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Abstract. We define, in an infinite-dimensional differential geometric framework, the “in-
finitesimal Brunovský form” which we previously introduced in another framework and link it
with equivalence via diffeomorphism to a linear system, which is the same as linearizability by
“endogenous dynamic feedback”.

1. Introduction and problem statement. The purpose of this note is to
present the constructions made in [1, 22] in the new differential geometric frame-
work introduced in [21]. See [21], published in the same volume, and references
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therein for a presentation and discussion of this topic, almost necessary for a good
understanding of the present paper.

The contribution of [1, 22] was to construct a so-called “infinitesimal Bru-
novský form” (“nonexact Brunovský form” in [22]) for controllable nonlinear
systems and to relate it to dynamic linearization; they use the linear algebraic
framework introduced in [7]. The point of view on the feedback linearization
problem was the one of looking for “linearizing outputs”, following the idea of
[11, 12, 16]. It is therefore, following the terms of [11, 12, 16], linearization via
endogenous dynamic feedback. In [22], we relied explicitly upon the notion of
differential flatness [11, 12, 16], whereas [1] re-defines the notion of linearizing
outputs in terms of dynamic decoupling and structure at infinity.

Here, the infinite-dimensional differential geometric framework from [21] is
used, and in this context, dynamic linearization is equivalence to a linear system
via diffeomorphism on the extended state space manifold; linearizing outputs
are functions such that these and all their “time-derivatives” are a set of local
coordinates on the generalized state-space manifold. The main interest of this
approach over the algebraic ones is that it is possible to give local notions, and
singularities are not ignored.

In section 3, we define the infinitesimal Brunovský form and relate it to some
work on time-varying linear systems and linearized systems of nonlinear systems
[9, 10]. In section 4, we relate this construction to existence of linearizing outputs,
and explain why it provides a good framework for searching linearizing outputs.

2. The infinite dimensional geometric framework. The main definitions
from [21] are summed up in this section.

2.1. The “infinite dimensional manifold” Mm,n
∞ is, for short, Rn × (Rm)N.

A global system of coordinates is x1, . . . , xn, u1, . . . , um, u̇1, . . . , u̇m, ü1, . . . It
is endowed with the product topology: an open set may be described by some
restrictions on a finite number of coordinates, i.e. there is a k̃ such that, considered
as an open set of Rn×(Rm)N = Rn×(Rm)k̃×(Rm)N, it can be written Õ×(Rm)N

with Õ an open set of Rn × (Rm)k̃.

2.2. A smooth function onMm,n
∞ is one which depends only on a finite number

of coordinates and is smooth as a function of these coordinates. C∞(U) stands for
the algebra of smooth functions defined on an open subset U ofMm,n

∞ . A smooth
mapping fromMm,n

∞ toMm̃,ñ
∞ is a mapping whose composition with any smooth

function is a smooth function. A diffeomorphism from U ⊂Mm,n
∞ to V ⊂Mm̃,ñ

∞
is a bijective smooth mapping whose inverse is a smooth mapping.

2.3. A vector field is a possibly infinite linear combination
∑
vi

∂
∂wi

where
the vi’s are smooth functions and the wi’s are some of the coordinates x1, . . . , xn,
u1, . . . , um, u̇1, . . . , u̇m, . . .. A differential form of degree 1 (or 1-form) is, with
the same conventions, a finite linear combination

∑
vidwi. Λ1(U) stands for the

C∞(U)-module of 1-forms defined on U .
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2.4. All the “formulas” from finite dimensional differential calculus involv-
ing objects like Lie brackets and Lie derivatives are valid. For instance, the Lie
derivative of a form ω =

∑
vidwi along a vector field F may be computed, in

coordinates, according to

LFω =
∑

LF vidwi + vid(LFwi).

Also, a diffeomorphism carries vector fields or differential forms from one manifold
to another, we use the usual notation ϕ∗F or ϕ∗ω.

2.5. A smooth control system

(1) ẋ = f(x, u)

with state x ∈ Rn and input u ∈ Rm is represented by a single vector field

(2) F = f(x, u)
∂

∂x
+ u̇

∂

∂u
+ ü

∂

∂u̇
+ . . .

on Mm,n
∞ . We often refer to “system F”, confusing system (1) with vector field

F .

2.6. The Lie derivative along F defined by (2) is simply the “time-derivative”
according to (1): we often write ϕ̇ or ω̇ instead of LFϕ or LFω for a function ϕ
or a 1-form ω.

