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Abstract. Well-formed dynamics are a generalization of classical dynamics, to which they
are equivalent by a quasi-static state feedback. In case such a dynamics is flat, i.e., equivalent
by an endogenous feedback to a linear controllable dynamics, there exists a Brunovský type
canonical form with respect to a quasi-static state feedback.

1. Introduction. Feedback equivalence and the existence of related canon-
ical forms play a central part in system analysis (see [10, 16, 17, 21, 34]). From
a control theoretic viewpoint, equivalence under state feedback is especially in-
teresting. Consequently, there is a lot of nice work, and interesting results are
available, in particular for static feedback. However, during the last few years,
there has also been considerable interest in dynamic feedback, especially regard-
ing the equivalence to linear controllable systems (see [4, 14, 16, 17, 23, 25, 33]
and the references therein).

In the present contribution we are interested in the equivalence of nonlinear
dynamics under quasi-static state feedback. This class of feedback, which can be
seen as being sort of in-between static and dynamic feedback, has been introduced
by Delaleau and Fliess [7] together with an algebraic interpretation of the well-
known structure algorithm. They showed that any classical right invertible system
is decouplable via feedback of this type.

In the differential algebraic approach the notion of state is generalized. State
representations may depend on time derivatives of the input. In this context, we
define the well-formed dynamics which are a generalization of the usual dynamics
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of the type ẋ = f(x, u) with full rank jacobian matrix ∂f
∂u to which they are

equivalent by quasi-static feedback of x.
Our principal result concerns dynamics that are well-formed and flat, i.e.,

equivalent to linear controllable dynamics by endogenous feedback [14]. The
Brunovský form [3], well-known in the linear theory, is a canonical form for these
flat well-formed dynamics under quasi-static feedback of its state. This canonical
form can be constructed from any flat output.

2. Mathematical background. We briefly recall the few notions from
differential algebra we use. For further details one may see the references [26, 20].
We consider ordinary differential fields of characteristic zero, with the derivation
denoted by d

dt =“·”. Let k be the differential ground field and K a differential
field containing k. We denote as k(z) (resp. k〈z〉) the fields (resp. differential
fields) generated by a finite set z = (z1, . . . , zs) of elements of K, and as k(z) the
algebraic closure of k(z). A finitely generated differential field extension L/K is
the datum of differential fields K and L such that K ⊆ L, with L (differentially)
finitely generated over K. The differential field extensions we consider are all
finitely generated.

An element x ∈ L satisfying an algebraic differential equation with coefficients
in K is called differentially algebraic over K. If every element of L is differen-
tially algebraic over K, the extension L/K is called differentially algebraic. Let
ξ = (ξ1, . . . , ξn) be a set of elements of L. If ξ satisfies an algebraic differential
equation with coefficients in K, it is called differentially K-algebraically depen-
dent. Otherwise, it is called differentially K-algebraically independent. Any set
of elements of L which is differentially K-algebraically independent and maximal
with respect to inclusion forms a differential transcendence basis of L/K. Any two
such bases have the same cardinality, which is called the differential transcendence
degree of L/K and denoted as diff tr d◦L/K.

A filtration of L/K is a non-decreasing sequence L := (Lr)r∈Z of (non-
differential) fields Lr such that: K ⊆ Lr ⊆ L and Lr ⊆ Lr+1 for all r ∈ Z, and
Lr = K for all r ∈ Z small enough. A filtration of L/K is said to be exhaustive if
∪r∈ZLr = L. We then also say the filtration is exhaustive in L. All filtrations we
consider are excellent (see [18]). Therefore, they admit so-called Hilbert polynomi-
als HL(R) = aR+ b ∈ Q[R] such that for r large enough tr d◦Lr/K = HL(r). If,
moreover, L is exhaustive in L, the coefficient a in HL(R) equals the differential
transcendence degree of L/K (cf. [18, 32]). Two filtrations U and Ũ have bounded
(or finite) difference if there exists a non-negative integer r0 such that Ur ⊆ Ũr+r0
and Ũr ⊆ Ur+r0 for all r ∈ Z [2].

