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1. Introduction. In this expository paper we summarize the results of [23],
[1] and [20] about the construction of a canonical form for nonlinear systems
similar to the Morse canonical form for linear systems.

The interest in canonical forms with respect to groups of transformations
is due to the fact that they provide useful tools for analizing the dynamical
properties of systems and for studying the solvability of control problems. In the
linear framework, the Morse canonical form displays the properties which are
invariant with respect to the transformations commonly used for modifying the
dynamics or for designing observers ([21], [16]), namely static state-feedbacks and
output injections, together with changes of basis.

In a nonlinear framework, canonical forms, in a broad sense, have been con-
sidered from different point of view by many authors ([28], [14], [6], [7], [8], [19],
[17]). At the present stage of the research, the class of nonlinear transformation
that appears interesting to take into account contains feedbacks and change of
coordinates that involve the derivatives of the input and, similarly, output in-

1991 Mathematics Subject Classification: 93B10, 93C10, 93B17, 93B25.
This work was performed with the financial support of NATO.
The paper is in final form and no version of it will be published elsewhere.

[149]



150 G. CONTE ET AL.

jections that involve the derivatives of the output. From this point of view, the
picture is reasonably clear and well understood for what concerns the notion of
feedback and change of coordinates, and it has been satisfactorily formalised by
means of the notion of quasi-static feedback in [2].

Results on the construction of a canonical form with respect to generalized
feedbacks and changes of coordinates involving the derivatives of the inputs were
obtained in [23]. After introducing, in Section 2, some preliminary notions, we
discuss these results in detail in Section 3. Essentially, they show that it is possi-
ble, using a particular quasi-static feedback, to decompose a given affine nonlinear
system into three subsystems, two of which correspond to suitable subsystems in
the decomposition induced, in the linear case, by the Morse canonical form. In
doing so, the nonlinear system is made maximally unobservable with respect to
the considered class of transformations and then, by means of a very particu-
lar additive output injection, it can be linearized from an input/output point of
view. The decomposition displays the observable and controllable part and the
observable and noncontrollable part of the transformed system, as well as two
lists of invariants, corresponding respectively to the structure at infinity and to
the Morse list I3 (that is a part of the observability indices, after factoring out
the maximum controlled invariant subspace in the kernel of the output map) in
the linear case.

After [23], further work has been carried on in [1] and [20] in order to obtain a
complete analogy with the linear situation, in which, by means of output injection,
one succeeds in decoupling the nonobservable subsystem and then in splitting it
into a controllable and a noncontrollable part. Actually, the situation appear
more difficult in the nonlinear case, mainly because a suitable generalization of
the notion of output injection is not easy to be found.

In Section 5 we describe the results obtained in that direction. In particular, we
first propose a definition of generalized output injection, which is consistent with
the definition of quasi-static feedback, and which behaves well with respect to the
observability. Then, we show that the nonobservable subsystem can be decoupled
by means of a generalized output injection when a suitable condition holds. In
such case one obtains a system representation that is close to that obtained by
the Morse canonical form in the linear case.

2. Preliminaries. In order to clarify our objective, we briefly recall in this
Section the properties of the Morse canonical form for linear systems. Then we
will introduce, in the spirit of [3], some differential algebraic tools that will be
useful for dealing with the nonlinear systems we are going to consider.

2.1. The Morse canonical form for linear systems. Given a linear system Σ
represented by a set of equations of the form

(1)
{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),
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where x ∈ X = <n, u ∈ U = <m, y ∈ Y = <p, and A,B,C are real matrices of
suitable dimensions, one is mainly interested in considering the following class of
trasformations:

• changes of basis in the vector spaces X,U, Y ;
• static state feedbacks of the form u = Fx + Gv, where F and G are real

matrices of suitable dimensions and G is invertible;
• output injections, that modify the system dynamics by the assignment ẋ 7→

ẋ+Ky, where K is a real matrix of suitable dimensions.