2.7. A diffeomorphism from Mm,n
∞ to Mm̃,ñ

∞ given by (x, u, u̇, ü, . . .) 7→ (z, v,
v̇, v̈, . . .) is said to be a static diffeomorphism if and only if z depends only on
x, v depends only on x and u, v̇ depends only on x, u and u̇ ... A static diffeo-
morphism is nothing more than a nonsingular static transformation in the usual
sense: if F is a system onMm,n

∞ and F̃ is a system onMm̃,ñ
∞ , existence of a static

diffeomorphism ϕ such that F̃ = ϕ∗F is equivalent to n = ñ, m = m̃ and static
equivalence of the control systems associated with F and F̃ .

2.8. Of course, n = 0 is not ruled out in the above definitions, coordinates on
Mm,0
∞ are simply {u, u̇, ü, . . .}, and the only system is the canonical linear system

with m inputs:

(3) C =
∞∑
0

u(j+1) ∂

∂u(j)
.

It has “no state”, but one should not worry about this since n = 0 is obtained
after “cutting all the integrators” in a canonical linear system [3] and arbitrar-
ily renaming some states “inputs”. Dynamic linearizability is conjugation via a
diffeomorphism to system C:

Definition 1. A system F is locally dynamic linearizable at a point X ∈Mm,n
∞

if and only if there exists a neighborhood U of X in Mm,n
∞ , an open subset V of

Mm,0
∞ , and a diffeomorphism ϕ from U to V such that, on U , ϕ∗F = C.
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2.9. Consider a C∞(U)-module of vector fields D (resp. of forms H), defined
on an open set U . The annihilator of D is the module of the forms which vanish
on all the vector fields of D, and vice-versa:

H⊥ = {X,∀ω ∈ H, 〈ω,X〉 = 0}; D⊥ = {ω,∀X ∈ D, 〈ω,X〉 = 0}.

D(X ) (resp. H(X )) denotes the subspace of the tangent (resp. cotangent) space
to Mm,n

∞ at the point X ∈ U made of all the X(X ) for X ∈ D (resp. ω(X ) for
ω ∈ H). We call the dimension of D(X ) (resp. H(X )) the pointwise rank of D
(resp. H) at X . D or H is said to be nonsingular at X if and only if its pointwise
rank is finite and constant in a neighborhood of X ; it is then equal to the rank
of the module over C∞(U).

3. The infinitesimal Brunovský form. Let us define the following sequence
of C∞(Mm,n

∞ )-modules of vector fields:

D−j = Span
{

∂

∂u(j+1)
,

∂

∂u(j+2)
, . . .

}
, j ≥ 0,

...

D0 = Span
{
∂

∂u̇
,
∂

∂ü
,

∂

∂u(3)
, . . .

}
D1 = Span

{
∂

∂u
,
∂

∂u̇
,
∂

∂ü
,

∂

∂u(3)
, . . .

}
(4)

...
Dk+1 = Dk + [F,Dk]

...
D∞ =

∑
k

Dk

and, since these are “infinite-dimensional”, we define for each Dk (k ≥ 1) its “ ∂
∂x

part”:

(5) D̂k = Dk ∩ Span
{
∂

∂x

}
, k ∈ [1,∞]

(Span{ ∂∂x} stands for the C∞(Mm,n
∞ )-module generated by ∂

∂x1
, . . . , ∂

∂xn
), which

makes D̂k(X ) (see section 2.9) finite-dimensional for all X ∈Mm,n
∞ ), and yields

(6) Dk = D̂k ⊕D1, k ∈ [1,∞].

Note that (5) and (6) are both valid for k =∞ and that D̂∞ might as well have
been defined by D̂∞ =

∑
k D̂k. We define also a sequence of C∞(Mm,n

∞ )-modules
of forms:
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H−j = Span{dx, du, . . . ,du(j)}, j ≥ 0,
...

H0 = Span{dx, du}
H1 = Span{dx}(7)

...
Hk+1 = {ω ∈ Hk, ω̇ = LFω ∈ Hk}

...
H∞ =

⋂
k

Hk.

See sections 2.4 and 2.6 for a definition of ω̇ or LFω. We have the following
relation between the Dk’s and the Hk’s:

Proposition 1. All the modules Dk and Hk are invariant by static feedback ,
i.e. by static diffeomorphism of Mm,n

∞ (see section 2.7), and , for all k,

(8) H∞ ⊂ Hk+1 ⊂ Hk, Dk ⊂ Dk+1 ⊂ D∞, Hk = D⊥k , Dk ⊂ H⊥k ,

with H⊥k = Dk at points where D̂k is nonsingular (see section 2.9).