For a finitely generated differential field extension L/k introduce the k-deri-
vation d : L→ ΩL/k with x 7→ dx. Then d satisfies the usual rules of derivation,
d
dtdx = dẋ, for x ∈ L, and da = 0 for a ∈ k. The images dx are called Kähler dif-
ferentials and ΩL/k is a (left) L

[
d
dt

]
-module called a differential module of Kähler
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differentials. Here L
[
d
dt

]
denotes the ring of polynomials in d

dt with coefficients in
L. If L = k〈z〉, with z = (z1, . . . , zs), then ΩL/k is generated by the set of Kähler
differentials dz = (dz1, . . . , dzs). An important fact is that k-algebraic dependence
of a set of elements of L is equivalent to L-linear dependence of its differentials.
Therefore, for any subfield k(w) of L, one has tr d◦k(w)/k = dim spanL{dw} (cf.
[18, 19]).

3. Dynamics. In the differential algebraic approach systems are defined as
differential field extensions. The system variables, such as inputs, outputs, and
states, are algebraic objects, namely elements of a field. The relations between
these objects determine the system equations. We recall the definition which can
be found, for example, in [9] or [10].

A system is a (finitely generated) differential field extension (1) D/k. A dy-
namics, with input u = (u1, . . . , um), is a (finitely generated) differential field
extension D/k〈u〉 which is differentially algebraic. The inputs are assumed in-
dependent, i.e., they are differential transcendence bases of D/k. A state x =
(x1, . . . , xn) of a dynamics is a transcendence basis of D/k〈u〉. The (non-differen-
tial) transcendence degree of D/k〈u〉 is called the state dimension of the dynamics.
It is finite because D/k〈u〉 is differentially algebraic.

Therefore, to such a state x belongs a state representation [9]

(1) Ai(ẋi, x, u, u̇, . . . , u(αi)) = 0 (i = 1, . . . , n),

where the Ai, i = 1, . . . , n are polynomials with coefficients in k. Such a state
representation (1) is called classical if the orders αi, i = 1, . . . , n are all zero.
A state yielding a classical representation is called a classical state. Note that
classical states do not necessarily exist for D/k〈u〉 (cf. [6, 8]).

Two filtrations ofD/k are associated with a state x ofD/k〈u〉: a state filtration
X = (Xr)r∈Z where

(2) Xr = k for r ≤ −2, X−1 = k(x), Xr = k(x, ẋ, . . . , x(r+1)) for r ≥ 0,

and an input-state filtration [7] U = (Ur)r∈Z where

(3) Ur = k for r ≤ −2, U−1 = k(x), Ur = k(x, u, u̇, . . . , u(r)) for r ≥ 0.

Note that Xr (resp. Ur) contains the derivatives of x (resp. of u) up to order
r + 1 (resp. r).

3.1. Well-formed dynamics

Definition 3.1. A dynamics D/k〈u〉 is called well-formed if there exists a state
x, called a well-formed state, of D/k〈u〉 such that the following two conditions
are satisfied.

(1) For the sake of simplicity, we identify two systems D/k and D̃/k if there exists a differ-
ential k-isomorphism between D and D̃.
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(i) The state filtration X is an exhaustive filtration of D/k. This is equivalent
to k〈x〉 = D.

(ii) The Hilbert polynomial of X is HX (R) = mR + m + n, where n is the
state dimension of D/k〈u〉, i.e., n = tr d◦D/k〈u〉.

R e m a r k. Condition (ii) implies that the Hilbert polynomials of the filtra-
tions X and U associated with x are equal.

Theorem 3.1. Let D/k〈u〉 be a dynamics admitting a classical state x and X
the associated state filtration. Then the following conditions are equivalent :

(i) The filtration X is an exhaustive filtration of D/k.
(ii) The Hilbert polynomial of X is HX (R) = mR+m+ n.
(iii) The jacobian matrix ∂A

∂u of the state representation (1) belonging to x has
full rank m.

P r o o f. One easily verifies that for a classical state representation one has
tr d◦Xr/k = HX (r) for all r > −2. One has tr d◦X−1/k = HX (−1) = n and
tr d◦X0/X−1 = rank ∂A

∂u . It follows that tr d◦Xr/k = HX (r) =
(

rank ∂A
∂u

)
(r+1)+n

for all r > −2. Therefore, (ii) and (iii) are equivalent.
For a classical state representation satisfying the rank condition for ∂A

∂u one
has U0 ⊆ X0, and with this Ur ⊆ Xr for all r ∈ Z. This implies that the filtration
X is exhaustive in D. On the other hand, if rank ∂A

∂u < m, it is obvious that
k(u) 6⊂ Xr for any r. This shows the equivalence of (iii) and (i).

