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Abstract. We introduce flat systems, which are equivalent to linear ones via a special type
of feedback called endogenous. Their physical properties are subsumed by a linearizing output
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strategy is proposed such that the averaged system becomes flat.
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1. Introduction. Our original motivation is dynamic feedback linearization
which, as opposed to the static one, has only been investigated by few authors
[32, 34, 6, 7, 51], and remains widely open. Our point of view will be probably
best explained by the following calculations where all vector fields and functions
are real-analytic.

Consider

(1) ẋ = f(x, u) (x ∈ R
n, u ∈ R

m),

where f(0, 0) = 0 and rank ∂f
∂u

(0, 0) = m. The dynamic feedback linearizability of
(1) means, according to [6], the existence of

1) a regular dynamic compensator

(2)

{
ż = a(x, z, v)
u = b(x, z, v)

(z ∈ R
q, v ∈ R

m)

where a(0, 0, 0) = 0, b(0, 0, 0) = 0. The regularity assumption implies the invert-

ibility (1) of system (2) with input v and output u.
2) a diffeomorphism

(3) ξ = Ξ(x, z) (ξ ∈ R
n+q)

such that (1) and (2), whose (n + q)-dimensional dynamics is given by
{

ẋ = f(x, b(x, z, v)),
ż = a(x, z, v),

becomes, according to (3), a constant linear controllable system ξ̇ = Fξ + Gv.
Up to a static state feedback and a linear invertible change of coordinates,

this linear system may be written in Brunovský canonical form (see, e.g., [40]),




y
(ν1)
1 = v1,
...
y
(νm)
m = vm,

where ν1, . . . , νm are the controllability indices. From (2) and (3) the components
of u and x can be expressed as real-analytic functions of the components of
y = (y1, . . . , ym) and a finite number of their derivatives:

{
x = A(y, ẏ, . . . , y(α)),
u = B(y, ẏ, . . . , y(α)).

The dynamic feedback (2) is said to be endogenous if, and only if, the converse
holds, i.e., if, and only if, any component of y can be expressed as a real-analytic
function of x, u and a finite number of its derivatives:

y = C(x, u, u̇, . . . , u(γ)).

(1) See [43] for a definition of this concept via the structure algorithm. See [12, 11] for a
connection with the differential algebraic approach.
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A dynamics (1) which is linearizable via such an endogenous feedback is said to
be (differentially) flat; y, which might be regarded as a fictitious output, is called
a linearizing or flat output. The terminology flat is due to the fact that y plays
a somehow analogous role to the flat coordinates in the differential geometric
approach to the Frobenius theorem (see, e.g., [33, 46]). Notice that the use of
a linearizing output was already known in the context of static state feedback
(see [8] and [33, page 156]). Thanks to endogenous feedback, like quasi-static

ones in a slightly different context [11], the computation of the state and input do
not require the integration of any differential equation. This general idea can be
traced back to works by D. Hilbert [31] and E. Cartan [4] on under-determined
systems of differential equations, where the number of equations is strictly less
than the number of unknowns.

Flatness is best defined by not distinguishing between input, state, output
and other variables. The equations moreover might be implicit. This standpoint,
which matches well with Willems’ approach [56], is here taken into account by
utilizing differential algebra which has already helped clarifying several questions
in control theory (see, e.g., [13, 14, 15, 16, 19]).

Flatness might be seen as another nonlinear extension of Kalman’s control-
lability. Such an assertion is surprising when having in mind the vast literature
on this subject (see [33, 46] and the references therein). Remember, however,
Willems’ trajectory characterization [56] of linear controllability which can be
interpreted as the freeness of the module associated to a linear system [18]. A
linearizing output now is the nonlinear analogue of a basis of this free module.

We know from [6] that any single-input dynamics which is linearizable by a
dynamic feedback is also linearizable by a static one. This implies the existence of
non-flat systems which verify the strong accessibility property [54]. We introduce
a non-negative integer, the defect, which measures the distance from flatness.