P r o o f. From (4) and [21, proposition 1], a static diffeomorphism ϕ does not
change Dk for k ≤ 1; since the recursive definition of Dk for larger k only uses
Lie brackets, it is then clear that the modules built according to (4) from ϕ∗F
are exactly ϕ∗Dk. The two first relations in (8) are obvious from (4) and (7)
and the fourth one is a consequence of the third one because Dk ⊂

(
D⊥k
)⊥, with

an equality at nonsingular points. Let us prove the first one by induction. It is
obvious for k ≤ 1. Let us suppose that it is true for k ≥ 1. From the fact that if
〈ω,X〉 = 0 then 〈LFω,X〉 = −〈ω, [F,X]〉, we have:

ω ∈ Hk+1 ⇔ ω ∈ Hk and Lϕω ∈ Hk
⇔ ∀X ∈ Dk, 〈ω,X〉 = 〈LFω,X〉 = 0
⇔ ∀X ∈ Dk, 〈ω,X〉 = 〈ω, [F,X]〉 = 0
⇔ ω ∈ D⊥k+1.

We shall now relate this construction to accessibility. The following Lie algebra
is defined in [24], and often called the strong accessibility Lie algebra: this Lie
algebra of vector fields on Rn is the Lie ideal generated by all the vector fields
f(u, .)− f(v, .) for all possible values of u and v in the Lie algebra generated by
the vector fields f(u, .) for all possible values of u. The main result on strong
accessibility in [24] (see the definition there) is that it is equivalent to the strong
accessibility Lie algebra having rank n. In [6], the strong jet accessibility Lie
algebra is defined; it differs from the strong accessibility Lie algebra in that the
differences f(u, .) − f(v, .) are replaced by derivatives of all orders with respect
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to all the components of u. It is easy to see (this is actually its definition in [6])
that it is the Lie algebra generated by all the vector fields

(9) adjf(.,u)g
K
u , j ∈ N, K = (k1, . . . , km) ∈ Nm, gKu =

∂k1+...+kmf

∂uk11 . . . ∂ukm
m

.

It a priori depends on u. In the analytic case, it does not depend on u and is equal,
for all values of u, to the strong accessibility Lie algebra. Of course, in the general
(smooth) case, full rank for this Lie algebra is sufficient, but not necessary, for
strong accessibility. A vector field on Rn depending on u, like these defined in (9)
and all their iterated Lie brackets, clearly defines a vector field on Mm,n

∞ (which
belongs to Span{ ∂∂x} and commutes with all the ∂

∂u
(j)
k

for j ≥ 1 but not a priori

with the ∂
∂uk

’s). Here, we call L̂ the Lie algebra composed of the vector fields on
Mm,n
∞ associated to these in the strong jet accessibility Lie algebra as defined by

(9) (or in [6]), and we define L by

(10) L = L̂ ⊕ D1 = L̂ ⊕ Span
{
∂

∂u
,
∂

∂u̇
,
∂

∂ü
,

∂

∂u(3)
, . . .

}
.

L is obviously a Lie algebra because [ ∂
∂uk

, L̂] ⊂ L̂ and [ ∂

∂u
(j)
k

, L̂] = {0} for j ≥ 1.

The phrase “strong jet accessibility Lie algebra” will further refer to L rather
than to a Lie algebra of vector fields on Rn, and L̂ is its ∂

∂x -component. We have:

Proposition 1. For any open subset U of Mm,n
∞ ,

1. L|U (restriction to U of the strong jet accessibility Lie algebra) is the Lie
algebra generated by (i.e. the involutive closure of ) D∞|U (the restriction of D∞
to U).

