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Introduction. Optimal problems on Lie groups are an important class of
problems linking modern control theory with its classical predecessors mechanics
and differential geometry.

My previous papers [5], [6] and [7] showed that even the most classical prob-
lems of mechanics, such as the motion of the rigid body, or its geometric com-
panion, the equations describing the equilibrium configurations of an elastic rod
can be effectively analyzed on Lie groups through the Maximum Principle and its
associated Hamiltonian formalism. This paper will further illustrate the impor-
tance of modern geometric techniques by concentrating on time optimal control
problems of mechanical systems recently studied in [3], [10] and [12]. Each of
these studies are inspired by an important paper of Dubins [4] who considered
and solved, the following geometric problem:

Among all C1 curves γ(t) in the plane, which are parametrized by arc length,
and which further satisfy the condition that d2γ

dt2 (t) is a measurable function with
||d

2γ
dt2 (t)|| ≤ 1 almost everywhere, find the curve of minimal length which connects

two arbitrary points in the plane and has prescribed tangent vectors at these
points.

Following H. J. Sussmann [12] we shall refer to this problem as Dubins’ prob-
lem. Each admissible curve γ(t) in the problem of Dubins can be parametrized
by the angle θ, which the tangent vector makes with the horizontal direction to
yield:

(1)
dx

dt
= cos θ(t),

dy

dt
= sin θ(t) and

dθ

dt
(t) = v(t)
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with

|v(t)| =
∥∥∥∥d2γ

dt2
(t)
∥∥∥∥ and |v(t)| ≤ 1.

As shown in the paper of Sussmann, Dubins problem can then be regarded
either as a time optimal problem in R3, or more naturally, as an optimal problem
on R2 × S1 with v(t) playing the role of a control.

As a time optimal control problem, Dubins’ problem can be restated as follows:
Consider a car in the plane whose speed is always one, and which can either turn
left or right with its turning radius of curvature greater than or equal to one.
Starting from an arbitrary initial position of the car having on arbitrary initial
orientation, find the shortest path for the car which transfers the car to a fixed
terminal location and a fixed terminal car orientation at this terminal location.

This point of view was taken by Reeds and Shepp in their remarkable paper
[11], in which they allowed the car to also reverse its direction. The reversal of
orientation introduces another control u which can only take values±1 in equation
(1) to yield:

(2)
dx

dt
= u(t) cos θ(t),

dy

dt
= u(t) sin θ(t),

dθ

dt
= v(t).

Inspired by the papers of Sussmann [12], and Laumonde and Souriat [10],
J. D. Boissonat, A. Cereso and J. LeBlond considered in [3] the following inter-
esting variation of Dubins’ problem:

(3)
dx

dt
= u(t) cos θ(t),

dy

dt
= u(t) sin θ(t),

dθ

dt
(t) = k(t),

dk

dt
= v(t)

under the constraint that |v(t)| ≤ B. B is an arbitrary bound which we will for
simplicity take to be equal to 1. They regard (3) as a control system in R4 with
coordinates (x, y, θ, k), and ask for time optimal solutions with v(t) an arbitrary
integrable control function bounded by |v(t)| ≤ 1.

The starting point for this paper is to rephrase these problems as time optimal
problems on Lie groups, and show that much of the geometry of their solutions
can be analyzed in terms of the Lie group symmetries and the appropriate con-
servation laws described by the Casimir elements of these groups. We shall also
further illustrate the importance of this formalism by considering the analogous
problems on the sphere and the hyperbolic plane. We begin by describing the
basic Lie group formalism.

1. Lie groups. A Lie group G is an analytic manifold such that the group
multiplication and the operation of taking the inverse are analytic operations
relative to the manifold structure of G. The most well known example of a Lie
group is the group of all non singular n×n matrices with real entries. Such a group
is called the general linear group of Rn and is usually denoted by GLn(R). We
shall now consider GL+

n (R), the connected component of GLn(R) which contains
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the identity. Elements of GL+
n (R) are all non-singular matrices whose determinant

is positive.
The Lie algebra of GL+

n (R) is equal to its tangent space at the identity. It
is well known that the Lie algebra of GLn(R) is equal to the vector space of all
n× n matrices.

We shall use Mn(R) to denote this space. It is also well known that any closed
subgroup of a Lie group G is also a Lie group. In particular closed subgroups of
GL+

n (R) are Lie groups.
In the sequel we will mainly be interested in the following subgroups of

GLn(R).

(i) E2, the group of motions of the plane. This group consists of all 3 × 3
matrices of the form 1 0 0

x1 α β
x2 −β α

 with (x1, x2) ∈ R2, and α2 + β2 = 1.