The paper is organized as follows. After some differential algebraic prelimi-
naries, we define equivalence by endogenous feedback, flatness and defect. Their
implications for uncontrolled dynamics and linear systems are examined. We dis-
cuss the link between flatness and controllability. In order to verify that some
systems are not linearizable by dynamic feedback, we demonstrate a necessary
condition of flatness, which is of geometric nature. We discuss the variable-length
pendulum, already examined in [3]. An appropriate high-frequency control per-
mits the approximation of this non-flat system by a flat one.

The material of this note is borrowed from [22, 23, 21, 27], where several other
applications, such as motion planning, are considered. See [26] for a complete
version.

2. The algebraic framework. We start with a brief review of differential
fields (see also [16]) and refer to the books of Ritt [49] and Kolchin [41] and
Seidenberg’s paper [50] for details. Basics on the customary (non-differential)
field theory may be found in the textbook by Jacobson [35] and Winter [57] (see
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also [16, 19]); they will not be repeated here.

2.1. Basics on differential fields. An (ordinary) differential ring R is a com-
mutative ring equipped with a single derivation d

dt = “˙” such that

∀a ∈ R, ȧ =
da

dt
∈ R,

∀a, b ∈ R,
d

dt
(a + b) = ȧ + ḃ,

d

dt
(ab) = ȧb + aḃ.

A constant c ∈ R is an element such that ċ = 0. A ring of constants only contains
constant elements. An (ordinary) differential field is an (ordinary) differential ring
which is a field.

A differential field extension L/K is given by two differential fields, K and
L, such that K ⊆ L and such that the restriction to K of the derivation of L
coincides with the derivation of K.

An element ξ ∈ L is said to be differentially K-algebraic if, and only if, it
satisfies an algebraic differential equation over K, i.e., if there exists a polynomial
π ∈ K[x0, x1, . . . , xν ], π 6= 0, such that π(ξ, ξ̇, . . . , ξ(ν)) = 0. The extension L/K
is said to be differentially algebraic if, and only if, any element of L is differentially
K-algebraic.

An element ξ ∈ L is said to be differentially K-transcendental if, and only
if, it is not differentially K-algebraic. The extension L/K is said to be differen-

tially transcendental if, and only if, there exists at least one element of L that is
differentially K-transcendental.

A set {ξi | i ∈ I} of elements in L is said to be differentially K-algebraically

independent if, and only if, the set of derivatives of any order, {ξ
(ν)
i | i ∈ I, ν =

0, 1, 2, . . .}, is K-algebraically independent. Such an independent set which is
maximal with respect to inclusion is called a differential transcendence basis of
L/K. Two such bases have the same cardinality, i.e., the same number of el-
ements, which is called the differential transcendence degree of L/K: it is de-
noted by diff tr d0L/K. Notice that L/K is differentially algebraic if, and only if,
diff tr d0L/K = 0.

Theorem 1. For a finitely generated differential extension L/K, the next two

properties are equivalent :

(i) L/K is differentially algebraic;

(ii) the (non-differential) transcendence degree of L/K is finite, i.e., tr d0L/K
< ∞.

More details and some examples may be found in [19].

2.2. Systems (2). Let k be a given differential ground field. A system is a

(2) See also [16, 19].
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finitely generated differential extension D/k (3). Such a definition corresponds
to a finite number of quantities which are related by a finite number of algebraic
differential equations over k (4). We do not distinguish in this setting between
input, state, output and other types of variables. This field-theoretic language
therefore fits Willems standpoint [56] on systems. The differential order of the
system D/k is the differential transcendence degree of the extension D/k.

Example. Set k = R; D/k is the differential field generated by the four
unknowns x1, x2, x3, x4 related by the two algebraic differential equations:

(4) ẋ1 + ẍ3ẋ4 = 0, ẋ2 + (x1 + ẍ3x4)x4 = 0.