More formally, one considers the group of all transformations acting on the
set of triples (A,B,C) in the following way:

(A,B,C) 7−→ (T (A+BF +KC)T−1, TBG,HCT−1)

with G and H invertible.
Assuming that rankB = m and rankC = p, the invariants with respect to

the action of such group of transformations are displayed by the Morse canonical
form of the triple (A,B,C) ([21]). Without entering in the details, let us recall
that associating to Σ the system matrix(

zI −A B
C 0

)
we obtain, for a triple in canonical form, a system matrix having the following
structure 

zI −A1 0 0 0 B1 0
0 zI −A2 0 0 0 B2

0 0 zI −A3 0 0 0
0 0 0 zI −A4 0 0
C1 0 0 0 0 0
0 0 C3 0 0 0


where

• A1, A2 and A3 are in Jordan form,

• B1 and B2 are block diagonal matrices, with blocks of the form


0
0
...
0
1

,

• C1 and C3 are block diagonal matrices, with blocks of the form (1 0 . . . 0 0).

The block decomposition of the system matrix corresponds to an underlying
decomposition of the state space of the form X = X1

⊕
X2

⊕
X3

⊕
X4 where

• X2 := R? is the maximum controllability subspace in KerC;
• X2

⊕
X4 := V? is the maximum controlled invariant subspace in KerC;
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• X1

⊕
X2 := S? is the minimum conditionally invariant subspace containing

ImB.

The reduction of a given system matrix to the Morse canonical form is accom-
plished by applying suitable change of basis, a feedback that makes the system
maximally unobservable, and a suitable output injection that makes the system
maximally uncontrollable [21], [16]).

The invariants of the triple (A,B,C) displayed by the Morse canonical form
are given by:

• the list I1 = {n1, . . . , nk} of the controllability indices of the pair (A1, B1)
(these coincide also with the observability indices of the pair (A1, C1) and with
the structure at ∞ of Σ),
• the list I2 of the controllability indices of the pair (A2, B2),
• the list I3 of the observability indices of the pair (A3, C3),
• the list I4 = {p1(z), . . . , pr(z)} of the invariant polynomials of A4, or the

transmission polynomials of Σ.

2.2. Algebraic-differential tools for nonlinear systems. Consider a nonlinear
control system Σ of the form:

(2) Σ =
{
ẋ = f(x) + g(x)u,
y = h(x),

where x ∈ <n, u ∈ <m, y ∈ <p, and where the components of f(.),g(.) and h(.)
are meromorphic functions of the variable x on an open subset D ⊆ <n. In order
to associate with Σ a vector space of formal differentials we need to carry on, in
the line of [3], the following construction.

Let C denote the infinite set of real indeterminates defined by

C = {xi, i = 1, . . . , n;u(k)
j , j = 1, . . . ,m, k ≥ 0}.

For any positive integer r, we use the first r elements of C for denoting the
coordinates of a point in <r. Hence, a function from <r to < will be written as
a function in the first r indeterminates of C.

The set Kr, consisting of all meromorphic functions from <r to < is naturally
endowed with a differential field structure determined by the usual partial deriva-
tive operators ∂/∂xi and ∂/∂u(k)

j . The union
⋃
r Kr will be denoted simply by K.

Any element of K is a meromorphic function depending on a finite subset of inde-
terminates of C and it will be simply denoted by F ({xi, u(k)

j }). Quite obviously,
K has a field structure, moreover it can be endowed with a differential structure
determined by the system Σ. To this end, let us define a derivative operator δ,
acting on K as follows:

• δxi = fi(x) + gi(x)u(0) for all i = 1, . . . , n,
• δu(k)

j = u
(k+1)
j for k ≥ 0 and for all j = 1, . . . ,m,

• δF ({xi, u(k)
j }) =

∑n
i=1(∂F/∂xi)δxi +

∑
j=1,...,m;k≥0(∂F/∂u(k)

j )δu(k)
j .
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We can consider now abstract vector spaces spanned over the differential
field K. In particular, denoting by dC the infinite set of symbols

dC = {dxi, i = 1, . . . , n; du(k)
j , j = 1, . . . ,m, k ≥ 0}

we can introduce the vector space E , spanned over K by the elements of dC, and
we write E = span dC. Any element in E is a vector of the form

v =
n∑
i=1

Fidxi +
∑

j=1,...,m;k≥0

Fjkdu
(k)
j

where only a finite number of coefficients Fi, Fij are nonzero elements of K.
We define now an operator from K to E , that by abuse of notation will be

denoted by d, in the following way :

dF ({xi, u(k)
j }) =

n∑
i=1

(∂F/∂xi)dxi +
∑

j=1,...,m;k≥0

(∂F/∂u(k)
j )du(k)

j .

