
GEOMETRY IN NONLINEAR CONTROL
AND DIFFERENTIAL INCLUSIONS

BANACH CENTER PUBLICATIONS, VOLUME 32
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1995

ASYMPTOTIC NULL CONTROLLABILITY
OF BILINEAR SYSTEMS

FRITZ COLONIUS

Institut für Mathematik, Universität Augsburg
86135 Augsburg, Germany

WOLFGANG KLIEMANN

Department of Mathematics, Iowa State University
Ames, Iowa 50011, U.S.A.

Abstract. The region of asymptotic null controllability of bilinear systems with control
constraints is characterized using Lyapunov exponents. It is given by the cone over the region of
attraction of the maximal control set in projective space containing zero in its spectral interval.

1. Introduction. In this paper we use recent results on the Lyapunov spec-
trum of families of time varying matrices [11] in order to characterize the domain
of null controllability of bilinear systems with constrained control range. Our
approach is based on the classical concept of Lyapunov exponents and on their
approximation by Floquet exponents. Lyapunov exponents were introduced by
A. V. Lyapunov in his 1892 thesis [16] (as “order numbers”) as a tool to study
nonlinear differential equations via their linearizations along trajectories. This
is Lyapunov’s first method as opposed to his second, direct method, which is
now known as the concept of Lyapunov functions and which is widely employed
in control theory. Lyapunov exponents have a rich history in deterministic and
stochastic dynamics (see e.g. [3], [12], [17] and the proceedings [1, 2]), but to our
knowledge they have not been used systematically in control theory. We hope
that the results of the present paper will encourage research in this direction.

In particular, the study of nonlinear control systems with a common fixed
point x∗ can profit from the detailed analysis of the family of equations obtained
by linearizing in x∗ with respect to x only. This gives the following bilinear control
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systems, which are discussed in the present paper:

(1)
d

dt
x(t) = A0x(t) +

m∑
i=1

ui(t)Aix(t) =: A(u(t))x(t) in Rd,

(2) u ∈ U = {u : R→ Rm | u(t) ∈ U a.e.}.
Here A0, A1, . . . , Am are d×d-matrices and U ⊂ Rm is compact and convex with
0 ∈ int U , the interior of U .

The solution of (1) corresponding to u ∈ U and initial value 0 6= x ∈ Rd

will be denoted by φ(t, x, u), t ∈ R. For a given control function u ∈ U , (1) is a
linear differential equation with time varying coefficients. The exponential growth
behavior of a solution is measured by the corresponding Lyapunov exponent

(3) λ(u, x) = lim sup
t→∞

1
t

log |φ(t, x, u)|,

where |·| denotes the Euclidean norm in Rd (since all norms in Rd are equiva-
lent, any norm will yield the same Lyapunov exponent). Classical properties of
Lyapunov exponents are described, e.g., in [14], Chapter 8, or in [4]. Here we
only remark that for constant A(u), the Lyapunov exponents λ(u, x), x 6= 0, are
the real parts of the eigenvalues of A(u); for periodic A(u), they are the cor-
responding Floquet exponents. In general, the limit in (3) need not exist. This
question is closely related to the (difficult) problem of Lyapunov regularity. In
any case, λ(u, x) < 0 iff φ(t, x, u) converges to zero faster than any exponential
exp(at), λ(u, x) < a < 0 (and slower than those with a < λ(u, x)). However, note
that—for fixed general u—λ(u, x) < 0 for all x ∈ Rd \ {0} does imply neither
exponential stability nor uniform stability (see [14], Section 65).

We will characterize the region of asymptotic null controllability, i.e.

(4) N = {0 6= x ∈ Rd | there exists u ∈ U with λ(u, x) < 0}.
A moment of reflection on the uncontrolled equation (1) with U={0} reveals that
in this case the eigenvalues and the eigenspaces determine the “stabilizability”
properties. Similarly, if A(t) is a time varying matrix function such that there
is at least one negative Lyapunov exponent for ẋ = A(t)x, then there exists a
lower dimensional subvariety N of Rd such that the solutions with initial values
in N tend to zero for t→∞, compare [16]. The theory developed below is built
in analogy to these ideas, using appropriate generalized versions of eigenspaces
associated with Lyapunov exponents. It turns out that for systems of the form (1)
the regions of asymptotic null controllability have nonvoid interior and are char-
acterized by controllability properties of the projected system on the projective
space in Rd.