(ii) The group of rotations of Rn. This group will be denoted by On(R), and
its connected component through the identity will be denoted by SOn(R). The
elements of SOn(R) are all the elements of GL+

n (R) which leave the Euclidean
product (x, y) =

∑n
i=1 xiyi in Rn invariant. That is, R ∈ SOn(R) if and only if

〈Rx,Ry〉 = 〈x, y〉 for all x and y in Rn, and detR > 0.
We shall also be interested in the group SO(2, 1) which is the group which

leaves the Lorentz form 〈x, y〉 = −x1y1 + x2y2 + x3y3 invariant.
If H is a closed subgroup of a Lie group G then the Lie algebra of H will be

denoted by L(H) and is defined as L(H) = {A ∈ L(G) : etA ∈ H for all t ∈ R}.
It easily follows that L(E2) consists of all matrices of the form

A =

∣∣∣∣∣∣
0 0 0
α1 0 −α3

α2 α3 0

∣∣∣∣∣∣ , (α1, α2, α3) ∈ R3.

The Lie algebra of SOn(R) consist of all n× n antisymmetric matrices, while
the Lie algebra of SO(2, 1) consist of all matrices of the form∣∣∣∣∣∣

0 α1 α2

α1 0 −α3

α2 α3 0

∣∣∣∣∣∣ , (α1, α2, α3) ∈ R3.

For simplicity of exposition we will only consider Lie groups G which are
subgroups of GL+

n (R). Then the tangent space of G at an arbitrary point g of G
will be denoted by TgG, and can be defined in two ways: either as {Ag : A∈L(G)}
or as {gA : A ∈ L(G)}. We shall use the second definition. For a fixed element
A ∈ L(G), the vector field g → gA will be denoted by ~A(g). Such a vector field is
called left invariant because its value at g is obtained by left-group multiplication
of its value at the group identity which is equal to A. An integral curve of ~A is a
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curve g(t) which is a solution of dgdt = g(t)A. It follows that g(t) = g0e
At for some

g0 ∈ G. Since g(0) = g0, it follows that g(t) is the integral curve which passes
through g0 at t = 0. It also follows that the integral curve of ~A through any point
g0 is obtained as the left translate of the integral curve of ~A through the group
identity, the property which finally justifies the terminology for ~A. (The other
choice in the representation of tangent spaces naturally leads to right invariant
vector fields.)

We shall now return to the problem of Dubins, and show that it is as a time
optimal problem on the group of motions E2.

Let γ(t) be any C1 curve in R2 parametrized by arc length. Denote by ~a1(t)
the tangent vector dγ

dt , and denote by ~a2(t) the unit vector normal to a1(t) ori-
ented counterclock wise from a1(t). Let R(t) denote the rotation matrix defined
by R(t)

(
x
y

)
= x~a1(t) + x2~a2(t). The curve R(t) belongs to SO2(R), and hence its

derivative is a tangent vector to SO2(R) at R(t). Using the left-invariant descrip-
tion of the tangent spaces, we get that

dR

dt
(t) = R(t)A(k(t)) where A(k(t)) =

∣∣∣∣ 0 −k(t)
k(t) 0

∣∣∣∣ .
Since ai(t) = R(t)ei, i = 1, 2 where e1, e2 denotes the standard basis in R2, we
get that dγ

dt = a1(t) = R(t)e1, and that da1
dt = dR

dt e1 = R(t)A(k)e1 = k(t)a2(t).
Thus |k(t)| = ||d

2γ
dt2 (t)||. k(t) is called the geodesic curvature associated with the

curve γ(t).
Curve γ(t) along with its frame R(t) may be viewed as a curve g(t) in E2

defined by

g(t) =
∣∣∣∣ 1 0
γ(t) R(t)

∣∣∣∣ .
Then

(4)
dg

dt
(t) = g(t)

∣∣∣∣∣∣
0 0 0
1 0 −k(t)
0 k(t) 0

∣∣∣∣∣∣ = g(t)

∣∣∣∣∣∣
0 0 0
1 0 0
0 0 0

∣∣∣∣∣∣+ k(t)g(t)

∣∣∣∣∣∣
0 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣ .
Set

L1 =

∣∣∣∣∣∣
0 0 0
1 0 0
0 0 0

∣∣∣∣∣∣ , L2 =

∣∣∣∣∣∣
0 0 0
0 0 0
1 0 0

∣∣∣∣∣∣ , L3 =

∣∣∣∣∣∣
0 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣ .
Using these notations equation (4) can be written as:

(5)
dg

dt
= ~L1(g) + k(t)~L3(g).