R e m a r k s. The conditions (i) and (ii) being equivalent, each of those con-
ditions characterizes the well-formed classical states.

A single-input dynamics is well-formed if and only if it admits a classical state
representation.

In general, neither of the two conditions of Definition 3.1 implies the other.
Take the example ẋ = u̇2. The Hilbert polynomials of the filtrations U and X are
HX (R) = HU (R) = R + 2. Nonetheless, X is not exhaustive in D since it does
not contain u. As a second example, consider ẋ1 = u, ẋ2 = u̇2. One easily verifies
that X is exhaustive in D and that the Hilbert polynomial is HX (R) = R+ 1 + 3.
Observe that, the derivative of u appearing nonlinearly, these two systems do not
admit classical state representations [6, 8, 15]. Therefore, by the above remark,
they do not admit well-formed states.

4. Quasi-static state feedback. Using the input-state filtrations associated
with a state and the input of the dynamics, we may define the quasi-static state
feedback relation (cf. [7]).

Definition 4.1. Two dynamics D/k〈u〉 and D̃/k〈ũ〉 are said to be related
by a quasi-static state feedback if there exist states of D/k〈u〉 and D̃/k〈ũ〉 such
that the associated input-state filtrations U and Ũ have bounded difference, and
Ur = Ũr for r < 0.
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This definition implies the existence of relations between the inputs u and ũ
and a state x of D/k〈u〉, which take the form

φi(ui, x, ũ, ˙̃u, . . . , ũ(r0)) = 0,
φ̃i(ũi, x, u, u̇, . . . , u(r0)) = 0, i = 1, . . . ,m.

For the state x̃ of D̃/k〈ũ〉, the equalities Ur = Ũr for r < 0 imply

(4) ψj(xj , x̃) = 0, ψ̃j(x̃j , x) = 0, j = 1, . . . , n.

This means that the states do not need to be classical, but the state transforma-
tions (4) do, i.e., they do not depend on the input or its derivatives. Here, φi, φ̃i,
i = 1, . . . ,m and ψj , ψ̃j , j = 1, . . . , n are all polynomials over k.

Given three dynamics such that D/k〈u〉 is related by a quasi-static state feed-
back to both D̃/k〈ũ〉 and D̂/k〈û〉, D̃/k〈ũ〉 is not necessarily related by a quasi-
static state feedback to D̂/k〈û〉. Therefore, the relation defined in Definition 4.1
is not transitive. We get transitivity by specifying the state “fed back” up to
classical transformations of the form (4).

Definition 4.2. Two dynamics D/k〈u〉 and D̃/k〈ũ〉 are said to be equivalent
by quasi-static feedback of a state in F if F = k(x) = k(x̃), with x (resp. x̃) a
state of D/k〈u〉 (resp. D̃/k〈ũ〉), and the respective input-state filtrations U and
Ũ associated with these states have bounded difference.

Of course, if the dynamics are equivalent by quasi-static feedback of a state
in F , one has Ur = Ũr = F for r < 0. Therefore, if two dynamics are equivalent
by quasi-static feedback of a state in F , they are related by a quasi-static state
feedback, while the opposite is not true in general.

We show that the above indeed defines an equivalence relation on the set of
the dynamics for which there exists a state x such that k(x) = F . Obviously, a
dynamics is equivalent to itself by a quasi-static feedback of any of its states. It is
also clear that the relation defined in Definition 4.2 is symmetric. Now consider
three dynamics such that D/k〈u〉 is equivalent by quasi-static feedback of a state
in F to both D̃/k〈ũ〉 and D̂/k〈û〉. Then the associated filtrations U and Ũ have
bounded difference, and the same holds for U and Û . This means that, for some r0,
Ur ⊆ Ũr+r0 and Ũr ⊆ Ur+r0 . Moreover, for some r1, Ur ⊆ Ûr+r1 and Ûr ⊆ Ur+r1 .
This holds for all r ∈ Z and therefore, one has Ûr ⊆ Ur+r1 ⊆ Ũr+r1+r0 and
Ũr ⊆ Ur+r0 ⊆ Ûr+r1+r0 . Hence, the filtrations Û and Ũ have bounded difference,
too. Of course, F = Ur = Ũr = Ûr for r < 0. It follows that the relation defined
in Definition 4.2 is also transitive and thus is an equivalence relation.