In Section 2, we collect the main results from [11] on the Lyapunov spectrum
and its relation to the control sets in projective space. In Section 3, this is used
for a characterization of the region N of asymptotic null controllability. We also
show, how one can—in the two dimensional case—construct from this analysis
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stabilizing feedbacks. Finally, we characterize the control sets in affine space Rd

as cones corresponding to the control sets in projective space with corresponding
spectral interval containing zero in its interior.

2. Spectral theory of families of time varying matrices. In this section,
we cite results on the approximation of the Lyapunov spectrum by Floquet ex-
ponents of periodic matrix functions corresponding to admissible controls u ∈ U .
The proofs in [11] also make essential use of methods from the theory of flows on
vector bundles, in particular, the Morse spectrum (cp. [10]). Here we concentrate
on the results only as far as they are relevant for the control theoretic applications
treated in this paper.

The exponential growth behavior of linear differential equations can be stud-
ied via the associated (angular) system on projective space Pd−1 obtained by
identifying opposite points on the sphere in Rd:

The angular component of (1) is

(5)
d

dt
s(t) = h0(s(t)) +

m∑
i=1

ui(t)hi(s(t)) =: h(u(t), s(t)) on Pd−1

where hj(s) := (Aj − sTAjs · I)s for j = 0, . . . ,m. The superscript T denotes the
transpose.

Solving the corresponding equation for the radial component yields for the
Lyapunov exponent

(6) λ(u, x) = lim sup
t→∞

1
t

t∫
0

q(u(τ), s(τ))dτ

with q(u, s) = q0(s)+
∑m
i=1 uiqi(s), qj(s) = sTAjs, and s0 = x/|x|, the projection

of x ∈ Rd \{0} onto Pd−1; here s(τ) = φ(τ, s0, u) denotes the solution of (5) with
φ(0, s0, u) = s0 ∈ Pd−1. Thus the Lyapunov exponents only depend on the
behavior of the nonlinear system (5) on projective space. In order to analyze this
(analytic) control system, we assume local accessibility, which is equivalent to the
following Lie algebra rank condition:

(H) dimLA{h(·, u) | u ∈ U}(x) = d− 1 for all x ∈ Pd−1.

It turns out that the control sets of (5) are closely related to the (generalized)
eigenspaces of the elements in the systems semigroup

S = {g = exp(tnBn) . . . exp(t1B1) | tj ≥ 0, Bj = A(uj), for some uj ∈ U,
j = 1, . . . , n, n ∈ N}.

Note that by (H), the interior of S in the systems (Lie) group G (where the tj
are arbitrary in R) is nonvoid. Then the control structure of (5) is revealed by
the following result (see [8], Theorem 3.10).
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1. Theorem. Let (H) be satisfied.

(i) There are 1 ≤ k ≤ d control sets D1, . . . , Dk with nonvoid interior in
Pd−1, called the main control sets.

(ii) The interiors of the main control sets are the connected components of
PV = {PE(λ)|λ ∈ spec(g), g ∈ intS}, where PE(λ) denotes the generalized
eigenspace of g corresponding to λ, projected onto Pd−1.

(iii) The main control sets are linearly ordered by

Di ≺ Dj if there exist xi ∈ Di, xj ∈ Dj , and g ∈ St with gxi = xj .

We enumerate the control sets such that D1 ≺ . . . ≺ Dk.

This result leads us to the following definition.

2. Definition. Let D be a main control set of (5). The Floquet spectrum
of (1) over a main control set D is defined as

ΣFl(D) = {λ(u, p) | (u, p) ∈ U × intD, u is piecewise constant and
τ -periodic such that φ(τ, p, u) = p for some τ ≥ 0}.

The Floquet spectrum ΣFl of (1) is

ΣFl =
k⋃
i=1

ΣFl(Di).

Similarly, the Lyapunov spectrum of (1) over cl(D) (the closure of D) is

ΣLy(cl(D)) = {λ(u, p)| there exists T ≥ 0
such that φ(t, p, u) ∈ cl(D) for all t ≥ T}

and the Lyapunov spectrum is

ΣLy = {λ(u, p)| u ∈ U, p ∈ Pd−1}.
Clearly, ΣFl(D) ⊂ ΣLy(cl(D)) ⊂ ΣLy. Concerning the converse direction, it

is not known, in general, when equality holds. However, more can be said if we
embed the system (1) into a family of systems depending on a parameter ρ ≥ 0
indicating the size of the control range.