2. If the C∞-module D̂∞|U is finitely generated , then it is a Lie algebra, and
so is D∞|U , and hence:

(11) D∞|U = L|U i.e. D̂∞|U = L̂|U .
P r o o f. Call Gj,K the vector field onMm,n

∞ associated with adjf(.,u)g
K
u defined

in (9). A computation shows thatGj,K is equal to adjF adk1∂/∂u1
adk2∂/∂u2

. . .adkm

∂/∂um
F

plus a linear combination of vector fields Gj
′,K′ with j′ < j, and iterated Lie

brackets of such vector fields. This proves by induction that all the fields Gj,K

are in the Lie algebra generated by D∞|U , which therefore contains L|U . The
converse is clear because L is a Lie algebra, as noticed above, and contains D∞
from (9), (10) and (4). This proves point 1. To prove point 2, let us prove that
if U is such that D̂∞|U is finitely generated, then the module of vector fields

M = {X ∈ D∞|U , [X,D∞|U ] ⊂ D∞|U}
is equal to D∞|U . By assumption, D∞|U is generated by the vector fields ∂

∂u
(j)
k

,

1 ≤ k ≤ m, j ≥ 0, plus a finite number of vector fields of Span{dx} whose
expressions involve only a finite number, say J , of time-derivatives of u; D∞|U
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is therefore invariant by Lie bracket by the vector fields ∂

∂u
(j)
k

for j ≥ J , which

span D−(J−1). M therefore contains D−(J−1) ; furthermore, it is a submodule of
D∞|U , invariant by F from Jacobi identity. Since it is clear that, for all k, and
in particular k = −(J − 1), D∞|U is the smallest module of vector fields which
contains Dk and is invariant by Lie brackets by F , M = D∞|U .

For further considerations, we will avoid “singular” points in the sense of the
following definition where Hk + Ḣk stands for the module over smooth functions
spanned by all the forms ω and ω̇ with ω ∈ Hk. “Nonsingular” was defined in
section 2.9.

Definition 2. A point X ∈ Mm,n
∞ is called a Brunovský-regular point for

system F if and only if one of the two following (equivalent) conditions is satisfied:

(i) All the modules D̂k (k ≥ 2) are nonsingular at X .
(ii) All the modules Hk + Ḣk (k ≥ 2) are nonsingular at X .

These properties are true for all k ≥ 0 if and only if they are true for k =
2, . . . , n + 1. We call ρk the locally constant rank of Hk. Around a Brunovský-
regular point, there exists an integer k∗ such that, for all k ≤ k∗, ρk+1 ≤ ρk − 1
and Hk = Hk+1 = H∞ for k > k∗.

P r o o f o f i⇔ii. Suppose that all the D̂k’s, and thus all the Hk’s, are nonsin-
gular at X . For a certain k, let {η1, . . . , ηp+q} be a basis of Hk with {η1, . . . , ηp} a
basis of Hk+1. The forms η1, . . . , ηp+q, η̇p+1, . . . , η̇p+q span Hk+Ḣk. On the other
hand, if a linear combination

∑p+q
i=1 µiηi+

∑q
i=1 λiη̇p+i vanishes at X then, for all

vector field X ∈ Dk, 〈
∑q
i=1 λiη̇p+i, X〉, which is equal to 〈

∑q
i=1 λiηp+i, [F,X]〉,

vanishes at X , hence 〈
∑q
i=1 λiηp+i, Y 〉(X ) = 0 for all Y ∈ Dk+1; since {η1(X ), . . .

. . . , ηp(X )} is a basis of the annihilator of Dk+1(X ) and {η1(X ), . . . , ηp+q(X )}
are independent, all the λi’s vanish at X ; hence

∑p+q
i=1 µiηi vanishes at X , hence

all the µi’s also vanish at X . Hence {η1(X ), . . . , ηp+q(X ), η̇p+1(X ), . . . , η̇p+q(X )}
is a basis of Hk(X ) + Ḣk(X ) and Hk + Ḣk is nonsingular at X .

Conversely suppose that all the modules Hk + Ḣk are nonsingular at X . Let
Ck = {X ∈ Dk, [F,X] ∈ Dk} and Ĉk = Ck ∩ Span{ ∂∂x ,

∂
∂u}. Clearly, Ck = Ĉk ⊕D0.

Arguments similar to these of the end of the proof of proposition 1 show that (Hk+
Ḣk)⊥ = Ck (equality between modules). All the Ĉk’s are therefore nonsingular
at X . Let us prove by induction that all the modules D̂k are nonsingular too.
This is true for k = 1 (D̂1 = {0}). Suppose that it is true for k ≥ 1, and
let {. . . , ∂∂ü ,

∂
∂u̇ , X1, . . . , Xp+q} be a basis of Dk with {. . . , ∂∂ü ,

∂
∂u̇ , X1, . . . , Xp} a

basis of Ck. Then the same arguments as in the first part of this proof show that
{X1(X ), . . . , Xp+q(X ), [F,Xp+1](X ), . . . , [F,Xp+q](X )} is a basis of Span{ ∂∂u} ⊕
Dk+1(X ) and D̂k+1 is nonsingular at X .