The elements of E will be called one-forms and we will say that v ∈ E is an
exact one-form if v = dF for some F ∈ K. We will usually refer to dF as to the
differential of F .

The vector space E may be used for investigating the structural properties of
Σ. By remarking that the components of the output y and their time derivatives

ẏ = ẏ(x, u) =
∂y

∂x
[f(x) + g(x)u],

...

y(k+1) = y(k+1)(x, u, . . . , u(k)) =
∂y(k)

∂x
[f(x) + g(x)u] +

k−1∑
i=0

∂y(k)

∂ui
u(i+1)

are meromorphic functions of x, u, . . . , u(k), and hence elements of K, we get,by
differentiating, a vector in E for each component y(k)

i of y(k) and we set dy(k) =
{dy(k)

i , i = 1, . . . , p}. The chain of subspaces E0 ⊂ E1 ⊂ . . . ⊂ En of E defined by

E0 = span{dx},
E1 = span{dx, dẏ},

...
En = span{dx, dẏ, . . . , dy(n)}

is naturally associated to the system Σ.

Definition 1. Given the chain of vector spaces E0 ⊂ E1 ⊂ . . . ⊂ En the list of
integers

(3) σ1 ≤ . . . ≤ σn, σk = dim
Ek
Ek−1

gives the structure at infinity of Σ.
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The information contained in the structure at infinity is known to play a
crucial role in the solution of many control problems ([14], [22]). Here, we recall
that the following equalities hold:

σ1 = ρ1, σi − σi−1 = ρi for i = 1, 2, . . .

where ρi’s is the index obtained from the ith step of the structure algorithm ([27],
[15]) applied to the system Σ, in particular σn = ρ, the rank of the system.

3. Canonical form under state space transformations and feedback.
In dealing with nonlinear systems of the form (2), one is interested in considering
a class of transformations larger than the one used in the linear case. Adopting
a differential geometric point of view as in ([14] and [22]), diffeomorphisms and
(nonlinear) static state feedbacks provide a natural choice in many interesting
situations. In the differential algebraic approach ([5], [6]) a more general class
of transformations, involving not only the state and the output, but also a finite
number of its derivatives, has proved to be appropriate.

For this class of transformation it is possible to parallel, up to some extent, the
procedure that in the linear case leads to the Morse canonical form. In order to
describe this, let us introduce the notions of generalized state-space transformation
and of regular generalized state feedback.

Definition 2. A generalized state-space transformation is a map

T : (x, u, u̇, . . . , u(k), . . .) → (ξ, u, u̇, . . . , u(k), . . .)

such that for some k we have

span{dξ} ⊆ span{dx, du, du̇, . . . , du(k)},
span{dx} ⊆ span{dξ, du, du̇, . . . , du(k)}.

Letting X = span{dx} and U = span{du, du̇, . . . , du(k), . . .}, a generalized
state-space transformation gives rise to an isomorphism τ : E = X ⊕ U → E =
X ⊕ U satisfying the conditions

(i) τ(X )⊕ U = X ⊕ U ,
(ii) τ(X ) is a closed subspace of E .

In particular, this means that there exist n elements ξ1, ξ2, . . . , ξn ∈ K such
that τ(X ) = span{dξ1, dξ2, . . . , dξn} and ∂(ξ1, ξ2, . . . , ξn)/∂(x1, x2, . . . , xn) is ge-
nerically nonsingular.