Clearly, diff tr d0D/k = 2: it is equal to the number of unknowns minus the
number of equations.

Denote by k〈u〉 the differential field generated by k and by a finite set u =
(u1, . . . , um) of differential k-indeterminates: u1, . . . , um are differentially k-alge-
braically independent, i.e., diff tr d0k〈u〉/k = m. A dynamics with (independent)
input u is a finitely generated differentially algebraic extension D/k〈u〉. Note that
the number m of independent input channels is equal to the differential order
of the corresponding system D/k. An output y = (y1, . . . , yp) is a finite set of
differential quantities in D.

According to theorem 1, there exists a finite transcendence basis x = (x1, . . .
. . . , xn) of D/k〈u〉. Consequently, any component of ẋ = (ẋ1, . . . , ẋn) and of y is
k〈u〉-algebraically dependent on x, which plays the role of a (generalized) state.
This yields:

(5)





A1(ẋ1, x, u, u̇, . . . , u(α1)) = 0,
...

An(ẋn, x, u, u̇, . . . , u(αn)) = 0,
B1(y1, x, u, u̇, . . . , u(β1)) = 0,
...

Bp(yp, x, u, u̇, . . . , u(βp)) = 0,

where the Ai’s and Bj ’s are polynomial over k. The integer n is the dimension

of the dynamics D/k〈u〉. We refer to [20, 28] for a discussion of such generalized
state-variable representations (5) and their relevance to practice.

(3) Two systems D/k and D̃/k are, of course, identified if, and only if, there exists a dif-
ferential k-isomorphism between them (a differential k-isomorphism commutes with d/dt and
preserves every element of k).

(4) It is a standard fact in classic commutative algebra and algebraic geometry (c.f. [30])
that one needs prime ideals for interpreting “concrete” equations in the language of field theory.
In our differential setting, we of course need differential prime ideals (see [41] and also [19] for
an elementary exposition). For the verification of the prime character of the differential ideals
see [14, lemma 5.2, page 158] and [26].
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Example (continued). Set u1 = x3 and u2 = ẋ4. The extension D/R〈u〉 is
differentially algebraic and yields the representation

(6)

{
ẋ1 = −ü1u2,
ẋ2 = −(x1 + ü1x4)x4,
ẋ4 = u2.

The dimension of the dynamics is 3 and (x1, x2, x4) is a generalized state. It would
be 5 if we set u1 = ẍ3 and u2 = ẋ4, and the corresponding representation becomes
causal in the classical sense.

2.3. Modules and linear systems (5). Let k be again a given differential ground
field. Denote by k

[
d
dt

]
the ring of linear differential operators of the type

∑

finite

aα
dα

dtα
(aα ∈ k).

This ring is commutative if, and only if, k is a field of constants. Nevertheless,
in the general non-commutative case, k

[
d
dt

]
still is a principal ideal ring and the

most important properties of left k
[

d
dt

]
-modules mimic those of modules over

commutative principal ideal rings (see [9]).
Let M be a left k

[
d
dt

]
-module. An element m ∈ M is said to be torsion if,

and only if, there exists π
[

d
dt

]
, π 6= 0, such that π · m = 0. The set of all torsion

elements of M is a submodule T , which is called the torsion submodule of M .
The module M is said to be torsion if, and only if, M = T . The following result
can be regarded as the linear counterpart of theorem 1.

Proposition 1. For a finitely generated left k
[

d
dt

]
-module M , the next two

properties are equivalent :

(i) M is torsion;
(ii) the dimension of M as a k-vector space is finite.

A finitely generated module M is free if, and only if, its torsion submodule
T is trivial, i.e., T = {0} (6). Any finitely generated module M can be written
M = T ⊕ Φ where T is the torsion submodule of M and Φ is a free module. The
rank of M , denoted by rkM , is the cardinality of any basis of Φ. Thus, M is
torsion if, and only if, rkM = 0.

