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Parc de Grandmont, F-37200 Tours, France

Abstract. We study a system of two differential inclusions such that there is a singular
perturbation in the second one. We state new convergence results of solutions under assumptions
concerning contingent derivative of the perturbed inclusion. These results state that there exists
at least one family of solutions which converges to some solution of the reduced system. We
extend this result to perturbed systems with state constraints.

1. Introduction. We shall study the following singular system of différential
inclusions

(1) x′ε(t) ∈ F (xε(t), yε(t)), εy′ε(t) ∈ G(xε(t), yε(t)) for almost all t ∈ [0, T ].

The state-variables x and y belong to some finite dimensional vector-spaces X
and Y . These equations are used to model a system with a slow variable x(·)
and a fast variable y(·) (cf. [15] for more details). We refer to [12] for numerous
examples and applications in control theory.

The convergence of solution of (1) (as ε→ 0) is the main problem in this field.
When solutions converge it is interesting to prove that the limit is a solution to
the following reduced systems:

(2) x′(t) ∈ F (x(t), y(t)), 0 ∈ G(x(t), y(t)).

This problem has been extensively studied in the literature since the pioneer work
of Tikhonov for differential equations (the reader can refer to [13] for a clear pre-
sentation of results obtained by Tikhonov). There also exist papers concerning
linear control systems [5], [6], [9] and nonlinear problems [3]. For nonlinear dif-
ferential inclusions, we refer to [4], for convex set-valued maps to [14], [17]. The
reader can find in [11] a more extensive bibliography in this field.
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The purpose of the paper is to give conditions such that there exists at least
one sequence of solutions to (1) which converges in a suitable topology. We are
not interested in convergence of all solutions. In applications, for instance, if
we consider the problem of minimization of some functional associated with (1),
we are only interested in the convergence of optimal solutions and not in the
behaviour of other solutions.

In the last section, we prove some results for singular perturbed systems with
state constraints.

2. Limits of solutions to perturbed systems

2.1. Assumptions and notations. We assume that set-valued maps F and G
are l-Lipschitz (1) with convex compact nonempty values and linear growth (with
constant a).

We define the following set-valued map: R(x) := {y | 0 ∈ G(x, y)} and its
inverse R−1(y) := {x | 0 ∈ G(x, y)}.

2.2. Limits-solutions. We shall prove that if solutions to perturbed systems
converge then they are solutions to the reduced systems.

Proposition 2.1. Assume (2) that the hypotheses of section 2.1 hold true.
Consider a sequence (xεn

(·), yεn
(·)) ∈ SF×G(εn, x0, y0)(T ). If there exist some

functions x(·) and y(·) such that :

• xεn(·)→ x(·) in L1[0, T ],
• x′εn

(·)→ x′(·) in L1
weak[0, T ],

• yεn
(·)→ y(·) in L∞[0, T ],

then

(3) y(t) ∈ R(x(t)) for almost all t ∈ [0, T ]

and furthermore, there exists a subsequence εni
such that εni

y′εni
(·) → 0 in

L1
weak[0, T ].

P r o o f. This proof is very classical (see [4] for instance). In the first step, we
prove the convergence of xεi . Consider a sequence εi → 0 such that (xεi(t), yεi(t))
converges to (x(t), y(t)). Thanks to the convergence theorem for differential in-
clusions (cf. [1], Th. 3.6.5) applied with Fεi

:= F (·, yεi
(·)), we prove that x′(t) ∈

F (x(t), y(t)) because F is upper semicontinuous with convex closed values.
In the second step, we study (3) the convergence of yε. Let us prove that

εy′ε(·) converges to 0 in L1
weak[0, T ]. It is enough to prove that for any sequence

εi → 0, the sequence εiy′εi
(·) has a sequence converging weakly to 0. Fix εi → 0.

(1) For sake of simplicity, we assume that the Lipschitz constants of F , G are bounded by
the same l.

(2) Let us denote by SF×G(εn, x0, y0)(T ) the set of absolutely continuous solutions of (1)
starting from (x0, y0) at time t0.