Theorem 2 [Infinitesimal Brunovský form]. Around a Brunovský-regular
point there exists ρ∞ functions of x only χ1, . . . , χρ∞ , and m 1-forms ω1, . . . , ωm,
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and m non-negative integers r1 . . . , rm such that

(12) {dχ1, . . . ,dχρ∞} is a basis of H∞ = Hl, for l ≥ k∗ + 1

(13) {dχ1, . . . ,dχρ∞} ∪ {ω
(j)
k , rk ≥ l, 0 ≤ j ≤ rk − l} is a basis of Hl,

for all l ≤ k∗.

Furthermore all the ωk’s are in H1 = Span{dx}—i.e. rk ≥ 1 for all k—if and
only if , at the point (x, u) under consideration,

(14) rank
R

{
∂f

∂u1
(x, u), . . . ,

∂f

∂um
(x, u)

}
= m.

At a Brunovský-regular point, D∞ is equal to Dn+1 and is hence nonsingu-
lar and hence locally finitely generated. Hence strong accessibility implies, from
Theorem 1, that ρ∞ = 0. In that case and if (14) is met, (13) implies

(15)
{ω(j)

k , 0 ≤ k ≤ m, 0 ≤ j ≤ rk − 1} is a basis of H1 = Span{dx},

{ω(j)
k , 0 ≤ k ≤ m, 0 ≤ j ≤ rk} is a basis of H0 = Span{dx,du}.

Hence, with ωk,j = ω
(j)
k , and with the ai,j ’s and bi,j ’s some functions such that

the matrix [bi,j ]i,j is invertible at X ,

(16)

χ̇1 = γ1(χ1, . . . , χρ∞)

...

χ̇ρ∞ = γρ∞(χ1, . . . , χρ∞)

ω̇i,1 = ωi,2

ω̇i,2 = ωi,3

...

ω̇i,ri−1 = ωi,r1

ω̇i,r1 =
n∑
j=1

ai,jdxj +
m∑
j=1

bi,jduj


1 ≤ i ≤ m.

We call this “infinitesimal Brunovský form” because it looks like the canonical
Brunovský form [3] for linear system; it is not a “canonical form” for any equiva-
lence relation: the data of the forms ω1, . . . , ωm and of (16) does not give a unique
system.

P r o o f. The proof goes along the lines of [1] or [22]. Since we are at a
Brunovský-regular point, H∞ is nonsingular and locally spanned by exactly ρ∞
forms. These forms depend on a finite number of variables x, u, . . . , u(K). One
may then project these forms, and hence H∞, on the finite dimensional manifold
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Mm,n
K (see [21]) and use the finite dimensional Frobenius theorem: from Theo-

rem 1, H∞ is completely integrable and therefore is spanned by ρ∞ exact forms
dχ1 . . . dχρ∞ with χ1 . . . χρ∞ some functions, which depend only on x because
dχi ∈ D∞ ⊂ D1. Then the forms ωk may be constructed recursively such that
(13) holds:
• it holds for l ≥ k∗ + 1 provided all the rk’s are no larger than k∗ (it will be

the case).
• chose ω1, . . . , ωρk∗ so that {dχ1, . . . ,dχρ∞ , ω1, . . . , ωρk∗} is a basis of Hk∗ ,

and set r1 = . . . = rρk∗ = k∗, (13) is then satisfied for l ≥ k∗ provided all the
remaining rk’s are no larger than k∗ − 1 (it will be the case).
• Induction on `, downward from ` = k∗ to ` = 0: for 0 ≤ ` ≤ k∗ − 1, let us

suppose that (13) is true for l ≥ `+1 (assuming that all the rk’s corresponding to
ωk’s which have not yet been built are no larger than `), and build some ωk’s with
rk = ` so that (13) is true for l ≥ `. It is not difficult to prove (see [1, proof of Th.
3.5], really similar because by assumption H`+1 + Ḣ`+1 is nonsingular here) that
{dχ1, . . . ,dχρ∞}∪{ω

(j)
k , rk ≥ `+1, 0 ≤ j ≤ rk−`} is a set of linearly independent

elements of H`, actually a basis of H`+1 + Ḣ`+1 ⊂ H`. Add, if they do not form
a basis of H`, some new ωk’s with the corresponding rk’s equal to `.