A linear system is, by definition, a finitely generated left k
[

d
dt

]
-module Λ. We

are thus dealing with a finite number of variables which are related by a finite
number of linear homogeneous differential equations and our setting appears to
be strongly related to Willems’ approach [56]. The differential order of Λ is the
rank of Λ.

(5) See also [17].

(6) This is not the usual definition of free modules, but a characterization which holds holds
for finitely generated modules over principal ideal rings, where any torsion free module is free
(see [9]).
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A linear dynamics with input u = (u1, . . . , um) is a linear system Λ which
contains u such that the quotient module Λ/[u] is torsion, where [u] denotes the
left k

[
d
dt

]
-module spanned by the components of u. The input is assumed to be

independent, i.e., the module [u] is free. This implies that the differential order
of Λ is equal to m. A classical Kalman state variable representation is always
possible:

(7)
d

dt




x1
...

xn


 = A




x1
...

xn


 + B




u1
...

um




where

• the dimension n of the state x = (x1, . . . , xn), which is called the dimension

of the dynamics, is equal to the dimension of the torsion module Λ/[u] as a
k-vector space,

• the matrices A and B, of appropriate sizes, have their entries in k.

An output y = (y1, . . . , yp) is a set of elements in Λ. It leads to the following
output map: 


y1
...

yp


 = C




x1
...

xn


 +

∑

finite

Dν
dν

dtν




u1
...

um


 .

The controllability of (7) can be expressed in a module-theoretical language
which is independent of any denomination of variables. Controllability is equiva-
lent to the freeness of the module Λ. This just is an algebraic counterpart [18] of
Willems’ trajectory characterization [56]. When the system is uncontrollable, the
torsion submodule corresponds to the Kalman uncontrollability subspace.

R e m a r k 1. The relationship with the general differential field setting is ob-
tained by producing a formal multiplication. The symmetric tensor product [35]
of a linear system Λ, where Λ is viewed as a k-vector space, is an integral differ-
ential ring. Its quotient field D, which is a differential field, corresponds to the
nonlinear field theoretic description of linear systems.

2.4.Differentials and tangent linear systems. Differential calculus, which plays
such a role in analysis and in differential geometry, admits a nice analogue in
commutative algebra [41, 57] which has been extended to differential algebra by
Johnson [38].

To a finitely generated differential extension L/K, associate a mapping dL/K :
L → ΩL/K , called (Kähler) differential (7) and where ΩL/K is a finitely generated

(7) For any a ∈ L, dL/Ka should be intuitively understood, like in analysis and differential

geometry, as a “small” variation of a.
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left L
[

d
dt

]
-module, such that

∀a ∈ L dL/K

(
da

dt

)
=

d

dt
(dL/Ka)

∀a, b ∈ L dL/K(a + b) = dL/Ka + dL/Kb

dL/K(ab) = bdL/Ka + adL/Kb

∀c ∈ K dL/Kc = 0.

Elements of K behave like constants with respect to dL/K . Properties of the
extension L/K can be translated into the linear module-theoretic framework of
ΩL/K :

• A set ξ = (ξ1, . . . , ξm) is a differential transcendence basis of L/K if, and only
if, dL/Kξ = (dL/Kξ1, . . . , dL/Kξm) is a maximal set of L

[
d
dt

]
-linearly independent

elements in ΩL/K . Thus, diff tr d0L/K = rkΩL/K .

• The extension L/K is differentially algebraic if, and only if, the module
ΩL/K is torsion. A set x = (x1, . . . , xn) is a transcendence basis of L/K if, and
only if, dL/Kx = (dL/Kx1, . . . , dL/Kxn) is a basis of ΩL/K as L-vector space.

• the extension L/K is algebraic if, and only if, ΩL/K is trivial, i.e., ΩL/K

= {0}.