Equation (5) is the Serret-Frenet equation associated with the curve γ. This
equation is a coordinate free analogue equation of (1), as can be easily seen from
the following parametrization of E2:
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Since R(t) is a rotation in SO2(R) it can be parametrized by an angle θ defined
by

R(t) =
∣∣∣∣ cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

∣∣∣∣ .
Then

dR

dt
=
∣∣∣∣− sin θ(t) − cos θ(t)

cos θ(t) − sin θ(t)

∣∣∣∣ dθdt = R(t)
∣∣∣∣ 0 −k(t)
k(t) 0

∣∣∣∣ .
Hence, dθ

dt = k(t). If we now denote γ(t) by
(
x(t)
y(t)

)
, it follows that

dγ

dt
= R(t)e1 =

(
cos θ(t)
sin θ(t)

)
and hence our equations reduce to equation (1), providing that k(t) = v(t).

It is now easy to see that the dynamics for the Reeds-Shepp car can be ex-
pressed by

(6)
dg

dt
= u(t)~L1(g) + v~L3(g)

with u(t) = ±1 and |v(t)| ≤ 1.
The natural state space for the problem of Boissonat-Cereso-LeBlond is G =

E2 ×R in which the dynamic equations are given by

(7)
dg

dt
= ~L1(g) + k(t)~L3(g),

dk

dt
= v(t), |v(t)| ≤ 1

where ĝ(t) = (g(t), k(t)) denotes the solution curve in G.

2. Controllability. Controllability of control systems on Lie groups, which
are affine in controls, has been studied in considerable detail some time ago ([2],
[8], [9]).

That both systems (5) and (6) are controllable follows from easy geometrical
arguments. In this context, it might be interesting to recall the controllability
results of [2] which state that any left invariant family of vector fields on any semi-
direct product of a compact group with a vector space is controllable provided
that the Lie algebra generated by the family is equal to the Lie algebra of the
semi-direct product. Controllability of (5) is a particular case of this theorem
since E2 is a semi-direct product of SO2(R) with R2.

It will be convenient for further analysis to note that both (5) and (6) are
left-invariant control systems, and that therefore their reachable sets from an
arbitrary point g in E2 are the left translates of the reachable set through the
identity. That means that

A(g) = gA(e) = {gh : h ∈ A(e)},
where A(g) denotes the reachable set from g.

The preceding observation shows that in both Dubins’ and Reeds-Shepp’s
problem it suffices only to consider the shortest path which originates at the
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group identity e. For, if g(t) is the shortest path which connects g0 to g1, then
h(t) = g−1

0 g(t) is the shortest path which connects e to g−1
0 g1. Evidently, the

converse must also be true.
We now consider controllability of the Boissonat-Cereso-LeBlond problem. To

begin with, note that it is not a left-invariant problem on G because the system
is not invariant in k-direction. That is, (~L1(g) + k~L3(g), v) 6= (g, k)(~L1(0) + 0 ·
~L3(0), v) for any v. Since however

(~L1(g) + k~L3(g), v) = (g, 0)(~L1(0) + k~L3(0), v).

the system is still invariant relative to E2. It then follows that its reachable
set A(g, k) from (g, k) ∈ G satisfies the following invariance property A(g, k) =
(g, 0)Ae, k).

The drift vector field X(g, k) is equal to (~L1(g)+k~L3(g), 0). Its integral curves
are given by

dg

dt
= ~L1(g) + k(t)~L3(g) and

dk

dt
= 0.

Hence k(t) = constant, and R(t) =
∣∣∣∣ cos kt − sin kt
sin kt cos kt

∣∣∣∣, and x(t) = 1
k sin kt, y(t) =

1
k (1− cos kt). It then follows that (x(t), y(t)) moves along a circle.

Thus each integral curve of the drift vector field is closed, and hence, control
system (7) has a periodic drift. But then it is well known ([8] or [9]) that such a
system is controllable whenever its Lie algebra is of full rank. So in order to show
controllability we need only to verify the rank condition.

Following the general convention that the Lie bracket of any vector fields X
and Y is given by the formula [X,Y ]f = Y (Xf) − X(Y f), it can be proved
that the Lie bracket of two left invariant vector fields ~A(g) and ~B(g) is given
by [ ~A, ~B](g) =

−−−→
[A,B](g) where [A,B] = BA − AB. Notice that our convention

implies that [A,B] is the negative of the usual commutator rule.
We then get the following Lie bracket table for the Lie algebra of E2:

[L1, L2] = 0, [L1, L3] = L2, and [L3, L2] = L1.