Let Uρ := ρU , ρ ≥ 0. Then all quantitities considered above depend on ρ.
Note that (H) holds for ρ = 1, iff it holds for some ρ > 0.

Let λ1, . . . , λk be the different real parts of the eigenvalues of the matrix
A0, and let E(λi), 1 ≤ i ≤ k ≤ d, be the corresponding sums of generalized
eigenspaces. Consider for i = 1, . . . k the following maps on [0,∞) with values in
the compact subsets of Pd−1, endowed with the Hausdorff metric:

(7) ρ 7−→ cl(Di(ρ)),

where Di(ρ) is the main control set with PE(λi) ⊂ int Di(ρ) for ρ > 0 and
Di(0) = PE(λi).

Note that the number k(ρ) of main control sets is decreasing. Hence some
of the Di(ρ), i = 1, . . . , k, in (7) may coincide. We denote the different Di(ρ)
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by Dρ
j , j = 1, . . . , k(ρ). The following theorem from [11], Corollary 5.6, shows in

particular, that main control sets with the properties indicated in (7) exist, i.e.
the map is well defined.

3. Theorem. Assume that (H) and the following ρ− ρ′ inner pair condition
(I) are satisfied :

(I) For all ρ′ > ρ > 0 and all (u, p) ∈ Uρ × Pd−1 there exist T > 0 and S > 0
such that φ(T, p, u) ∈ int Oρ

′,+

≤T+S(p) where Oρ
′,+

≤T+S(p) = {q ∈ Pd−1 | there
are v ∈ Uρ′

and 0 < t ≤ T + S with φ(t, p, u) = q}.

Then the following assertions hold :

1. For i = 1, . . . , k and ρ > 0 there is a main control set Di(ρ) satisfying the
condition in (7) and clDi(ρ) ⊂ int Di(ρ′) for ρ′ > ρ > 0.

2. The maps ρ 7−→ clΣFl(Di(ρ)) are increasing , continuous outside at most
countably many ρ-values in [0,∞), and the images are intervals. At the continuity
points clΣFl(D) = ΣLy(cl(D)), i = 1, . . . , k, and clΣFl = ΣLy.

3. Let ρ be a continuity point , then for each (u, x) ∈ Uρ × Pd−1 there is
a main control set D with πPω(u, x) := {q ∈ Pd−1 | there are tk → ∞ with
φ(tk, x, u)→ q} ⊂ cl(D) and λ(u, x) ∈ ΣLy(cl(D)).

4. At each continuity point ρ, define Eρj (u) = {x ∈ Rd | x 6= 0 implies
φ(t, x, u) ∈ clDρ

j for t∈R}, j = 1, . . . , k(ρ), u ∈ U . Then the Eρj (u) are subspaces
of dimension independent of u ∈ U , such that

Rd = Eρ1 (u)⊕ . . .⊕ Eρk(ρ)(u).

R e m a r k. The spectral intervals are ordered via ΣFl(D
ρ
i ) ≺ ΣFl(Dρ

j ) if i < j
in the following sense: inf ΣFl(D

ρ
i ) < ΣFl(D

ρ
j ) and supΣFl(D

ρ
i ) < supΣFl(D

ρ
j ).

R e m a r k. The spectral intervals clΣFl(D
ρ
i ) may overlap: see Example 3.2

in [8].

3. Asymptotic null controllability. In this section we characterize the
region N of asymptotic null controllability of bilinear systems. Furthermore, in
the two dimensional case, one obtains from our analysis a stabilizing feedback,
which is homogeneous. Finally, we characterize the control sets in Rd.

Consider the following parametrized family of bilinear control systems de-
pending on ρ > 0 :

(8)

d

dt
x(t) = A0x(t) +

m∑
i=1

ui(t)Aix(t) in Rd,

u ∈ U := {u : R→ Uρ := ρ · U | measurable},
where A0, . . . , Ak are d × d matrices and U ⊂ Rm is compact and convex with
0 ∈ int U .
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Throughout this section, we assume that (H) and (I) hold. For a main control
set D ⊂ Pd−1 of the projected system we denote its domain of attraction by

(9) A(D) := {q ∈ Pd−1 | there is u ∈ U and t ≥ 0 with φ(t, q, u) ∈ D}
where φ(t, q, u) denotes again the solution of (5). Recall the linear ordering of the
main control sets and let s(ρ) := max{i ∈ {1, . . . , k(ρ)} | inf ΣFl(D

ρ
i ) < 0}.