After l = 0, no new ωk’s are needed because if there is a certain number of
ωk’s such that (13) holds for l = 0 (we have not yet proved there are exactly m of
them), then du1, . . . ,dum are linear combinations of the dχi’s and the ω(j)

k ’s for
rk ≥ 0 and 0 ≤ j ≤ rk, which immediately implies that, for q > 0, du(q)

1 , . . . ,du(q)
m

are linear combinations of the dχi’s and the ω(j)
k ’s for rk≥ 0 and 0≤ j ≤ rk+q, i.e.

(13) is met for l = −q < 0 without any additional ωk’s; this ends the construction
of the ωk’s and proves rk ≥ 0 for all k. There are exactly m ωk’s because an
obvious consequence of (13) is that ρl− ρl+1 is equal to the number of rk’s larger
or equal to l; in particular, since ρl − ρl+1 = m for l ≤ 0 (see (7)), the total
number of ωk’s is m. To prove the very last part of the theorem, one therefore
has to prove that ρ1− ρ2 = m if and only if (14) holds, which is obvious because,
from (4), D2 = D1⊕Span{ ∂f∂u1

, . . . , ∂f
∂um
} and because of Brunovský-regularity.

The reason for defining this “Brunovský form” in [1, 22] was to suggest a
way to look for “linearizing outputs” (see theorem 3 below for definition and
comments). For this, we defined the following infinitesimal version of linearizing
outputs:

Definition 3 ([1, 22, 21]). A Pfaffian system (ω1, . . . , ωm) is called a lineariz-
ing Pfaffian system at a point X if and only if, for a certain neighborhood U of
X , the restrictions to U of the forms LjFωk, j ≥ 0, 1 ≤ k ≤ m form a basis of the
C∞(U)-module Λ1(U) of all differential forms on U .

One should not be misled by the terminology: a linearizing Pfaffian system,
contrary to a linearizing output, does not linearize anything unless it has more
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properties (integrability, see Theorem 3). An immediate consequence of Theo-
rems 1 and 2 is:

Corollary 2. If a system F is locally strongly accessible around a point
X , which is Brunovský-regular for F , then F admits, locally around X a lin-
earizing Pfaffian system (ω1, . . . , ωm). A possible choice is the forms ω1, . . . , ωm
constructed in Theorem 2. If (14 ) holds, ω1, . . . , ωm are in H1 = Span{dx}.

Comments on this “Brunovský form”. Let us indicate the similarity between
the content of this section and the algebraic framework for “time-varying” linear
systems developed in [8, 9] for example.

For U an open subset of Mm,n
∞ , let C∞(U)[LF ] be the algebra of differential

operators which are polynomials in the Lie derivative with respect to F with
coefficients in C∞(U). This is a noncommutative algebra since (aLF )(bLF ) =
abL2

F + a(LF b)LF . It plays the same role as the non-commutative ring k[d/dt]
(k is a differential field) introduced in [8] to define linear time-varying systems: a
linear system is a module over this ring and it is controllable if and only if it is a
free k[d/dt]-module (which is also a k vector space).

In the nonlinear case, in [8, 10] a system is represented by a differential field
k and, via Kähler differentials, one may define the linearized system as a k[d/dt]-
module, whose equivalent here is the C∞(U)[LF ]-module Λ1(U).

Relying upon results from [23, 6] which state that a nonlinear system satisfying
the strong accessibility condition has a controllable linear approximation along
“almost any” trajectory, a nonlinear system is said to be controllable in [10] if
and only if the k[d/dt]-module associated to the differential field k is free.

Note that the assertion “(ω1, . . . , ωm) is a linearizing Pfaffian system” (or
(13) with ρ∞ = 0) is equivalent to “(ω1, . . . , ωm) is a basis of the C∞(U)[LF ]-
module Λ1(U)”; hence Corollary 2 constructs a basis of this module, and hence
establishes that it is free. We have proved (theorem 1), that, at a Brunovský-
regular point (and even at a point where D̂∞ is locally finitely generated), the
strong accessibility rank condition implies that the module is free, or that the
linearized system is controllable in the sense of [8, 10]. This is not exactly a
consequence of [23, 6]. Technically, the result is contained in the fact that D∞ is
(around a regular point) closed under Lie bracket, which may be interpreted as:
the torsion submodule of the C∞(U)[LF ]-module Λ1(U) is “integrable”.