Let X = ( ~A(k), a ∂
∂k ) and Y = ( ~B(k), b ∂∂k ) be two vector fields in G such that for

each fixed k, ~A(k) and ~B(k) are left invariant on E2. Then

[X,Y ]f = Y (Xf)−X(Y f)

=
(
~B(k), b

∂

∂k

)(
~A(k)f + a

∂f

∂k

)
−
(
~A(k), a

∂

∂k

)(
~B(k)f + b

∂f

∂k

)
= ( ~B(k) ~A(k)−A(k) ~B(k))f + b

∂

∂k
~A(k)f − a ∂

∂k
~B(k)f.

In particular, now take X = (~L1 + k~L3, 0) and Y = (0, ∂∂k ). Then [X,Y ](f) =
(~L3f, 0) = X1, [X, [X,Y ]] = [~L1, ~L3] = ~L2 = X2. Finally [X1, X2] =
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([~L3, ~L2], 0) = (~L1, 0). Therefore the Lie algebra is of full rank at each point
of G, and therefore (7) is controllable.

R e m a r k. Let (x, y, θ, k) be the system of coordinates described earlier. Then
the vector field ~L1(g) + k~L3(g) = cos θ ∂

∂x + sin θ ∂
∂y + k ∂

∂θ + 0 · ∂∂k . In terms of

these coordinates ~L3(g) = ∂
∂θ and

[X,Y ] = [cos θ
∂

∂x
+ sin θ

∂

∂y
+ k

∂

∂θ
,
∂

∂k
] =

∂

∂θ
,

[X, [X,Y ]] = − sin θ
∂

∂x
+ cos θ

∂

∂y
= ~L2 and[

∂

∂θ
,− sin θ

∂

∂x
+ cos θ

∂

∂y

]
= cos θ

∂

∂x
+ sin θ

∂

∂y
= ~L1.

Thus our calculations agree with those in [3].

3. The cotangent bundle of a Lie group. The cotangent space of G at g,
which will be denoted by T ∗g (G), is the space of all linear functions on Tg(G). The
cotangent bundle of G, denoted by T ∗G, is the union of all T ∗g (G) as g varies over
G. We will regard T ∗G as the product L∗ ×G where L∗ denotes the dual of the
Lie algebra L of G. This realization of T ∗G as L∗ × G is accomplished through
the left translations Lg(x) = gx for all x ∈ G, and g ∈ G, and goes as follows:

Let dLg denote the tangent map of Lg at x. Then dLg : Txg→ TLg(x)G. The
dual map dL∗g of dLg maps T ∗gx(G) onto T ∗xG. In particular dL∗g−1 maps T ∗eG onto
T ∗gG. The correspondence (`, g)→ dL−1

g (`) realizes L∗×G as T ∗G. It then follows
that the tangent bundle T (T ∗G) of the cotangent bundle T ∗G can be identified
with

T (L∗(G)×G) = T (L∗(G))× TG = (L∗ × L∗)× (L ×G).
For convenience of notation we will write T (T ∗G) = (L∗×G)× (L∗×L) with the
understanding that each element ((p, g), (W ∗, V )) of (L∗×G)× (L∗×L) denotes
a tangent vector (W ∗, V ) at a basepoint (p, g).

The cotangent bundle T ∗M of each manifold is equipped with a natural dif-
ferential form θ. In terms of the above representation of T (T ∗M), θ(p,g)(W ∗, V ) =
p(V ). The symplectic form ω is equal to the exterior derivative dθ of θ.

It follows that

(9) ω(g,p)((W ∗1 , V1), (W ∗2 , V2)) = W ∗1 (V2)−W ∗2 (V1)− p([V1, V2])

as can be easily deduced from the general formula

dθ(X1, X2) = X1(θ(X2))−X2(θ(X1))− θ([X1, X2]).

Each function H on T ∗G corresponds to a vector field ~H, defined by the
formula dHx(v) = ωx(v, ~H(x)) for each point x on T ∗G. This correspondence is
unique up to constant functions. ~H is called the Hamiltonian vector field of H,
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and H is called a Hamiltonian of ~H. More explicitly this formalism leads to the
following equations:

Denote x = (p, g), and ~H(p, g) = (Y ∗, X). Using dH(p,g)(W ∗, V ) = W ∗(X)−
Y ∗(V ) + p[X,V ], we get that an integral curve p(t), g(t) of ~H must satisfy

(10)

{
W ∗(g−1 dg

dt ) = W ∗(X) = dH(p(t),g(t))(0,W ∗)and
dp
dt (V ) = Y ∗(V ) = p(t)([X,V ])− dH(p(t),g(t))(V, 0)

for all (W ∗, V ) in L∗ × L.