(3) In this part of the proof, we follow [4].
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Thanks to the linear growth condition, we know that ‖εiy′εi
(t)‖ ≤ a(1 +

‖xεi
(t)‖+‖yεi

(t)‖) for almost every t. Since xεi
and yεi

converge they are bounded.
So there exists some E > 0 such that for every εi > 0, ‖εiy′εi

(·)‖L∞[0,T ] ≤ E.
Thanks to Dunford-Pettis’ criterion, there exists a subsequence (again similarly
denoted) which converges in L1

weak[0, T ] to some z(·). Let us prove that z(t) = 0
for almost every t ∈ [0, T ].

We know that
∫ t

0
εiy
′
εi

(s)ds→
∫ t

0
z(s)ds. On the other hand,

T∫
0

∣∣∣∣ t∫
0

εiy
′
εi

(s)ds
∣∣∣∣dt =

T∫
0

εi‖yεi
(t)− yεi

(0)‖dt

which converges to 0 by Lebesgue’s Theorem (E is an upper bound). Hence∫ T
0
‖
∫ t

0
z(s)ds‖dt = 0 and consequently

∫ t
0
z(s)ds = 0 for almost every t and

finally z(s) = 0 for almost every s. We can conclude, thanks to the upper semi-
continuity of G, that (3) holds true almost everywhere.

3. Existence of convergent solutions

3.1. Convergence of solutions associated to a convergent sequence of initial
conditions. We shall state our first main result using the contingent derivative (4)
of the set-valued map R.

Theorem 3.1. We keep the assumptions of section 2.1, and furthermore we
assume that

(4) ∀(x, y) ∈ Graph(R),∃u ∈ F (x, y), DR(x, y)(u, 0) 3 0.

Consider a sequence (x0
n, y

0
n) converging to (x0, y0) ∈ Graph(R). Then there

exists a sequence εn > 0 which converges to 0 and solutions (xn(·), yn(·)) ∈
SF×G(εn, x0

n, y
0
n)(T ) which converge to some solution to (2) in W 1,1[0, T ] ×

W 1,1[0, T ].

This theorem follows from the proposition proved in [16]:

Proposition 3.2. We keep the assumptions of theorem 3.1. Consider (x0
ε, y

0
ε)

converging to some (x0, y0) ∈ Graph(R). If

(5) Aε :=
1
ε
elT/ε[‖x0

ε − x0‖+ ‖y0
ε − y0‖]→ 0

then there exist solutions (xε(·), yε(·)) ∈ S(ε, x0
ε, y

0
ε)(T ) to (1) which converge to

some solution of (2) in W 1,1[0, T ] ×W 1,1[0, T ]. Furthermore, yε(·) converge to
the constant function y0.

To prove the theorem, it is enough to notice that if some sequence an converges
to 0, it is possible to find a sequence εn such that an(1/εn)elT/εn converges to 0.

(4) See [1].
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3.2. Convergence results for absolutely continuous solutions. We prove a con-
vergence result under assumptions concerning the contingent derivative of G.

Theorem 3.3. We keep the assumptions of section 2.1. Furthermore we as-
sume that for every x the multivalued map y 7→ G(x, y) has a convex graph. We
assume also

(6)
{
∃γ > 0,∀(x, y, z) ∈ Graph(G),∀(u, v) such that v 6= 0
inf {〈v, w〉|w ∈ DG(x, y, z)(u, v) ∩ γ(1 + ‖u‖+ ‖v‖)B} < 0.

If there exists a solution (x̄(·), ȳ(·)) ∈W 1,1[0, T ]×W 1,1[0, T ] to the reduced system
(2) starting from a given (x0, y0), then there exists a sequence (xεi

(·), yεi
(·)) ∈

SF×G(εi, x0, y0)(T ) such that , as εi → 0+,

xεi
(·)→ x(·) in L1[0, T ]× L1

weak[0, T ],
yεi

(·)→ y(·) in L1
weak[0, T ],

where (x(·), y(·)) is a solution to (2).

This theorem is based on the following more precise proposition:

Proposition 3.4. We keep the assumptions of section 2.1 and furthermore
we assume that (6) holds true. If there exists a solution (x̄(·), ȳ(·)) ∈W 1,1[0, T ]×
W 1,1[0, T ] to the reduced system (2) starting from a given (x0, y0), then there exists
M > 0 such that for any ε > 0, there exists (xε(·), yε(·)) ∈ SF×G(ε, x0, y0)(T )
such that

‖yε(·)− ȳ(·)‖L∞[0,T ] ≤M.