4. Theorem. Assume that conditions (H) and (I) hold for (8).

(i) For all ρ > 0 and all ε > 0 there exist continuity points ρ1, ρ2 of the spectral
intervals with ρ − ε < ρ1 < ρ < ρ2 < ρ + ε; here clΣFl(D

ρj

i ) = ΣLy(cl(Dρj

i )),
i = 1, . . . , k(ρ), j = 1, 2.

(ii) Let ρ be a continuity point of the spectral intervals. Then x ∈ Rd\{0} is in
the region N ρ of asymptotic null controllability if x ∈ Aρ(Dρ

s(ρ)). Conversely , if
x ∈ Rd\{0} is in the region of asymptotic null controllability , then x ∈ Aρ(Dρ

s(ρ))
or , with p = πPx,

(10) there is u ∈ Uρ with λ(u, x) < 0 and πPω(u, p) ⊂ clDρ
i \D

ρ
i

for some i ≤ s(ρ).

(iii) If (u, x) ∈ Uρ ×Pd−1 satisfies (10), then u ∈ Uρ \ Uρ′
for all ρ′ < ρ and

x ∈ Aρ(Dρ
s(ρ)) for all ρ′ > ρ.

R e m a r k. Theorem 3 above shows in particular that typically ρ will be a
continuity point of the spectral intervals (for example, the Lebesgue measure of
all points in [0,∞), which are not a continuity points, is zero). By Theorem 4
with the exception of the pairs (u, x) satisfying (10), the region of asymptotic
null controllability is given by the domain of attraction of the control set Dρ

s(ρ).
Finally, Property (10) is shown to be exceptional.

P r o o f o f T h e o r e m 4. (i) This is immediate from Theorem 3.
(ii) Abbreviate s = s(ρ) and let x ∈ Aρ(Dρ

s(ρ)). Then there exist (u, q) ∈
Uρ × Pd−1 such that (u(·), φ(·, q, u)) is periodic with φ(t, q, u) ∈ int Dρ

s for all
t ∈ R, and λ(u, q) < 0. Since p := πPx ∈ Aρ(Dρ

s) there are v ∈ Uρ and t0 ≥ 0 such
that q = φ(t0, p, u). The concatenation of v and the periodic control u (applied
after t0) controls x asymptotically to the origin. Conversely, suppose that there
is u ∈ Uρ with λ(u, x) < 0. By Theorem 3 it follows that there is a control set Dρ

i

with πPω(u, p) ⊂ cl(Dρ
i ). Hence

λ(u, x) ∈ clΣFl(D
ρ
i ) = ΣLy(cl(Dρ

i )).

If πPω(u, p) ⊂ Dρ
i , for some i, then by Theorem 3 it follows that i ≤ s, and p can

be steered to Dρ
s , by Theorem 1, i.e. p ∈ Aρ(Dρ

s). Otherwise, (10) holds.
(iii) This follows from Theorem 3, since the control sets are strictly increas-

ing.

R e m a r k s. (a) The set of exceptional pairs (u, x) satisfying (10) can be
nonvoid; their behavior has to be studied separately, see Example 6, below.
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(b) The proof of the theorem above shows that—except for (10)—in case of
asymptotic null controllability from x the control u ∈ U can be chosen in such a
way that there exists T ≥ 0 such that after time T , u is periodic, and φ(t, x, u) is
periodic in Pd−1 with the same period. Periodicity of u (i.e. T = 0) is possible if
πPx ∈ int D for some control set Di with i ≤ s(ρ).

The interest in asymptotic null controllability stems, among other reasons,
from the fact that this is a necessary condition for feedback stabilization at the
origin via static state feedback, compare e.g. [18]. The question whether a stabi-
lizing feedback exists depends, of course, on the class of admissible feedbacks:

• For constant feedbacks u(x) ≡ u the question reduces to that of the constant
spectrum of (8) and the corresponding eigenspaces.
• For time varying feedback u(t, x) ≡ u(t) one has to consider (for stabilization

from all x ∈ Rd \ {0}) the quantity infg∈intSt maxλ∈spec g
1
t log |λ|, see [7].