The tangent (or variational) linear system associated to the system D/k is
the left D

[
d
dt

]
-module ΩD/k. To a dynamics D/k〈u〉 is associated the tangent

(or variational) dynamics ΩD/k with the tangent (or variational) input dL/Ku =
(dL/Ku1, . . . , dL/Kum). The tangent (or variational) output associated to y =
(y1, . . . , yp) is dL/Ky = (dL/Ky1, . . . , dL/Kyp).

3. Equivalence, flatness and defect

3.1. Equivalence of systems and endogenous feedback. Two systems D/k and

D̃/k are said to be equivalent or equivalent by endogenous feedback if, and only

if, any element of D (resp. D̃) is algebraic over D̃ (resp. D) (8). Two dynamics,

D/k〈u〉 and D̃/k〈ũ〉, are said to be equivalent if, and only if, the corresponding

systems, D/k and D̃/k, are.

Proposition 2. Two equivalent systems (resp. dynamics) have the same dif-

ferential order , i.e., the same number of independent input channels.

P r o o f. Denote by K the differential field generated by D and D̃: K/D and

K/D̃ are algebraic extensions. Therefore,

diff tr d0D/k = diff tr d0K/k = diff tr d0D̃/k.

(8) According to footnote 3, this definition of equivalence can also be read as follows: two

systems D/k and D̃/k are equivalent if, and only if, there exist two algebraic extensions D/D

and D̃/D̃, and a differential k-isomorphism Φ between D/k and D̃/k.
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R e m a r k 2. The counterpart in differential algebraic geometry [41, 42] of
the previous equivalence goes beyond the differential extension [5] of the classical
birational equivalence [30], which relies on the field of isomorphisms.

Consider two equivalent dynamics, D/k〈u〉 and D̃/k〈ũ〉. Let n (resp. ñ) be the

dimension of D/k〈u〉 (resp. D̃/k〈ũ〉). In general, n 6= ñ. Write

(8) Ai(ẋi, x, u, u̇, . . . , u(αi)) = 0, i = 1, . . . , n,

and

(9) Ãi( ˙̃xi, x̃, ũ, ˙̃u, . . . , ũ(α̃i)) = 0, i = 1, . . . , ñ

the generalized state variable representations of D/k〈u〉 and D̃/k〈ũ〉, respectively.

The algebraicity of any element of D (resp. D̃) over D̃ (resp. D) yields the following
relationships between (8) and (9):

(10)

ϕi(ui, x̃, ũ, ˙̃u, . . . , ũ(νi)) = 0, i = 1, . . . ,m,

σα(xα, x̃, ũ, ˙̃u, . . . , ũ(µα)) = 0, α = 1, . . . , n,

ϕ̃i(ũi, x, u, u̇, . . . , u(ν̃i)) = 0, i = 1, . . . ,m,

σ̃α(x̃α, x, u, u̇, . . . , u(µ̃α)) = 0, α = 1, . . . , ñ,

where the ϕi’s, σα’s, ϕ̃i’s and σ̃α’s are polynomials over k.
The two dynamic feedbacks corresponding to (10) are called endogenous as

they do not necessitate the introduction of any variable that is transcendental
over D and D̃ (see also [44]). If we know x̃ (resp. x), we can calculate u (resp. ũ)
from ũ (resp. u) without integrating any differential equation.

R e m a r k 3. Take the dynamics D/k〈u〉 and a finitely generated algebraic
extension D/D. The two dynamics D/k〈u〉 and D/k〈u〉, which are of course equiv-
alent, have the same dimension and can be given the same state variable repre-
sentation (8). In the sequel, a system D/k〈u〉 will be defined up to a finitely
generated algebraic extension of D.

R e m a r k 4. The tangent linear systems (see subsection 2.4) of two equiv-
alent systems are strongly related and, in fact, are “almost identical”. Take two
equivalent systems D1/k and D2/k and denote by D the smallest algebraic exten-
sion of D1 and D2. It is straightforward to check that the three left D

[
d
dt

]
-modules

ΩD/k, D ⊗D1
ΩD1/k and D ⊗D2

ΩD2/k are isomorphic (see [30, 35]).