P r o o f o f T h e o r e m 3.3. We shall prove that for any sequence εi → 0,
there exists some subsequence such that (xεi

(·), yεi
(·)) has a subsequence con-

verging in the suitable topology. We know from Proposition 3.4 that yεi
(·) is

bounded in L∞[0, T ] by some constant c1 > 0. Thanks to Dunford-Pettis’ crite-
rion, there exists a subsequence (again similarly denoted) such that yεi(·) con-
verges in L1

weak[0, T ] to some y(·).
On the other hand, because F has a linear growth,

d

dt
‖xεi

(t)‖ ≤ ‖x′εi
(t)‖ ≤ a(1 + ‖xεi

(t)‖+ ‖yεi
(t)‖).

Thanks to Gronwall’s lemma, ‖xεi
(t)‖L∞[0,T ] is bounded. Because F is upper

semicontinuous, F (xεi
(·), yεi

(·)) lies in a ball of radius Q.
We claim that xεi(·) has a subsequence which converges to some x(·) in

L1[0, T ]. In fact, to prove this, thanks to Theorem 20, p. 298 in [7], it is enough
to prove that ‖xεi

(· + s) − xεi
‖L1[0,T ] converges to 0 as s → 0, uniformly with

respect to εi. But

xεi(t+ s) ∈ xεi(t) +
t+s∫
t

F (xεi(u), yεi(u))du
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⊂ xεi(t) +
t+s∫
t

QBdu ⊂ xεi(t) +QsB.

Hence ‖xεi(·+ s)− xεi‖L1[0,T ] ≤ sM .
Since G is Lipschitz, we have a subsequence of εiy′εi

(·) which converges to
some z(·) in L1

weak[0, T ]. By similar arguments to those in Proposition 2.1, z = 0
almost everywhere.

For the last step of the proof, we consider a sequence εn such that xεn con-
verges in L1-strong topology and εny

′
εn

and yεn
converge in L1-weak topology.

Because G(x, ·) has a convex graph and since G is Lipschitz, thanks to Theorem
8.4.1 in [2], we get 0 ∈ G(x(t), y(t)) for almost every t ∈ [0, T ].

We shall deduce Proposition 3.4 from the following lemma proved in [16]:

Lemma 3.5. Under the assumptions of Proposition 3.4, for any (x0, y0) satis-
fying 0 ∈ G(x0, y0), the set-valued map

P (x, y) := {v ∈ G(x, y) | 〈v, y − y0〉 ≤ 0}
is upper semicontinuous with nonempty convex compact values.

P r o o f o f P r o p o s i t i o n 3.4. Let us define the following set-valued map:

P (t, x, y) := {v ∈ G(x, y) | 〈v, y − ȳ(t)〉 ≤ 0},
which is upper semicontinuous with convex compact nonempty values thanks to
Lemma 3.5. Consider (xε(·), yε(·)) which are solutions to

(7)


x′ε(t) ∈ F (xε(t), yε(t)),
εy′ε(t) ∈ P (t, xε(t), yε(t)) for almost every t ∈ [0, T ],
xε(0) = x̄(0), yε(0) = ȳ(0).

Obviously (xε(·), yε(·)) are solutions to (1). Thus, for almost every t ∈ [0, T ],
〈εy′ε(t), yε(t)− ȳ(t)〉 ≤ 0 hence 〈y′ε(t), yε(t)− ȳ(t)〉 ≤ 0. So

〈y′ε(t)− ȳ′(t), yε(t)− ȳ(t)〉 ≤ −〈ȳ′(t), yε(t)− ȳ(t)〉.
By integrating on [0, t], we get

‖yε(t)− ȳ(t)‖2 ≤
t∫

0

〈yε(s)− ȳ(s), ȳ′(s)〉ds

Then ‖yε(t)− ȳ(t)‖ ≤ 1+‖yε(t)− ȳ(t)‖2 ≤
∫ t

0
‖yε(s)− ȳ(s)‖‖ȳ′(s)‖ds+1. Thanks

to Gronwall’s lemma,

‖yε(t)− ȳ(t)‖ ≤
t∫

0

‖ȳ′(s)‖e
∫ t

s
‖ȳ′(σ)‖dσ

ds.