Definition 3. A regular generalized state feedback is a map

F : (x, u, u̇, . . . , u(k), . . .)→ (x, v, v̇, . . . , v(k), . . .)

such that for some k we have

span{dv} ⊆ span{dx, du, du̇, . . . , du(k)},
span{du} ⊆ span{dx, dv, dv̇, . . . , dv(k)}.
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A regular generalized state feedback gives rise to an isomorphism

ϕ : E = X ⊕ U → E = X ⊕ U

such that

(i) X ⊕ ϕ(U) = X ⊕ U ,
(ii) ϕ(U) is a closed subspace of E .

This implies, in particular, that ∂(v1, v2, . . . , vm)/∂(u1, u2, . . . , um) is generically
nonsingular.

The generalized transformations we have introduced can be seen as a partic-
ular case of quasi-static feedback in the sense of [2].

Locally, this definition yields:

ui = φi(x, v, . . . , v(αi)), i = 1, . . . ,m,
vi = ψi(x, u, . . . , u(βi)), i = 1, . . . ,m,

and in the rest of the paper, we will consider only the regular situation in which

rank(∂φ/∂v) = rank(∂ψ/∂u) = dimu = dim v.

Concerning output injection, it could be reasonable, at this point, in order to
generalize the notion used in the linear framework, to start by considering additive
assignments of the form ẋ 7→ ẋ + f(y, . . . , y(γ)), involving nonlinear functions of
y and their derivatives. Actually, the transformations of this class may have
undesired properties, since they could change the observability of the system,
and the introduction of some restrictive conditions is therefore required. However,
we will not undertake now the task of developing an appropriate generalization
of the notion of output injection, since for carrying on, up to some extent, a
construction similar to that of the Morse canonical form we do not need to allow,
for a given system, all possible transformations induced by assignments of the form
ẋ 7→ ẋ + f(y, . . . , y(γ)). It will be sufficient, in fact, to use only very particular
output injections of the above kind for proving the following result of [23]. A
deeper discussion about the generalization of the notion of output injection will
be the object of Section 5.

Proposition 1. Given a nonlinear system of the form (2), such that generi-
cally rank g(x) = m and rank ∂h(x)/∂x = p, there exist a generalized state space
transformation, a generalized state feedback and an output injection that trans-
form the system into the following form

Σ′ =


ζ̇ = Aζ +Bv,
˙̂
ζ = f(ζ, ζ̂, v, . . . , v(ν)),
y = Cζ.

Remark that Σ′ is linear from an input/output point of view and that the
new input v is obtained in terms of x, u and of a finite number of derivatives of u.
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P r o o f. The proof of the statement is constructive and goes as follows.We
start by constructing a suitable set of variables (ζ, v) by means of the following
procedure:

S t e p 0: Define ζ0 := y

S t e p k: Choose a subset of (ζk, vk) of the components of ζ̇k−1 such that

(i) span{dx, dẏ, . . . , dy(k)}
= span{dx, dv1, . . . , dv(k−1)

1 , dv2, . . . , dv
(k−2)
2 , . . . , dvk};

(ii) {dζ0, dζ1, dv1, . . . , dv(k−1)
1 , dζk, dvk} is a basis for span{dx, dẏ, . . . , dy(k)}.

The procedure stops when (ζk+1, vk+1) is empty, namely when

• span{dx, dẏ, . . . , dy(k+1)} = span{dx, dv1, . . . , dv(k)
1 , . . . , dvk, dv̇k} and

• {dζ0, dζ1, dv1, . . . , dv(k)
1 , dζk, dvk, dv̇k} is a basis for span{dx, dẏ, . . . , dy(k+1)}.

A practical way of implementing the procedure described above consists es-
sentially in applying the structure algorithm to the system. Namely, at Step 1,
write

ζ̇0 = ẏ = (∂h/∂x)(f(x) + g(x)u) =

 y11(x, u)
y12(x, u)
y13(x, u)


where

• ∂y11(x, u)/∂u is full row rank and rank ∂y11(x, u)/∂u = rank ∂ẏ/∂u,
• ∂(y, y12)/∂x = is full row rank and

rank ∂(y, y12)/∂x = rank ∂(y, y12, y13)/∂x.