An algebraic construction of the “canonical Brunovský form” (or of a basis
of the module) for controllable time-varying linear systems, based on some filtra-
tions, is proposed in [9]. The sequence of the Hk’s is a filtration of Λ1(U). It does
not coincide with these introduced in [10], but might certainly be interpreted in
the same terms. The “well-formedness” assumption in [10] corresponds to (14) at
the end of Theorem 2.

4. Dynamic linearization as an integrability problem. Dynamic lin-
earizability from definition 1 is actually linearizability by endogenous dynamic
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feedback as defined in [16, 11, 12]. It is proved there that this is equivalent to
flatness, i.e. to existence of linearizing outputs or flat outputs. In the present
framework, these are defined below. They are given an interpretation in terms
of dynamic decoupling and structure at infinity in [1] and in [16], and they are
defined as the free generators of the differential algebra C∞(Mm,n

∞ ) in [14, 15].

Theorem 3 ([21]). Let X be a point of Mm,n
∞ . The following assertions are

equivalent :

1. The system F is locally dynamic linearizable at point X .
2. There exist m smooth functions h1, . . . , hm from a neighborhood of X in

Mm,n
∞ to R such that (LjFhk)1≤k≤m,0≤j is a local system of coordinates at X .

Such m functions are called linearizing outputs (or simply one linearizing output)
[11, 12, 16].

3. F admits, on a neighborhood of X , a linearizing Pfaffian system (η1, . . . , ηm)
which is completely integrable, i.e. such that dηk ∧ η1 ∧ . . .∧ ηm = 0, k = 1 . . .m.

We saw in the previous section that all strongly accessible systems admit, at
Brunovský-regular points, a linearizing Pfaffian system, which, of course, may
not be integrable. We therefore have to investigate what all linearizing Pfaffian
systems are, and we may say that a system is dynamic linearizable if and only if
there exists one among all these which is integrable.

For an open subset U of Mm,n
∞ , let A(U) be the algebra of m ×m matrices

with entries in the algebra of differential operators C∞(U)[LF ]:

(17) A(U) ∆=Mm×m (C∞(U)[LF ]) .

A matrix in A(U) defines an operator on m-uples of 1-forms in a straightforward
manner, and we have:

Proposition 3. Let (ω1, . . . , ωm) be a linearizing Pfaffian system and let
η1, . . . , ηm be m 1-forms defined on an open set U of Mm,n

∞ . (η1, . . . , ηm) is a
linearizing Pfaffian system if and only if there exists P (LF ) in A(U) which is
invertible in A(U) and is such that

(18)

 η1
...
ηm

 = P (LF )

 ω1
...
ωm

 .

P r o o f. There always exists P (LF ) ∈ A(U) such that (18) holds because
(ω1, . . . , ωm) is a linearizing Pfaffian system. If (η1, . . . , ηm) is also a linearizing
Pfaffian system, there exists Q(LF ) ∈ A(U) such that ω1

...
ωm

 = Q(LF )

 η1
...
ηm

 .
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Hence Q(LF )P (LF ) and P (LF )Q(LF ) transform respectively (ω1, . . . , ωm) and
(η1, . . . , ηm) into themselves. Hence Q(LF )P (LF ) = P (LF )Q(LF ) = I because
the forms ω(j)

k (resp. η(j)
k ), 1≤k≤m, j≥0, are linearly independent. Conversely,

it is obvious that (18) with P (LF ) invertible implies that (η(j)
k )1≤k≤m,j≥0 is a basis

of the C∞(U)-module Λ1(U).

A straightforward consequence of Theorem 2 and proposition 3 is:

Theorem 4. Let X ∈ Mm,n
∞ be a Brunovský-regular point for a system F ,

and let ω1, . . . , ωm be the 1-forms constructed in Theorem 2, defined on a certain
neighborhood U of X . The system F is locally dynamic linearizable at a point X
if and only if there exists an invertible matrix P (LF ) ∈ A(U) such that

(19)

 ω1
...
ωm

 = P (LF )

 ω1
...
ωm


is a locally completely integrable Pfaffian system, i.e. dωk ∧ω1 ∧ . . .∧ωm = 0 for
k = 1, . . . ,m.

Of course, this is not per se a solution to the dynamic feedback linearization
problem; it is rather a convenient way to pose the problem of deciding whether
or not linearizing outputs exist. The main difficulty comes from the fact that
the degree of P may be arbitrarily large because the linearizing outputs may
depend on an arbitrary number of time-derivatives of u. Let us make this number
artificially finite:

Definition 4. A system F is said to be (x, u, . . . , u(K))-linearizable (for K=
−1, this reads x-linearizable) at point X if and only if there exists some linearizing
outputs function of (x, u, . . . , u(K)) only (on x only for K = −1).