4. Hamiltonians, Poisson brackets and Casimir elements. Each vector
field X on G, or more generally, on any manifold M has a canonical Hamiltonian
lift ~HX . ~HX is the Hamiltonian vector field which corresponds to HX(x) =
x(X(g)) for all x ∈ T ∗gG. In particular when X(g) = ~A(g) is a left invariant
vector field on G, then HX(p, g) = p(A). Thus HX is a linear function on L∗.

The basic symplectic geometry is naturally expressed in terms of the Poisson
bracket. The essential properties of the Poisson bracket {, } are summarized by
the following proposition.

Proposition 1. Suppose that H and F are smooth functions on T ∗M . De-
note by {exp t ~H} the one-parameter group of diffeomorphisms generated by the
Hamiltonian field ~H of H. Then

(i) {F,H}(x) = d
dtF ◦ exp t ~H(x)|t=0 for each x ∈ T ∗M .

(ii) The Lie bracket [~F , ~H] of two Hamiltonian vector fields ~F and ~H is a

Hamiltonian vector field , and [~F , ~H] = {
−→
F,H}.

(iii) If HX and HY are the Hamiltonian functions on T ∗M which correspond
to smooth vector fields X and Y on M then {HX , HY } = H[X,Y ].

R e m a r k. All of these statements along with their proofs can be found in
Arnold’s book ([1], Ch. 8) with a slight transposition of the terminology: the
Poisson bracket of vector fields in Arnold is equal to the Lie bracket of this paper
is the same as the Poisson bracket of functions of Arnold.

It follows immediately from (iii) of the above proposition that the Hamil-
tonians of left invariant vector fields on G form a Lie algebra under the Pois-
son bracket. This algebra is isomorphic to L(G). It also follows from (i) that
{F,H}(x) = ωx(~F (x), ~H(x)) for all x ∈ T ∗G. This relation easily yields the Leib-
niz rule: {F1F2, H} = F1{F2, H}+ F2{F1, H} for any functions F1, F2 and H.

We shall now restrict our attention to functions on L∗. Each such function
may be regarded as a Hamiltonian which is constant over G. It then follows from
equations (10) that ~f(p, g) = ((ad df(p))∗p, df(p)), where (ad df(p))∗p dentes the
linear function V → p[df(p), V ]. The Poisson bracket of two functions f and h on
L∗ is given by {f, h}(p) = p[df(p), dh(p)] as can be easily verified from the relation
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{f, h}(p) = w(p,g), (~f(p, g),~h(p, g)). In the literature on Hamiltonian systems this
expression is often called the Poisson-Lie bracket.

Suppose now that A1, . . . , An is any basis in the Lie algebra of G. Denote
by h1, . . . , hn the Hamiltonians of ~A1, . . . , An. As we have already remarked
h1, . . . , hn form a Lie algebra under their Poisson bracket, since {hi, hj}(p) =
p([Ai, Aj ]). Let P(h1, . . . , hn) denote the algebra of all polynomials in the vari-
ables h1, . . . , hn. Each element H of P(h1, . . . , hn) is a function on L∗, and the
preceding remarks apply. P(h1, . . . , hn) a Poisson-Lie algebra, since {H,F} is an
element of P(h1, . . . , hn) for any H and F in P(h1, . . . , hn).

Each element of the center of P(h1, . . . , hn) is called a Casimir element. Thus
M is a Casimir element if and only if {M,hi} = 0 for each i = 1, 2, . . . , n. The
essential property of Casimir elements is expressed by the following

Proposition 2. Suppose that H1, . . . ,Hk are any elements of P(h1, . . . , hn),
and suppose that ξ(t) is any absolutely continuous curve defined on an interval
[0, T ] which further satisfies dξ

dt (t) =
∑k
i=1 ui(t) ~Hi(ξ(t)) a.e. on [0, T ] for some

integrable functions u1, . . . , um. Then, M ◦ ξ(t) = constant for any Casimir ele-
ment M .

P r o o f.

d

dt
M ◦ ξ(t) =

{
M,

k∑
i=1

ui(t)Hi

}
ξ(t)

=
k∑
i=1

ui(t){M,Hi}(ξ(t)) = 0 a.e.in [0, T ],

because {M,Hi} = 0 for each i = 1, 2, . . . , k. Hence M ◦ ξ(t) = constant.