Then, define

v1 := y11(x, u),(4)
ζ1 := y12(x, u).(5)

It is easy to check that (ζ1, v1) verify conditions (i), (ii) above.

At Step k, after reordering if necessary, write

ζ̇k−1 = ẏ(k−1)2(x, u, v1, . . . , v
(k−1)
1 , v2, . . . , v

(k−2)
2 , . . . , vk−1, v̇k−1)

=

 yk1(x, u, . . . , v̇k−1)
yk2(x, u, . . . , v̇k−1)
yk3(x, u, . . . , v̇k−1)


where

• ∂yk1/∂u is full row rank and

rank ∂(y11, . . . , y(k−1)1, yk1)/∂u = rank ∂(y11, . . . , y(k−1)1, ẏ(k−1)2)/∂u,

• ∂yk2/∂x is full row rank and

rank ∂(y, y12, . . . , yk2)/∂x = rank ∂(y, y12, . . . , yk2, yk3)/∂x.
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Then, define

vk := yk1(x, u, . . . , v̇k−1),(6)
ζk := yk2(x, u, . . . , v̇k−1).(7)

It is easy to check that (ζk, vk) satisfy conditions (i), (ii) above.
The set of variables (ζ0, . . . , ζν , v1, . . . , vν) obtained when the procedure stops

can be completed by adding block variables

vν+1 = vν+1(u),(8)
ζν+1 := ζν+1(x),(9)

in such a way that the transformation

(10) (ζ0, . . . , ζν+1, v1, . . . , v
(ν)
1 , , . . . , vν , v̇ν , vν+1) = φ(x, u, . . . , u(ν))

defined by the equations (4)–(9) is a diffeomorphism, linear in u, on some open
subset of <(n+m(ν+1)). Solving for u, it yields a regular generalized state feedback
described locally by

(11) u = α(x, v, . . . , vk),

that satisfies the conditions

span{dv} ⊆ span{dx, du, du̇, . . . , du(k)},
span{du} ⊆ span{dx, dv, dv̇, . . . , dv(k)}.

In order to display the effect of the transformations (10) and (11) on the
original system, let us remark that, when the procedure stops after ν steps (that
is when y(ν+1)1 and y(ν+1)2 are empty), one has a partition of the vector ζ0 , or
equivalently of y, into 2ν + 1 blocks ζ0h, for 1 ≤ h ≤ 2ν + 1, whose dimensions
correspond, for 1 ≤ h ≤ ν, to those of the blocks vh, or equivalently yh1, and,
for ν + 1 ≤ h ≤ 2ν + 1, to those of the blocks y(2ν+2−h)3 respectively (note, in
fact, that we have from the above procedure ν blocks yk1 and ν + 1 blocks yk3,
some of which may obviously be empty). Then, expressing the system in the new
variables, we get

Σ′ =



ζ̇0h = ζ1h,
...
ζ̇nhh = vh,
yh = ζ0h for 1 ≤ h ≤ ν,
ζ̇0h = ζ1h,
...
ζ̇nhh = fh(ζ0, . . . , ζν),
yh = ζ0h for ν + 1 ≤ h ≤ 2ν + 1,
ζ̇ν+1 = f̂(ζ, v, . . . , v(ν)),
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Now, recalling how the variables ζ0, . . . , ζν have been defined in (5), (7) the
relations ζ̇nhh = fh(ζ0, . . . , ζν) can easily be modified by the particular output
injection defined by the assignment

ζ̇nhh 7→ ζ̇nhh − fh(y(j)
i )

with 1 ≤ i ≤ ν, 1 ≤ j ≤ nh and ν + 1 ≤ h ≤ 2ν + 1. In this way we have

(12) Σ′′ =



ζ̇0h = ζ1h,
...
ζ̇nhh = vh,
yh = ζ0h for 1 ≤ h ≤ ν,
ζ̇0h = ζ1h,
...
ζ̇nhh = 0,
yh = ζ0h for ν + 1 ≤ h ≤ 2ν + 1,
ζ̇ν+1 = f̂(ζ, v, . . . , v(ν)).