On the set of dynamics for which classical states exist, we might also introduce
equivalence by quasi-static feedback of a classical state, since the classical states
are specified up to classical changes of coordinates, i.e., k(x) = k(ξ) for any
classical states x and ξ. This mimics the standard situation in control theory
where the states are always assumed classical, and where there is no need to
distinguish between the states fed back.
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On the contrary, two well-formed states x and ξ of a well-formed dynamics
need not be related by a classical transformation: in general, k(x) 6= k(ξ).

The same considerations apply if one restricts the quasi-static feedback to be
a static one, which means that the difference of the filtrations is zero, i.e., they
coincide (cf. [7]).

Definition 4.2 implies that the dynamics are equivalent (by endogenous feed-
back) in the sense of [14] (D = D̃). The quasi-static state feedback is a particular
type of endogenous feedback [7]. The difference is that in the quasi-static case the
state is preserved (up to a classical transformation).

4.1. Brunovský canonical form. A dynamics D/k〈u〉 is flat if there exists a
differential transcendence basis y = (y1, . . . , ym) of D/k, called a flat (or lineariz-
ing) output, such that k〈y〉 = D. Such a dynamics is equivalent (by endogenous
feedback) to a linear controllable one (cf. [14]).

If the dynamics D/k〈u〉 is flat, the corresponding module of Kähler differen-
tials ΩD/k is free, and for any flat output y the set dy = (dy1, . . . , dym) is a basis
of ΩD/k. The module ΩD/k is the time-varying linearization of D/k. The set of
differentials du = (du1, . . . , dum) is the input of the associated linear dynamics
(cf. e.g. [30]).

The well-known Brunovský form [3] vi = ω
(κi)
i , i = 1, . . . ,m, with κi > 0

for i = 1, . . . ,m, is a canonical form for static state feedback equivalence for
the flat (i.e., controllable [14]) linear time-varying dynamics with m inputs. It
obviously represents a well-formed dynamics. A formal module theoretic version
of this result, which is adapted to our framework, can be found in [12, 13]. We
will now derive an analogous result for nonlinear flat dynamics.

Let there be given a flat dynamics D/k〈u〉. Then ΩD/k is a free D
[
d
dt

]
-module.

This implies that for any basis ω̄ of ΩD/k there exist relations dui =
∑m
j=1 ai,jω̄j ,

i = 1, . . . ,m, with the coefficients ai,j ∈ D
[
d
dt

]
. Then, with ω = (ω1, . . . , ωm)

another basis of ΩD/k, these relations can also be represented by

(5) µi = ciωi, i = 1, . . . ,m,

with µ = (µ1, . . . , µm) a basis of the D
[
d
dt

]
-module [du] generated by du =

(du1, . . . , dum), and ci ∈ D
[
d
dt

]
. This corresponds to a diagonalization of the

matrix (ai,j) by multiplication on the left and on the right with unimodular ma-
trices over D

[
d
dt

]
, which is always possible [5]. The coefficients ci, i = 1, . . . ,m,

are polynomials in d
dt . For i = 1, . . . ,m, denote the degree of ci as κi. We call κi,

i = 1, . . . ,m the generalized controllability indices (2) of D/k〈u〉. Up to renum-
bering, these indices are independent of the choice of ω. This is a consequence of
the next lemma.

(2) This characterization is different from the one announced in [28] and [29] which, contrarily
to what is claimed there, is not independent of the choice of the flat output.
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Lemma 4.1. Let D/k〈u〉 be a flat dynamics and let κ1, . . . , κm be the degrees
of the polynomials ci, i = 1, . . . ,m in (5) belonging to the basis ω of ΩD/k, as
defined above. Then, up to renumbering the components of y, for any flat output
y of D/k〈u〉, the set x = (y1, . . . , y

(κ1−1)
1 , y2, . . . , y

(κm−1)
m ) is a state of D/k〈u〉.

Definition 4.3. The states (3) x = (y1, . . . , y
(κ1−1)
1 , y2, . . . , y

(κm−1)
m ) defined

in the above lemma are called the Brunovský states of the flat dynamics D/k〈u〉.