5.Applications to control problems. Let us now return to the problems of
Dubins, and Reeds-Shepp mentioned earlier, and interpret some of their optimal-
ity results in the context of the above formalism. In order to further emphasize
the importance of the Lie algebraic formalism we will consider analogous problems
simultaneously on E2, SO3(R) and SO(2, 1). Their Lie algebras are expressed by
the following Lie bracket table:

Table 1

[ , ] L1 L2 L3
L1 0 −εL3 L2
L2 εL3 0 −L1
L3 −L2 L1 0

ε = 0, for E2

ε = 1, for SO3(R)
ε = −1, for SO(2, 1).

SO3(R) is the isometry group for the Riemannian sphere S2, while SO(2, 1)
is the isometry group for the hyperboloid H2 = {x2 − (y2 + z2) = 1, x > 0}
with the hyperbolic metric (Minkowski model for the hyperbolic geometry). ε is
the curvature of these spaces. Each of the control problems mentioned earlier can
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be naturally stated on S2 and H2, with the ordinary derivative replaced by the
covariant derivative.

Following the notation of the previous section let h1, h2 and h3 denote respec-
tively the Hamiltonian of ~L1, ~L2 and ~L3. Their Poisson algebra is isomorphic to
the Lie algebra, given in Table 1 and hence:

Table 2

[,] h1 h2 h3
h1 0 −εh3 h2
h2 εh3 0 −h1
h3 −h2 h1 0

It is easy to check that M = h2
1+h2

2+εh2
3 is a Casimir element for P(h1, h2, h3).

It is also easy to verify that there are no other functionally independent Casimir
elements for these groups.

On SO3(R), M = constant is a sphere in the h1, h2, h3 space, usually called
the angular momentum sphere. The reader might recall the equations for the
Euler’s top whose solutions are curves in the intersection of the energy ellipsoid
with the momentum sphere. Of course, M is an integral of motion, not just for the
Euler top, but for any Hamiltonian which is invariant on G, i.e., a polynomial (or
more generally an analytic function) on L∗. This observation applies in particular
to the Hamiltonians of our time optimal control problems. Let us begin with the
problem of Dubins:

The Hamiltonian lift of control system (5) is given by H = −λ+ h1 + k(t)h3.
According to the Maximum Principle each time optimal trajectory g(t) defined
on an interval I, corresponding to the control k(t) is the projection of an integral
curve ξ(t) of ~H defined for t in I such that:

(1◦) λ is either 0 or 1. If λ = 0, then ξ(t) 6= 0 for any t in I.
(2◦) H(ξ(t)) = 0 for almost all t in I.
(3◦) H(ξ(t)) = sup|u|≤1(−λ+ h1(ξ(t)) + uh3(ξ(t)) for almost all t in I.

We shall say that an absolutely continuous curve ξ(t) defined on an interval
I is an extremal curve (for the problem of Dubins) if there exists a measurable
function k(t) with |k(t)| ≤ 1 a.e. on I such that ξ(t) is an integral curve of
~H0 = ~h1 + k(t)~h3, along which (1◦), (2◦) and (3◦) hold. The extremals which
correspond to λ = 0 are called abnormal, while the extremals which correspond
to λ = 1 are called regular. The only difference between regular and abnormal
extremals for the problems of Dubins type is that they are constrained to different
“energy” levels of H. The Maximum Principle says that every optimal trajectory
is the projection of an extremal curve.

Suppose now that (ξ(t), k(t)) is an extremal pair with ξ(t) being an extremal
defined by the control function k(t). Then, the maximality condition (3o) implies
that k(t) = sgnh3(ξ(t)). i.e., k(t) = 1 for all t for which h3(ξ(t))> 0 and that
k(t) = −1 for all t for which h3(ξ(t)) > 0. h3 = 0 is called the switching sur-
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face. Extremals can be further classified according to its type of crossing of the
switching surface.

We shall first consider the following situation:

(i) An extremal ξ(t) does not cross the switching surface. Then the corre-
sponding control is always constant and equal to ±1. The induced trajectory g(t)
in G is an integral curve of

dg

dt
= ~L1(g)± ~L3(g), or

dg

dt
= g(t)

 0 −ε 0
1 0 ∓1
0 ±1 0

 .

Let

A =

 0 −ε 0
1 0 ∓1
0 ±1 0

 .

Then g(t) = g0e
At with g(0) = g0. For ε = 0

eAt =
(

1 0
x(t) R(t)

)
with R(t) =

(
cos t ∓ sin t
± sin t cos t

)
,

and x1(t) = sin t, x2(t) = ±(1−cos t). Thus x(t) traverses circles passing through
the origin with centers at (0,±1). Each circle is traversed with speed 1; the cir-
cle which corresponds to k = 1 is traversed in the counter clockwise direction,
while the other is traversed with the opposite orientation. Any other solution is
a translate and a rotation of this solution.