This, denoting (ζ0, . . . , ζν , ζν+1) by (ζ, ζ̂), gives finally the desired form
ζ̇ = Aζ +Bv,
˙̂
ζ = f(ζ, ζ̂, v, . . . , v(ν)),
y = Cζ.

We can now remark the following facts about the representation (12). The
subsystems described by the first two blocks of (12), that represent the observ-
able part of Σ′′, are invariant with respect to generalized state-space transfor-
mations and regular generalized state feedbacks. The first one contains the in-
formation about the algebraic structure at infinity of Σ, which corresponds to
that contained in the list I1 of the Morse canonical form. Namely, for each h,
1 ≤ h ≤ ν, there are as many zeros at infinity of order nh + 1 as dim ζ0h. In
particular, with the notations of Section 2.2, we have nh + 1 = σh − σh−1. The
list {nν+1, . . . , n2ν+1} obtained by the second block coincides, if Σ is linear, with
the Morse list I3.

In order to decouple the last block, as done in the linear case, we should now
make use of some sort of generalized output injection. Actually, as said previ-
ously, while the generalization of the notion of feedback we employed came in
a quite natural way, the situation is much more involved for output injection.
We will come back to this point in a next section, after discussing some exam-
ples.
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4. Some examples

4.1. Example. The following system has been considered in [13]:

Σ =



ẋ1 = u1,
ẋ2 = x4 + u2,
ẋ3 = x3u1 + u2,
ẋ4 = u3,
y1 = x1,
y2 = x2 − x3.

Applying the procedure described in Section 3, we obtain, at the various steps:

S t e p 0:
ζ01 := x1,

ζ02 := x2 − x3.

S t e p 1: ẏ =
(

u1

x4 − x3u1

)
,

v1 := u1,

ζ12 := x4 − x3u1.

S t e p 2: ÿ =
(

u̇1

u3 − x3u̇1 − x3u
2
1 − u2u1

)
, v2 := u3−x3u̇1−x3u

2
1−u2u1.

The procedure stops, and we can complete the transformation by chosing ζ3 := x4

and v3 := u3 so that (ζ, v1, v2, v3, v̇1) = φ(x, u1, u2, u3, u̇1) is a diffeomorphism.
As a result, the system takes the form

˙ζ01 = v1,
ζ̇02 = ζ12,
ζ̇12 = v2,
ζ̇3 = v3,
y1 = ζ01,
y2 = ζ02.

4.2. Example. Let us consider the following system:

Σ =



ẋ1 = u1,
ẋ2 = x4 + u2,
ẋ3 = u2,
ẋ4 = x3 + u2,
y1 = x1,
y2 = x2 − x3.

The system is decoupable by a regular static state feedback. Then, the trans-
formation we get by applying the procedure described in Section 3 reduces to a
usual state space transformation and a regular state feedback.

At the various steps we obtain what follows:

S t e p 0:
ζ01 = x1,

ζ02 = x2 − x3.
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S t e p 1:
ẏ1 = u1 = y11(x, u) = v1,

ẏ2 = x4 = y12(x, u) = ζ12.

S t e p 2:
ÿ1 = u̇1,

ÿ2 = x3 + u2 = v2.

The procedure stops, and we can complete the transformation by defining ζ3 :=x3.
The canonical representation now takes the form

ζ̇01 = v1,
ζ̇02 = ζ12,
ζ̇12 = v2,
ζ̇3 = v2/ζ3,
y1 = ζ01,
y2 = ζ02.

5. Generalizing the notion of output injection. In order to obtain a
complete analogy with the Morse canonical form in the nonlinear setting we are
working in, we would now decouple ζν+1 in (12) from (ζ0, . . . , ζν) and (v1, . . . , vν)
and then, possibly, we would split the corresponding block into a controllable
and a noncontrollable part. In decoupling, we would use only transformations
that may be viewed as a generalization of the notion of output injection, followed
possibly by changes of coordinates.

In the nonlinear framework, linear output injections have been used in [12].
An additive nonlinear output injection, similar to the one used in Section 3 has
been employed in [18] for linearizing a nonlinear system, as well as in [9], [10]
for transforming a nonlinear system into a bilinear one. In general, however, the
problem of defining a quite general notion of output injection in a nonlinear
framework has not received much attention in the literature.