One observes that the Brunovský states are unique up to the choice of the flat
output y. Changing the flat output corresponds to a differential k-automorphism
of D.

P r o o f. Let ω be the basis of ΩD/k yielding the representation (5). Denote
as wii the canonical image of ωi in ΩD/k/(⊕

m
j=1,j 6=i[ωj ] ⊕ [ciωi]), and denote the

D
[
d
dt

]
-module generated by wii as [wii]. Then one has an isomorphism between the

D
[
d
dt

]
-modules ΩD/k/[du] and ⊕mi=1[wii]. Each [wii] is a cyclic torsion module the

dimension of which, when considered as a D-vector space, is equal to the degree
of the corresponding coefficient ci. For any basis ω̄ of ΩD/k, denote as w̄i the
canonical image of ω̄i in theD-vector spaceΩD/k/[du]. It can be shown that, up to

renumbering its components, the set ξ = (w̄1, ˙̄w1, . . . , w̄
(κ1−1)
1 , w̄2, . . . , w̄

(κm−1)
m ) is

a basis of the D-vector space ΩD/k/[du], as follows. The D-vector space spanned
by ξ is isomorphic to both ΩD/k/[du] and ⊕mi=1[wii]. For, when considered as
D-vector spaces, each [wii] is isomorphic to a subspace of [w̄i], up to renumbering.
This can be seen by inspecting the relations between two bases. By renumbering,
one gets an expression of the form w̄ii = aiw

i
i, with 0 6= ai ∈ D[ ddt ], for the image

w̄ii of ω̄i in [wii]. From this, by derivation, one sees that the dimension of the
D-vector space [w̄ii] is κi. Consequently, there is a κi-dimensional subspace of the
D-vector space [w̄i] isomorphic to [wii]. Finally, a non-trivial D-linear dependence
relation between the elements of ξ would result in the same relation between the
elements of the bases of the [wii]. This being excluded by the direct sum property,
ξ actually is a basis of the D-vector space ΩD/k/[du].

The differential of any flat output y of D/k〈u〉 is a basis of the correspond-
ing module ΩD/k. Therefore, the family of canonical images in ΩD/k/[du] of

dy1, ḋy1, . . . , dy
(κ1−1)
1 , dy2, . . . , dy

(κm−1)
m is D-linearly independent. The proof is

thus concluded by observing that this implies that (y1, ẏ1, . . . , y
(κ1−1)
1 , y2, . . .

. . . , y
(κm−1)
m ) is a k〈u〉-algebraically independent family.

R e m a r k. In the above proof, the basis ω of ΩD/k does not have to be
composed of differentials of elements of D. This corresponds to non-exact one-

(3) Strictly spoken, a Brunovský state is not necessarily a state of D/k〈u〉, but only of
D/k〈u〉.
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forms in the differential geometric approach (cf. [25]). Nonetheless, for each flat
output there is a corresponding basis of ΩD/k.

Lemma 4.2. Let D/k〈u〉 be a flat dynamics. Then the Brunovský states of
D/k〈u〉 are well-formed if and only if κi > 0, i = 1, . . . ,m.

P r o o f. The necessity follows from the fact that a well-formed state must
contain a flat output in order that the corresponding state filtration can be ex-
haustive. Of course, if κi > 0, i = 1, . . . ,m, the Brunovský state x constructed
with the flat output y contains y. Therefore, the associated state-filtration X is
exhaustive in D. This implies that HX (R) = mR+ b. Moreover, x is constructed
in such a way that tr d◦k(x, ẋ)/k(x) = m. Therefore, tr d◦Xr/Xr−1 = m for all
r ≥ 0, and it follows that HX (R) = m(R+ 1) + tr d◦X−1/X−2 = m(R+ 1) +n.

Traditionally, states are understood to be classical states, and, as mentioned
above, one need not distinguish the states in the definition of feedback equivalence
in this case. In our general context this is different. However, it is obvious that the
generalized controllability indices form a set of invariants for the equivalence by
quasi-static feedback of a state in F on the set of the flat dynamics if we restrict
the field F to be generated over k by a Brunovský state.