For ε = 1, eAt is the rotation around ω = ±e1 + e3 with θ(t) =
√

2t. The
projection of eAt on S2 is given by eAte1 and is a circle

(x1 ∓ 1
2 )2 + x2

2 + (x3 − 1
2 )2 = 1

2 .

Any other solution is a rotation (from the left) of this circle.
For ε = −1,

A =

∣∣∣∣∣∣
0 1 0
1 0 ∓1
0 ± 0

∣∣∣∣∣∣ .
It follows that

A2 =

∣∣∣∣∣∣
1 0 ∓1
0 0 0
±1 0 −1

∣∣∣∣∣∣
and A3 = 0. Hence,

eAt = I + tA+
t2

A2
=

∣∣∣∣∣∣
1 + t2

2 t ∓ t
2

2
t 1 ∓t
± t

2

2 ±t 1− t2

2

∣∣∣∣∣∣ .
The projection of eAt on the hyperboloid x2 − (y2 + z2) = 1, x > 0 is given by
eAte1. It follows that x(t) = 1 + t2

2 , y(t) = t, and z(t) = ± t
2

2 . Such a curve is
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called a horo-cycle (it is the projection of a one-parameter group generated by a
nilpotent element of L(G)). It is noncompact, since y2(t) = ±2z(t).

(ii) An extremal ξ(t) crosses the switching surface. There are two types of
crossing, transversal and tangential, depending whether d

dth3(ξ(t)) 6= 0 for the
crossing time t. It follows that,

d

dt
h3(ξ(t)) = {h3, h1 + k(t)h3}(ξ(t) = {h3, h1}(ξ(t) = −h2(ξ(t)).

The transversal case occurs when h3(ξ(t)) = 0 and h2(ξ(t)) 6= 0. The tangential
case occurs when h2(ξ(t)) = h3(ξ(t)) = 0.

The remaining case occurs when

(iii) An extremal ξ(t) remains on the switching surface for an open interval I.
Then h3(ξ(t)) = 0 for all t in I. After differentiation, h2(ξ(t)) = 0 for all t in I.
Upon further differentiation we get that {h2, h1+k(t)h3} = 0 for all t in I. Hence,
{h2, h1}(ξ(t) + k(t){h2, h3}(ξ(t)) = 0 for all t in I, or εh3(ξ(t))− k(t)h1(ξ(t)) = 0
for all t in I. This last relation shows that ξ(t) cannot be an abnormal extremal:
for if it were, then k(t) = 0 for all t in I, since h1(ξ(t)) cannot vanish anywhere in
I by the Maximum Principle. But these two conditions are mutually contradictory
since

0 = −λ+ h1(ξ(t)) + k(t)h3(ξ(t))

and λ = 0.

Thus ξ(t) is a regular extremal, and therefore 1 = h1(ξ(t)) + k(t)h3(ξ(t)) =
h1(ξ(t)). Hence, k(t) = 0 for all t in I. The projection of such an extremal is a
geodesic. In the planar case, the geodesics are straight lines, in the elliptic case
they are great circles on S2, and in the hyperbolic case they are hyperbolas on H2.

All of the types of solutions can be easily described geometrically in terms of
the Casimir surface h2

1 + h2
2 + εh2

3 = M as follows:
Abnormal extremals are the intersections of planes h1±h3 = 0 with the Casimir

surface. These intersections are always transversal to the switching surface h3 =
0. The switching times for the Euclidean case occur in intervals π, for the elliptic
case they occur in intervals

√
2π, while for the hyperbolic case there is only one

switch.
Regular extremals are the intersections of planes 1 = h1±h3 with the Casimir

surface. The critical value of M for which switching occurs is M = 1. For M < 1
there is no switching.

For M > 1, the optimal control is of bang-bang type since the value of the
control function switches between the extreme values ±1. M=1 contains the sin-
gular arc. The optimal solutions bifurcate at M = 1 as they go from no switching,
to switching including the singular arc, to bang-bang type.

The Reeds-Shepp problem, although much more singular, can be analyzed in
much the same way. It follows that for this problem the solution curves are the
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intersections of the planes ±h1 ± h3 with the Casimir surfaces. The switching
surfaces are h1 = 0 and h3 = 0.