Here, we consider a class of output injections, which are not necessarily ad-
ditive and whose definition is consistent with that of quasi-static state feedback
formalized in [2]. The basic idea is that of considering transformations that modify
the dynamics of a system of the form (2) by the assignment

(13) ẋ −→ θ(ẋ, y, ẏ, . . . , y(r)).

In other terms, this amounts to transform the system

(14) Σ =
{
ẋ = f(x) + g(x)u,
y = h(x),

into

(15) Σ̃ =
{
ẋ = θ(f(x) + g(x)u, y, ẏ, . . . , y(r)), r ∈ N,
y = h(x).

In the following, in order to make distinction between the derivatives of y along
the trajectories of (14) and those along the trajectories of (15), we will denote
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the latter ones by y[k], whereas the notation y(k) will stand for the first ones.
Clearly, some restrictions must limit the choice of the function θ(f(x) +

g(x)u, y, ẏ, . . . , y(r)), in order to avoid pathological situations. In particular, we
would prevent the possibility that an output injection can change the observ-
ability properties of the system. Let us illustrate this point by considering the
following example. Let us apply to the system{ ẋ1 = 0,

ẋ2 = 0,
y = x1x2,

which is obviously not fully observable, the linear, additive output injection de-
fined by θ(ẋ, y) = (ẋ1 + y, 0)t. The resulting system is:{ ẋ1 = x1x2,

ẋ2 = 0,
y = x1x2,

which turns out to be completely observable (in the sense of [4]) since x1 = y2/y[1]

and x2 = y[1]/y.
Before going further, it is therefore useful to state formally, following [29], the

notion of observability we will consider in defining the notion of output injection
(see also [11]).

Definition 4. Given a system of the form (14), let X and U denote, as usual,
span{dx} and span{du(k), k ≥ 0} respectively, and let Y denote span{dy(k), k ≥
0}. Then, the observability space of the system is defined as:

O = X ∩ (Y + U).

Definition 5. A system of the form (14) is said to be observable if and only
if dim(X ∩ (Y + U)) = n, i.e. if and only if span{dx} ⊂ span{dy(h), du(k), h ≥
0, k ≥ 0}.

Now, given a system of the form (14) and a map of the form (13), we can
consider the vector spaces Hk = span{dy, dẏ, . . . , dy(k), du, du̇, . . .} and H̃k =
span{dy, dy[1], . . . , dy[k], du, du̇, . . .}. With these notations it is possible to state,
as in [20], the following definition of output injection (see also [1]).

Definition 6. The map θ(ẋ, y, ẏ, . . . , y(r)) (r∈N) that transforms the system
(14) into the system (15) is an output injection if the following conditions hold:

• H̃k ⊂ Hk+r−1,
• Hk ⊂ H̃k+r−1,
• ∂θ(ẋ, y, ẏ, . . . , y(r))/∂ẋ is generically invertible.

The following Proposition, proved in [20], states that the output injection
defined above behaves well with respect to the observability.

Proposition 2. Given a system of the form (14) and a map θ of the form
(13), let O denote the observability space of (14) and let Õ = X ∩ (Ỹ +U), where
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Ỹ = span{dy[k], k ≥ 0}, denote the observability space of (15). If θ is an output
injection, then O = Õ.

Let us now go back to the system Σ′′ described by (12) at the end of Section 3.
Denoting the block variables (ζ0h, . . . , ζnhh) for 0 ≤ h ≤ ν, that is the variables
of the first block in (12), by ζ1, the block variables (ζ0h, . . . , ζnhh) for ν + 1 ≤
h ≤ 2ν + 1, that is the variables of the second block in (12), by ζ2 and the block
variable ζν+1 by ζ3, and analogously denoting the block variables (v1, . . . , vν) by
w1 and vν+1 by w2, we can rewrite (12) as

ζ̇1 = f1(ζ1, w1),
ζ̇2 = f2(ζ2),
ζ̇3 = f3(ζ1, ζ2, ζ3, w1, . . . , w

(µ)
1 , w2),

y = h(ζ1, ζ2).