Of course, a system is dynamic feedback linearizable (in the sense of defini-
tion 1, i.e. linearizable by endogenous dynamic feedback according to [11, 12, 16],
or dynamic linearizable according to [14, 15]) if and only if it is (x, u, . . . , u(K))-
linearizable for a certain K. We have the following theorem which precises The-
orem 4.

Theorem 5. Let X ∈ Mm,n
∞ be a Brunovský-regular point for system F ,

and let ω1, . . . , ωm, and r1, . . . , rm be, respectively , the 1-forms and integers con-
structed in Theorem 2. System F is (x, u, . . . , u(K))-linearizable at point X if and
only if there exists an invertible matrix P (LF ) ∈ A(U) satisfying the conditions
of Theorem 4 and such that the degree of the entries of the k-th column is at most
K + rk.

P r o o f. The condition is necessary for (x, u, . . . , u(K))-linearizability because
if h1, . . . , hm are some linearizing outputs function of x, u, . . . , u(K) only, (19)
holds with ωk = dϕk and, from (13), the columns of P have to satisfy the degree
inequalities. Conversely, suppose that (19) holds with the degree of the kth column



INFINITESIMAL BRUNOVSKÝ FORM 31

of P being at most K + rk and the system (ω1, . . . , ωm) completely integrable,
then (ω1, . . . , ωm) is spanned by some exact forms (dh1, . . . ,dhm); the functions
hk are linearizing outputs; the degree inequalities imply that all the ωk’s are
in H−K = Span{dx, du, . . . ,du(K)}, and hence that the hk’s are functions of
x, u, . . . , u(u) only.

One of the reasons why our results provide a rather convenient framework is
that, outside some singular points, it is not difficult to describe invertible matrices
of a prescribed degree. As noticed in [9, 10, 13], the polynomial ring C∞(U)[LF ]
enjoys many interesting properties. Namely, it is possible to perform right and
left Euclidian division by a polynomial whose leading coefficient does not vanish.
It is well known (see for example [25]) that, in the constant coefficient case, all
invertible polynomial matrices are finite products of “elementary matrices”, i.e.
either diagonal invertible matrices or permutation matrices or matrices whose
diagonal entries are all equal to 1 while only one of the non-diagonal entries is
nonzero, and it is an arbitrary polynomial. Since the tool to get such a decom-
position is only Euclidian division, this remains true in the case of coefficients in
C∞(U) as long as one does not have to perform Euclidian division by a polyno-
mial whose leading coefficient vanishes. This does not happen often, although it
is not very easy in general to say which singularities the original matrix should
not have for this not to happen; in the meromorphic case ([1, 22]), this never
happens since the coefficient of the polynomials then belong to a field and are
therefore invertible, even if they “vanish” at a point, if they are not zero. Now,
if one bounds a priori the degree of the columns of P (say one wishes to decide
whether (x, u, . . . , u(K))-linearizability holds), then all invertible matrices satis-
fying these bounds may be sorted into a finite number of types of finite products
of elementary matrices, each type involving a finite number of functions. In each
case,

d

P (LF )

 ω1
...
ωm

 = 0

(with d acting on each entry) is a set of partial differential equations in these
functions. The solubility of these PDE’s is equivalent to the existence of a system
of linearizing outputs depending only on a fixed finite number of time-derivatives
of u.

5. Conclusion. We have developed a framework for looking for linearizing
outputs which gives a convenient way for writing down a system of equations
whose solubility is equivalent to the existence of a system of linearizing out-
puts. Some work has already been done in the direction of characterizing the
cases where linearizing outputs exist. These results give either sufficient condi-
tions or necessary and sufficient conditions for existence of linearizing outputs for
some particular cases. For example, (x, u, . . . , u(K))-linearizability (in most cases,
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K = −1) or a prescribed “structure at infinity” (see [17, 18, 19]). A criterion
for existence of a matrix P of degree zero for general two-inputs systems is given
in [22]. The “sufficiency” part of the result contained in [19] is re-derived in [2]
in a way that simplifies, to our opinion, the argument partly due to E. Cartan.
Finally, a characterization of (x, u)-linearizability for affine systems with 4 states
and 2 inputs is given in [20]. These last results seem to demonstrate that “in-
finitesimal Brunovský form” is a convenient way to tackle the problem of looking
for linearizing outputs.
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