w. We could
try to analyze this system directly and, in particular, try to understand how the
solutions in the “smooth” region where µ × y 6= 0 connect up with those in
µ× y = 0.

It turns out that it is much simpler to use Noether’s Theorem to reduce the
dimension of the system by finding conserved quantities. Our system is clearly
invariant under the 6-dimensional group of rigid motions of R3. Consider first the
action of the translations. For v ∈ R3, let τv be the translation x→ x+v. Then τv
acts on the state and control variables of our system via τv(x, y, w) = (x+v, y, w).
The infinitesimal generators of the action of the translations on M are the vector
fields Xv given by Xv(x, y) = (v, 0). The Hamiltonian function corresponding
to Xv is hXv = 〈λ, v〉. By Noether’s Theorem, this function is constant along
biextremals. Since this is true for every vector v, it follows that the vector λ itself
has to be constant.

The constancy of λ could have been ascertained directly from the adjoint
equations, by observing that the Hamiltonian does not contain x explicitly, and
therefore the adjoint equation for λ says that λ̇ = 0. A much more interesting
conservation law is derived by using rotational invariance. A rotation matrix
R ∈ SO(3) acts on M × B3 via R(x, y, w) = (Rx,Ry,Rw). The infinitesimal
generators are the skew-symmetric matrices A ∈ so(3). To each such matrix
there corresponds a vector field YA on M , given by YA(x, y) = (Ax,Ay). The
Hamiltonian hYA

corresponding to YA is given by hYA
= 〈λ,Ax〉 + 〈µ,Ay〉. So

this quantity has to be conserved for every A. Now recall that the skew-symmetric
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transformations or R3 are exactly the maps of the form u→ v×u, where v ∈ R3.
So what we have shown is that the expression 〈λ, v × x〉 + 〈µ, v × y〉 has to be
conserved for every vector v. Using 〈A,B×C〉 = 〈B,C×A〉 again, we can rewrite
this expression as 〈v, x× λ〉+ 〈v, y × µ〉. Since this has to be constant for every
v, we conclude that the vector

(5.5) V = x× λ+ y × µ

is conserved. Moreover, we can also conclude that λ and V cannot both vanish.
Indeed, if λ = 0 and V = 0, then it would follow that y × µ = 0. But this would
mean that the pullback of µ to S2 (i.e. the component of µ orthogonal to y)
vanishes, so the pullback of (λ, µ) vanishes as a covector in M , contradicting the
nontriviality condition of the Maximum Principle.

R e m a r k 5.1. Notice at this point the importance of formulating the Max-
imum Principle on a manifold. If we had taken the state space of our problem to
be R6, then the nontriviality condition would just have said that (λ, µ) 6= (0, 0).
It is easy to see that for any trajectory of our system one can find minimizing
adjoint vectors that satisfy this weaker nontriviality property. So if the problem
is formulated in R6 rather than in R3 × S2, then every trajectory is an extremal
and the Maximum Principle gives no information whatsoever.

If λ = 0, then µ× y must be constant and nonzero. But, in view of (5.3), this
implies that w is constant. Since y is orthogonal to w, we see that the velocity y is
perpendicular to a fixed nonzero vector. This implies that the arc x(·) is entirely
contained in a plane P in R3. It follows in particular that x(·) minimizes length
among all the arcs in A that have the same initial and terminal conditions as x(·),
and are contained in P . So x(·) is a solution of the two-dimensional version of our
problem. The solution of the problem in dimension 2 was obtained by Dubins, who
showed that every optimal trajectory is a concatenation of at most three pieces,
at most one of which is a straight line segment, while the others are portions of
circles of radius one. Moreover, in the three circles case, the intermediate circle
has to have length ≥ π. Since the solution of the plane problem is known, we will
concentrate here on nonplanar optimal trajectories, i.e. trajectories that are not
contained in a plane. For such a trajectory, λ 6= 0, as shown above.

It is interesting to consider the scalar conserved quantity

(5.6) C
def= 〈λ, V 〉.

Clearly, C = 〈λ, y × µ〉, since λ is orthogonal to x× λ. Using 5.4, we find

(5.7) C = 〈λ,w〉 ||µ× y||.

In other words, the conserved quantity C is the product of two expressions, which
need not be individually conserved. This product representation has important
consequences for the structure of the optimal trajectories. Notice that when C 6= 0
then ||µ× y|| can never vanish, so we can write the equation for the trajectory in
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the form

(5.8) ẋ = y, ẏ = y ×
(

V − x× λ
||V − x× λ||

)
,

with full assurance that the denominator never vanishes. The solutions of this
equation are obviously smooth. A more detailed analysis shows that the curves
that satisfy (5.8) are in fact parametrized by arc-length and have curvature 1,
and their torsion satisfies a third-order differential equation without arbitrary
constants. (In particular, there is a four-parameter family of such curves through
every point.) The helixes (i.e. curves with constant torsion) are included in this
family.

If C = 0, then nonsmooth curves can occur. The mechanism that permits
nonsmoothness is the product structure described above. The function 〈λ,w〉 can
vanish identically while µ×y 6= 0, but if µ×y ever becomes zero then it is possible
for 〈λ,w〉 to become nonzero, as long as µ×y stays equal to 0. A detailed analysis
of this situation shows that in this case one obtains concatenations of circles and
straight lines as in the plane case. All this is studied in detail in [12].
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