Let us focus on the subsystem

(16) ζ̇3 = f3(ζ1, ζ2, ζ3, w1, . . . , w
(µ)
1 , w2))

corresponding to the unobservable variable ζ3. The problem of decoupling ζ3 from
ζ1, ζ2 and w1 by means of an output injection does not seem to be tractable in
general. So, we limit our attention to the situations in which f3 has particular
properties. Namely, we assume that, for each component f3i of f3, there exists a
function χi(ζ3, w2) such that:

f3i = Fi(χi(ζ3, w2), ζ1, ζ2, w1, . . . , w
(µ)
1 ).

In other terms, we assume that there exists a separation function of the observable
variables and the unobservable ones.

Then, we have the following two cases: either f3i does not depend on ζ3 and
on w2, and we chose χi(ζ3, w2) = 0, or (∂Fi/∂χi) 6= 0. Now, by the construction
carried on in the proof of Proposition 1, ζ1, ζ2 and w(k)

1 can be expressed in terms
of y and its derivatives. Hence we can define, in the case in which f3i does not
depend on ζ3 and on v2,

θi(ζ̇3i, y, ẏ, . . . , y(r)) = ˙ζ3i − Fi(ζ1, ζ2, w1, . . . , w
(µ)
1 ).

In the case in which ∂Fi/∂χi 6= 0, we can apply the implicit function theorem to
get

χi = Gi(f3i, ζ1, ζ2, w1, . . . , w
(µ)
1 )

and we define

θi( ˙ζ3i, y, ẏ, . . . , y(r)) = Gi(ζ̇3i, ζ1, ζ2, w1, . . . , w
(µ)
1 ).

The map θ = (θ1, . . . , θi, . . .) defines an output injection according to Defini-
tion 6 which transforms (16) into

ζ̇3 = χ(ζ3, w2),
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where χ = (χ1, . . . , χi, . . .), achieving the desired decoupling and yielding a max-
imal loss of accessibility.

Obviously, the separability condition seen above is only sufficient for assuring
the possibility of decoupling ζ3 by means of an output injection. In addition,
the fact that such condition is not feedback invariant, as pointed out in [25],
shows that a complete characterization of existence of an output injection with
the desired property is still far from being obtained.

6. Examples

6.1. Example. Let us consider the following system:{ ẋ1 = v1,
ẋ2 = x2

2x1 + x1v2 + x2
1,

y = x1.

For the nonobservable part, we can write ẋ2 = (x2
2 + v2)x1 + x2

1. Hence, choosing
χ(x2, v2) = (x2

2 + v2), we have ẋ2 = F (χ, x1) and χ = (ẋ2 − x2
1)/x1. Remarking

that x1 = y, we can define the output injection

θ(ẋ2, y) = (ẋ2 − x2
1)/x1.

Finally, we obtain the system{ ẋ1 = v1,
ẋ2 = x2

2 + v2,
y = x1.

6.2. Example. Let us consider the following system:{ ẋ1 = v1,
ẋ2 = x2

2x1 + v2,
y = x1.

Here, it is not possible to write, for the right hand side of the nonobservable block,
f2 = F (χ(x2, v2), x1, v1). In fact, assuming that this holds for some F and χ, one
has

(i)
∂f2
∂v2

= 1 =
∂F

∂χ

∂χ

∂v2
,

(ii)
∂

∂x1

(
∂f2
∂v2

)
= 0 =

(
∂

∂x1

(
∂F

∂χ

))
∂χ

∂v2
,

(iii)
∂

∂x1

(
∂f2
∂x2

)
= 2x2 =

(
∂

∂x1

(
∂F

∂χ

))
∂χ

∂x2
.

Now (i) implies ∂χ/∂v2 6= 0, while (ii) and (iii) imply ∂χ/∂v2 = 0, that is a
contradiction.

As a consequence, there is no separation function in this case and, actually,
the nonobservable block cannot be decoupled from x1.
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