Definition 4.4. Two flat dynamics D/k〈u〉 and D̃/k〈ũ〉 are said to be equiv-
alent by quasi-static feedback of a Brunovský state if for some Brunovský states x
and x̃ of these dynamics one has k(x) = k(x̃) =: F , and D/k〈u〉 and D̃/k〈ũ〉 are
equivalent by quasi-static feedback of a state in F .

The above condition is equivalent to the condition that the input-state filtra-
tions of D/k〈u〉 and D̃/k〈ũ〉 associated with respective Brunovský states x and
x̃ have bounded difference and k(x) = k(x̃). It is easy to see that the relation
defined in Definition 4.4 is an equivalence relation on the set of flat dynamics, by
identifying appropriate flat outputs via a differential k-isomorphism between the
corresponding fields.

Definition 4.5. The dynamics k〈y, v〉/k〈v〉 such that vi = y
(κi)
i , with κi > 0,

i = 1, . . . ,m, is called the Brunovský form of a flat well-formed dynamics.

Theorem 4.1. The Brunovský form is a canonical form for the equivalence
by quasi-static feedback of a Brunovský state on the set of the well-formed flat
dynamics with well-formed Brunovský states.

In other words, to every flat well-formed dynamics D/k〈u〉 with well-formed
Brunovský states belongs a unique dynamics k〈y, v〉/k〈v〉, with D = k〈y, v〉, and
a unique state representation in Brunovský form. This canonical form can be con-
structed from any flat output. The corresponding dynamics D/k〈v〉 is equivalent
to D/k〈u〉 by a quasi-static feedback of a state in k(x). Here x is the Brunovský
state of D/k〈u〉, which, in general, need not be a classical state of D/k〈u〉.
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P r o o f. Let x be a well-formed Brunovský state of a flat well-formed dynamics
D/k〈u〉. Furthermore, let v be the input of the corresponding Brunovský form,
i.e., vi = y

(κi)
i , i = 1, . . . ,m, and V the input-state filtration of D/k〈v〉 associated

with x. We show that D/k〈u〉 and D/k〈v〉 are related by a quasi-static state
feedback. The filtrations X and V coincide, because all but m components of ẋ
are elements of x, and the others are equal to the components of v. The filtrations
V and U have bounded difference, r0 say. This can be seen as follows. For r0 large
enough, on one hand, the definition of a state implies ẋ ⊂ Ur0 , wherefrom with
X0 = V0 it follows V0 ⊆ Ur0 , and from this Vr ⊆ Ur+r0 for all r > 0. On the
other hand, by Lemma 4.2, x contains a flat output and thus X is exhaustive in
D. Hence, U0 ⊆ Vr0 , and Ur ⊆ Vr+r0 for all r > 0.

The state x is a Brunovský state of D/k〈v〉. By construction, it is also a
(not necessarily classical) Brunovský state of D/k〈u〉. The field F = k(x) has
been kept invariant. We conclude that D/k〈u〉 and D/k〈v〉 are related, and hence
equivalent, by quasi-static feedback of a Brunovský state. Finally, the uniqueness
of the Brunovský form follows from Lemma 4.1.

Recall that all flat dynamics are equivalent to a Brunovský form via endoge-
nous feedback, but this form is not unique in that case [14]. In our case it is unique
because of the restriction that k(x) is invariant and must contain Brunovský states
of both D/k〈u〉 and D̃/k〈ũ〉, and these correspond to a unique Brunovský form.
In contrast, a dynamics may generally be related by a quasi-static state feedback
to different Brunovský forms (cf. the remarks following Definition 4.1). This can
easily be seen on the proof of Theorem 4.1, by letting the set x in the proof be
composed of y itself and any derivatives of the components of y such that x is a
state of D/k〈u〉. We formulate this as a corollary.

Corollary 4.1. Let D/k〈u〉 be a flat dynamics such that the flat output
y is a differentially k〈u〉-algebraically independent family. Then, if , for some
l1, l2, . . . , lm > 0, the set x = (y1, . . . , y

(l1−1)
1 , y2, . . . , y

(lm−1)
m ) is a state of D/k〈u〉,

the dynamics D/k〈u〉 is related by a quasi-static state feedback to a Brunovský
form with (generalized) controllability indices l1, l2, . . . , lm.