Hence, because ȳ′(·) ∈ L1[0, T ], there exists a nonnegative number M such that
‖yε(t)− ȳ(t)‖ ≤M where M does not depend on ε.
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These results assume that there exist absolutely continuous solutions to the
reduced system. We shall provide a sufficient (5) condition for this.

Proposition 3.6. Let the assumptions of section 2.1 hold true. Then

sup
(x,y)∈Graph(R)

inf
v∈DR(x,y)(F (x,y))

‖v‖ <∞

if and only if starting from any initial condition (x0, y0) ∈ Graph(R) there exists
at least one solution (x(·), y(·)) ∈W 1,1[0, T ]×W 1,1[0, T ] to (2).

P r o o f. Let us denote

c := sup
(x,y)∈Graph(R)

inf
v∈DR(x,y)(F (x,y))

‖v‖.

This means that

∀(x, y) ∈ Graph(R), (F (x, y)× cB) ∩ TGraph(R)(x, y) 6= ∅.
Hence, thanks to the Viability Theorem, the differential inclusion with constraints

x′(t) ∈ F (x(t), y(t)), y′(t) ∈ cB, 0 ∈ G(x(t), y(t))

has at least one absolutely continuous solution starting from any initial condition
of Graph(R). Consequently, (2) has an absolutely continuous solution.

4. Singular perturbations for a system of differential inclusions with
state-constraints. We shall study behaviour of solutions of (1) and (2) which
stay forever (i.e. on [0,+∞[) in a given subset K ⊂ X × Y .

Proposition 4.1. Let K be a compact subset of X×Y . We keep the assump-
tions of Proposition 3.6. If for any ε > 0 and for any initial condition (x0, y0)∈K,
there exists a solution to (1) which is viable in K then

1) K ⊂ Graph(R),
2) for all T > 0 and (x0, y0) ∈ K, there exists y(·) ∈ L1

weak[0, T ] starting at
y0 and a solution x(·) to x′(t) ∈ F (x(t), y(t)) such that

(x(t), y(t)) ∈ K, 0 ∈ G(x(t), y(t)) for almost all t ∈ [0, T ],

3) for any (x0, y0) ∈ K there exists a solution y(·) to y′(t) ∈ G(x0, y(t)) such
that t 7→ (x0, y(t)) is viable in K.

P r o o f. Because K is compact, there exists some A > 0 such that K ⊂
B(0, A). Since F and G are Lipschitz maps and K is compact, we can consider

M := sup{‖u‖, ‖v‖ | (u, v) ∈ F (x, y)×G(x, y), (x, y) ∈ K} <∞.
By the results of section 3, we know in advance that there exists a solution of (2).
In fact, without using Proposition 3.4, we shall prove that there exists a viable
solution on [0, T ] as in the proof of Theorem 3.3. Hence, we deduce results 1)
and 2). Let us prove the last one.

(5) Cf. [15] or [16] for the detailed proof.
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Thanks to the viability theorem, we know that for every (x, y) ∈ K and for
every nonnegative number ε,(

F (x, y)× 1
ε
G(x, y)

)
∩ TK(x, y) 6= ∅.

Because TK(x, y) is a cone, we have for every ε > 0

(εF (x, y)×G(x, y)) ∩ TK(x, y) 6= ∅
and since F is bounded by M ,

({0} ×G(x, y)) ∩ TK(x, y) 6= ∅.
Hence thanks to the viability theorem, starting from any (x0, y0) ∈ K there exists
a solution to t 7→ (x0, y(t)) which is viable.

We can state our last theorem which uses results (6) of Viability Theory.

Theorem 4.2. Let the assumptions of Proposition 4.1 hold true, and assume
furthermore that R is Lipschitz. Then

(9)
Limsup
ε→0

V iabF× 1
εG

(K) ⊂ K ∩Graph(R),

ΠX(Limsup
ε→0

V iabF× 1
εG

(K)) ⊂ V iabF (·,R(·))(ΠX(K ∩Graph(R)).

To prove this it is enough to notice that when R is Lipschitz, for every abso-
lutely continuous solution to (2) its first coordinate x is a solution to

(10) x′(t) ∈ F (x(t), R(x(t)).
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