We shall end this paper by concentrating on some aspects of the Boissonat-
Cereso-LeBlond problem (Equation (7)). We shall continue with our earlier nota-
tions. In particular, functions h1, h2 and h3 have the same meaning as before. We
shall use h4 to denote the Hamiltonian lift of ∂

∂k . Thus h1, h2, h3 and h4 are all
linear functions on L∗. As in the case of Dubins and Reeds-Shepp, this problem
also extends to non-Euclidean situations. We shall continue to use G for any one
of E2, SO3(R) and SO(2, 1). Ĝ = G×R denotes the state space for the equation
(7) with solution curves ĝ(t) = (g(t), k(t)) evolving in G×R.

Equations (10) can be used to obtain the following differential equations along
the extremals ξ(t). Here hi(t) = hi ◦ ξ(t), i = 1, 2, 3, 4.

(11)

dh1

dt
= {h1,−λ+ h1 + kh3 + vh4} = k{h1, h3} = kh2,

dh2

dt
= {h2,−λ+ h1 + kh3 + vh4} = {h2, h1}+ k{h2, h3} = εh3 − kh1,

dh3

dt
= {h3,−λ+ h1 + kh3 + vh4} = {h3, h1} = −h2,

dh4

dt
= {h4,−λ+ h1 + kh3 + vh4} = {h4, kh3} = h3{h4, k} = −h3.

It is easy to verify that h2
1 + h2

2 + εh2
3 = M2 is a constant of motion. Let us

now calculate the singular arcs: Assume that h4(ξ(t)) = 0 for all t in some open
interval I. Then,

d

dt
h4(ξ(t)) = {h4,−λ+ h1 + kh3 + v(t)h4} = {h4, kh3}(ξ(t)) = −h3(ξ(t)) = 0,

d

dt
h3(ξ(t)) = −h2(ξ(t)) = 0, and − dh2

dt
(ξ(t)) = kh1(ξ(t)) = 0.

Thus, kh1(ξ(t)) = 0.
It follows by the Maximum Principle that h1(ξ(t)) 6= 0. Hence the singular

arcs are constrained to the submanifolds k = 0, v = 0. The corresponding integral
curves of (7) project onto geodesics.

We will end this paper by drawing comparisons with [3]. h3 and h4 have the
same meaning as β and r in [3]. Since h2

1 + h2
2 = M2, let h1 = M sin θ, and

h2 = M cos θ. Then

dh1

dt
= −M sin θ

dθ

dt
= kh2

(from the equations above). Therefore dθ
dt = k. Thus the angle θ, and the angle

α used in [3] in equations (1), differ by a constant. Suppose that this constant
is π

2 − φ, or that θ = π
2 + α − φ. Then h1 = M sin(π2 + α − φ) = M cos(α − φ).
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Moreover,

dβ

dt
=
dh3

dt
= −h2 = −M cos θ = −M cos

(
π

2
+ α− φ

)
= M sin(α− φ).

This correspondence of notation relates equations above with the extremals in [3]
(of course, λ in [3] is equal to M in this paper).

We will end this paper by providing a geometric interpretation for a conser-
vation law β − py + qx = constant in Lemma 5 of [3]. We shall show that this
relation follows from left invariance of equations (7) with respect to the subgroup
G of Ĝ = G×R.

Equations (10) show that if dH(p,g)(V, 0) = 0 then dp
dt (V ) = p(t)[X,V ] =

ad∗X(V )(p).
This equation integrates to yield p(t)(g−1(t)V g(t)) = constant. We shall iden-

tify L∗ with L via the pairing〈 0 0 0
a1 0 −a3

a2 a3 0

 ,

 0 0 0
b1 0 −b3
b2 b3 0

〉 = a1b1 + a2b2 + a3b3.

Then the projection p(t) of each extremal curve ξ(t) on L∗ is identified with
a curve P (t) in L with

P (t) =

∣∣∣∣∣∣
0 0 0

h1(t) 0 −h3(t)
h2(t) h3(t) 0

∣∣∣∣∣∣
(see [5] for further details).

Let g(t) denote the projection of ξ(t) on G. We shall write

g(t) =
∣∣∣∣ 1 0
x(t) R(t)

∣∣∣∣ .
Then (P (t), g−1(t)V g(t)) = constant yields:

R(t)
(
h1(t)
h2(t)

)
is a constant vector,

and (
R(t)

(
h1

h2

)
,

(
0 −1
1 0

)
x(t)

)
− h3(t) = constant.

If we denote the components of the constant vector by (p, q) then the second
equation yields −px2+qx1−h3 = constant. Except for the change of notation this
relation is the same as in Lemma 5 of [3]. Incidentally, this relation is valid even if
p = q = 0. For in this case M2 = p2 + q2. Thus M = 0 implies that h1 = h2 = 0,
and therefore h3 = constant, as can be easily seen from equations (11).
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