We may also characterize the whole set of the dynamics being equivalent to a
Brunovský form by quasi-static feedback of a Brunovský state. Necessarily, they
are flat, since they are equivalent to a linear controllable dynamics [14]. They
are equivalent by a quasi-static feedback of x to a dynamics with a classical
representation belonging to x, namely the Brunovský form. Therefore, it follows
from Theorem 4.2 below that they are also well-formed. As a consequence, the
set of the well-formed flat dynamics with κi 6= 0, i = 1, . . . ,m is the maximal set
(w.r.t. set inclusion) admitting the Brunovský canonical form for the equivalence
by quasi-static feedback of a Brunovský state.

R e m a r k. It is not difficult to observe that if a Brunovský state is a classical
state, it leads to static state feedback equivalence to the Brunovský form. (We
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did not define static feedback equivalence here, cf. [7].)

R e m a r k. In the linear case, time-varying or not, the result in Theorem 4.1
shows that there is a Brunovský canonical form for the equivalence by quasi-static
feedback of a Brunovský state for the well-formed controllable linear systems.
This canonical form can be obtained from any basis of the system module (cf. [31]).
On the contrary, for the classical static state feedback equivalence this canonical
form is obtained from particular bases (see [12, 13]).

4.2. Well-formed dynamics and classical representations. The following theo-
rem shows the role of well-formed dynamics for classical state representations.

Theorem 4.2. A dynamics D/k〈u〉 is equivalent by quasi-static feedback of
a state in k(x) to a dynamics D̃/k〈ũ〉 admitting a classical state representation
Ai(ẋi, x, ũ) = 0, i = 1, . . . , n with ∂A

∂ũ of full rankm if and only if D/k〈u〉 is
well-formed. Then the state x is a well-formed state of D/k〈u〉, too.

P r o o f. Let x be a well-formed state of D/k〈u〉. The Hilbert polynomial of X
is HX (R) = m(R+ 1) + n, where n is the state dimension of D/k〈u〉. One easily
verifies that tr d◦X0/X−1 < m would yield HX (R) < m(R + 1) + n. Therefore,
tr d◦X0/X−1 = m, allowing to introduce a new input ũ as a transcendence basis
of X0/X−1. Then the filtrations X and Ũ of D̃/k〈ũ〉 associated with x coincide.
This implies that the state representation of D̃/k〈ũ〉 belonging to x is classical
(one may put D̃ = D). Now we show that U and Ũ have bounded difference.
Let r0 be sufficiently large. Then, X = Ũ being exhaustive in D, the inclusion
U0 ⊆ Ũr0 follows. The other way round is a consequence of the definition of
a state: There always exists a non-negative r0 such that ẋ ⊂ Ur0 , and with
this X0 = Ũ0 ⊆ Ur0 . Moreover, the construction of the filtrations implies that
Us ⊆ Ũr0+s and Ũs ⊆ Ur0+s for positive s. Finally, by introducing the new input
ũ as a transcendence basis of X0/X−1, the field X−1, and with this all Xr, r < 0,
are kept invariant.

Now consider a classical state representation with state x of D̃/k〈ũ〉 which
satisfies the rank condition for ∂A

∂ũ . One has Xr = Ũr for all r, whence HX (R) =
HŨ (R) = mR + m + n. If D/k〈u〉 and D̃/k〈ũ〉 are equivalent by quasi-static
feedback of a state in X−1, one has U0 ⊆ Ũr0 = Xr0 , for a sufficiently large
non-negative integer r0. Consequently, Us ⊆ Xr0+s for all s > 0, and thus X
is exhaustive in D. We conclude that D/k〈u〉 is well-formed and that x is a
well-formed state of D/k〈u〉.

R e m a r k. This result can be interpreted as a solution to a generalization of
the problem of equivalence to classical representations under non-classical state
coordinate changes, as considered and solved in [15, 6, 8]. For, if there is a classical
state of D/k〈u〉, we may choose this state in the theorem, and get equivalence by
quasi-static feedback of a state in k(x) to a dynamics D̃/k〈ũ〉 by defining ũ = u.
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5. Concluding remarks. Using well-formed representations, an extension
of recent results on feedback decoupling and inversion [7] to generalized state rep-
resentations involving time derivatives of the input variables should be possible.

As a variation of the classical state realization problem, one might hope to get
a set of simple conditions for the existence of well-formed states. Lemma 4.2 pro-
vides such a condition for the flat dynamics, which are important in applications
(see e.g. [14, 27, 28, 29]).
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