3.2. Flatness and defect. Like in the non-differential case, a differential exten-
sion L/K is said to be purely differentially transcendental if, and only if, there ex-
ists a differential transcendence basis ξ = {ξi | i ∈ I} of L/K such that L = K〈ξ〉.
A system D/k is called purely differentially transcendental if, and only if, the ex-
tension D/k is so.

A system D/k is called (differentially) flat if, and only if, it is equivalent to
a purely differentially transcendental system L/k. A differential transcendence
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basis y = (y1, . . . , ym) of L/k such that L = k〈y〉 is called a linearizing or flat

output of the system D/k.

Example (continued). Let us prove that y = (y1, y2) with

y1 = x2 +
(x1 + ẍ3x4)

2

2x
(3)
3

, y2 = x3,

is a linearizing output for (4). Set σ=x1+ẍ3x4. Differentiating y1 =x2+σ2/2y
(3)
2 ,

we have, using (4), σ2 = −2ẏ1(y
(3)
2 )2/y

(4)
2 . Thus x2 = y1 − σ2/(2y

(3)
2 ) is an

algebraic function of (y1, ẏ1, y
(3)
2 , y

(4)
2 ). Since x4 = −ẋ2/σ and x1 = σ − ÿ2x4, x4

and x1 are algebraic functions of (y1, ẏ1, ÿ1, ÿ2, y
(3)
2 , y

(4)
2 , y

(5)
2 ). Remark there exist

many other linearizing outputs such as ỹ = (ỹ1, ỹ2) = (2y1y
(3)
2 , y2) with inverse

transformation being y = (ỹ1/2ỹ
(3)
2 , ỹ2).

Take an arbitrary system D/k of differential order m. Among all the possible
choices of sets z = (z1, . . . , zm) of m differential k-indeterminates which are alge-
braic over D, take one such that tr d0D〈z〉/k〈z〉 is minimum, say δ. This integer
δ is called the defect of the system D/k. The next result is obvious.

Proposition 3. A system D/k is flat if , and only if , its defect is zero.

Example. The defect of the system generated by x1 and x2 satisfying ẋ1 =
x1+(ẋ2)

3 is one. Its general solution cannot be expressed without the integration
of, at least, one differential equation.

3.3. Basic examples

3.3.1. Uncontrolled dynamical systems. An uncontrolled dynamical system
is, in our field-theoretic language [16], a finitely generated differentially algebraic
extension D/k: diff tr d0D/k = 0 implies the non-existence of any differential k-
indeterminate algebraic over D. Thus, the defect of D/k is equal to tr d0D/k, i.e.,
to the dimension of the dynamical system D/k, which corresponds to the state
variable representation Ai(ẋi, x) = 0, where x = (x1, . . . , xn) is a transcendence
basis of D/k. Flatness means that D/k is algebraic in the (non-differential) sense:
the dynamics D/k is then said to be trivial.

3.3.2. Linear systems. The defect of Λ is, by definition, the defect of its
associated differential field extension D/k (see remark 1).

Theorem 2. The defect of a linear system is equal to the dimension of its

torsion submodule, i.e., to the dimension of its Kalman uncontrollable subspace.

A linear system is flat if , and only if , it is controllable.

P r o o f. Take the decomposition Λ = T ⊕ Φ, of section 2.3, where T is the
torsion submodule and Φ a free module. A basis b=(b1, . . . , bm) of Φ plays the role
of a linearizing output when Λ is free: the system then is flat. When T 6= {0}, the
differential field extension T /k generated by T is differentially algebraic and its
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(non-differential) transcendence degree is equal to the dimension of T as k-vector
space. The conclusion follows at once.

R e m a r k 5. The above arguments can be made more concrete by considering
a linear dynamics over R. If it is controllable, we may write it, up to a static
feedback, in its Brunovský canonical form:

y(νi) = ui, (i = 1, . . . ,m)

where the νi’s are the controllability indices and y = (y1, . . . , ym) is a linearizing
output. In the uncontrollable case, the defect d is the dimension of the uncontrol-
lable subspace:

d

dt




ξ1
...
ξd


 = M




ξ1
...
ξd




where M is a d × d matrix over R.

3.4. A necessary condition for flatness. Consider the system D/k where D =
k〈w〉 is generated by a finite set of quantities w = (w1, . . . , wq) which are not
necessarily differentially k-algebraically independent. The wi’s are related by a
finite set, Ξ(w, ẇ, . . . , w(ν)) = 0, of algebraic differential equations. Define the
algebraic variety S corresponding to Ξ(ξ0, . . . , ξν) = 0 in the (ν+1)q-dimensional
affine space with coordinates

ξj = (ξj
1, . . . , ξ

j
q), j = 0, 1, . . . , ν.

Theorem 3. If the system D/k is flat , the affine algebraic variety S contains

at each regular point a straight line parallel to the ξν-axes.

P r o o f. The components of w, ẇ, . . . , w(ν−1) are algebraically dependent on
the components of a linearizing output y = (y1, . . . , ym) and a finite number of
their derivatives. Let µ be the highest order of these derivatives. The compo-
nents of w(ν) depend linearly on the components of y(µ+1), which play the role of
independent parameters for the coordinates ξν

1 , . . . , ξν
q .

The above condition is not sufficient. Consider the system D/R generated
by (x1, x2, x3) satisfying ẋ1 = (ẋ2)

2 + (ẋ3)
3. This system does not satisfy the

necessary condition: it is not flat. The same system D can be defined in another
way by setting x4 = ẋ2: then, D is generated by the quantities (x1, x2, x3, x4)
related by ẋ1 = (x4)

2 + (ẋ3)
3 and x4 = ẋ2. Those new equations now satisfy our

necessary criterion.

3.5. Flatness and controllability. Sussmann and Jurdjevic [54] have introduced
in the differential geometric setting the concept of strong accessibility for dynamics
of the form ẋ = f(x, u). Sontag [52] showed that strong accessibility implies the
existence of controls such that the linearized system around a trajectory passing
through a point a of the state-space is controllable. Coron [10] and Sontag [53]
demonstrated that, for any a, those controls are generic.
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The above considerations with those of section 2.3 and 2.4 lead in our con-
text to the following definition of controllability, which is independent of any
distinction between variables: a system D/k is said to be controllable (or strongly

accessible) if, and only if, its tangent linear system is controllable, i.e., if, and only
if, the module ΩD/k is free.

Remark 4 shows that this definition is invariant under our equivalence via
endogenous feedback.

Proposition 4. A flat system is controllable.

P r o o f. It suffices to prove it for a purely differentially transcendental exten-
sions k〈y〉/k, where y = (y1, . . . , ym). The module Ωk〈y〉/k, which is spanned by
dk〈y〉/ky1, . . . , dk〈y〉/kym, is necessarily free.

The converse is false as demonstrated by numerous examples of strongly ac-
cessible single-input dynamics ẋ = f(x, u) which are not linearizable by static
feedback and therefore neither by dynamic ones [6].

Flatness which is equivalent to the possibility of expressing any element of
the system as a function of the linearizing output and a finite number of its
derivatives, may be viewed as the nonlinear extension of linear controllability,
if the latter is characterized by free modules. Whereas the strong accessibility
property only is an “infinitesimal” generalization of linear controllability, flatness
should be viewed as a more tractable one. This will be enhanced in section 4 where
controllable systems of nonzero defect are treated using high-frequency control
that enables to approximate them by flat systems for which the control design is
straightforward.

4. An example: high-frequency control of non-flat systems. A whole
set of examples may be found in [26] including flat as well as non-flat systems.
We have chosen here a non-flat variable length pendulum, which has been treated
in [3] by optimal control. We are introducing a method for controlling of a non-flat
system via its approximation by an averaged one. For the use of high-frequency
control in different contexts see also [1, 2, 45, 55]. The notations are summarized
on figure 1. We assume as in [3] that the velocity u̇ = v is the control. The

u

qO

gravity

Fig. 1. Pendulum with variable length
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equations of motion are:

(11)

{ q̇ = p,
ṗ = − cos u + qv2,
u̇ = v,

where mass and gravity are normalized to 1.

R e m a r k 6. Using tan(u/2) instead of u, lead to differential-algebraic equa-
tions. The prime character of the corresponding differential ideal may be easily
verified by utilizing [14].

This system is not flat since it admits only one control variable and is not
linearizable via static feedback [6]. It is, however, strongly accessible.

Set

v = v1 + v2 cos(t/ε)

where v1 and v2 are auxiliary controls, 0 < ε ≪ 1. It is then natural to consider
the following averaged control system:

(12)





q̇ = p,
ṗ = − cos u + q(v1)

2 + q(v2)
2/2,

u̇ = v1.

It admits two control variables, v1 and v2, whereas the original system (11) admits
only one, v. Moreover (12) is flat with (q, u) as linearizing output.

The static feedback

(13) v1 = w1, v2 =

√
2

(
w2 + cos u

q
− (w1)2

)
,

transforms (12) into

(14) u̇ = w1, q̈ = w2.

Set

(15)

w1 = −
u − usp

τ1
,

w2 = −

(
1

τ1
+

1

τ2

)
p −

1

τ1τ2
(q − qsp)

with τ1, τ2 > 0, usp ∈]−π/2, π/2[, qsp > 0 . The closed-loop averaged system (12,
13, 15) admits an hyperbolic equilibrium point (usp, qsp), which is asymptotically
stable.

Consider now (11) and the high-frequency control v = v1+v2 sin(t/ε), 0 < ε ≪
1; (v1, v2) is given by (13, 15) where q, p and u are replaced by q, p and u. Then,
the corresponding averaged system is nothing else but (14) with w1 and w2 given
by (15). Since the averaged system admits a hyperbolic asymptotically stable
equilibrium, the perturbed system admits a hyperbolic asymptotically stable limit
cycle around (q, p, u) = (qsp, 0, usp) [29, theorem 4.1.1, page 168]: such control
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maintains (u, q) near (usp, qsp). Moreover this control method is robust in the
following sense: the existence and the stability of the limit cycle is not destroyed
by small static errors in the measurements of q, p and u.

As illustrated by the simulations of figure 2, the generalization to trajectory
tracking for q and u is straightforward. These simulations give the influence of ε.
The design control parameters are τ1 = 0.5, τ2 = 0.4.

time time

time time

ε

ε ε

ε

Fig. 2. High-frequency control for the variable-length pendulum

R e m a r k 7. The two other non-flat examples of [26], namely the simple
and the double Kapitsa pendulums, are also made flat by employing similar high-
frequency controls. This strategy will be completely formalized elsewhere. Note
that the other averaged systems considered in [26] are linearizable by non trivial,
i.e., non static, dynamic feedback, contrarily to our simpler present situation.

5.Conclusion. Differential algebra is certainly not the only possible language
for investigating flatness. Jakubczyk [36, 37] has proposed an extension of this
formalism by utilizing differential rings of smooth or analytic functions (see [48,
39] for a discussion concerning differential algebra in a broader context). It has
been recently demonstrated by the authors [25, 24] that a differential geomet-
ric setting is very natural (see also [47]). It is based on Lie-Bäcklund mappings

between diffieties, i.e., on mappings between some infinite-dimensional Fréchet
manifolds equipped with one-dimensional Cartan distributions (cf. [58]).
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