Here we allow nonlinear, piecewise continuous and a-priori bounded feedback:
The system (8) is feedback stabilizable at the origin from x ∈ Rd \ {0} if there
exists a piecewise continuous function u : K → U defined on a cone K ⊂ Rd \{0}
containing x such that:

(11) The solutions φ(t, x0, u) of (8) with φ(0, x0, u) = x0 are well defined
for all x0 ∈ K, φ(t, x0, u) ∈ K for all t ≥ 0, and λ(u, x) < 0.

The stabilization problem (11) has a complete solution for two dimensional
systems, see also [5], who use an entirely different method (Lyapunov functions),
in the unconstrained case.

5. Theorem. Consider the bilinear control system (8) for d = 2 and assume
(H). The system is feedback stabilizable at the origin from x ∈ Rd \ {0} in the
sense of (11) iff x is asymptotically null controllable.

P r o o f. Let x ∈ Rd \ {0} be asymptotically null controllable. It follows from
Theorem 4.1 in [15] (cp.also [11], Corollary 4.9), that only the following cases can
occur for d = 2:

• (a) inf ΣFl(Ds) is a real eigenvalue for a constant matrix A = A0+
∑m
i=1 uiAi

for some u ∈ U such that there is λ ∈ specA with PE(λ) ⊂ intDs.
(aa) There are two main control sets and s = 1: in this case we have either

p = x/|x| ∈ intD1 or p ∈ ∂D1. In the first case, we parametrize D1 via the angle
as (θ1, θ2) ⊂ [0, π). Then PE(λ) ∈ (θ1, θ2) and there exist constant matrices B1

and B2 with real eigenvalues µ1 and µ2, respectively, such that PE(µ1) = θ1,
PE(µ2) = θ2. Define a piecewise constant feedback u(θ) on cl(D1) by

u(θ) =

B1 for θ ∈ [θ1,PE(λ)),
A for θ = PE(λ),
B2 for θ ∈ (PE(λ), θ2),

which stabilizes the system for all θ ∈ D1.
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If p ∈ ∂D1, then the system is asymptotically null controllable from x iff
p = PE(λ) for some λ ∈ specB with B constant and λ < 0. Here we use the
feedback B.

(ab) s = 2: In this case we can set u(x) = u ∈ U with A0 +
∑m
i=1 uiAi = A.

(ac) There is only one main control set: In this case we can find a piecewise
constant feedback u(p) : P1 → U that stabilizes the projected system at PE(λ),
compare [9]. This feedback stabilizes the system (8) in the sense of (11).

• (b) inf ΣFl(Ds) is not a real eigenvalue of any constant matrix. In this case,
we have only one main control set D = P1, and we can find a piecewise constant
u0 ∈ U and p0 ∈ P1 such that λ(u0, p0) < 0, (u0(t0), φ(t0, p0, u0(·))) = (u0(0), p0)
for some t0 > 0 with t0 = min{t > 0 | φ(t, p0, u0(·)) = p0}, and (u0, φ(·, p0, u0(·))
is t0-periodic without loops. For p ∈ P1 set u(p) = u0 if p = φ(t, p0, u0(·)) for
some t ∈ [0, t0). This feedback u : P1 → U is well defined and stabilizes the
system in the sense of (11).

The following example illustrates some of the features occuring above, in par-
ticular the role of the exceptional points satisfying (10).

6. Example. Consider the linear oscillator
d

dt
x(t) =

(
0 1
−1 −2b

)
x(t) + u(t)

(
0 0
−1 0

)
x (t)

with u(t) ∈ U = [−2, 2] and b = −2. Here we have two control sets D1 and D2

with spectral intervals ΣFl(D1) = (2 −
√

5, 1) and ΣFl(D2) = (3, 2 +
√

5). The
set D1 is given by

D1 = πP

{(
x1

x2

)
∈ R2 \ {0}

∣∣∣∣x2 = αx1, α ∈ (2−
√

5, 1)
}
.

At the boundary point πP

(
x1

(2−
√

5)x1

)
the Lyapunov exponent is 2−

√
5 < 0,

while at πP

(
x1

x1

)
the exponent is 1 > 0. Hence the maximal cone of feedback

stabilization is in this case

K =
{(

x1

x2

)
∈ R2 \ {0}

∣∣∣∣x2 = αx1, α ∈ [2−
√

5, 1)
}
.

This example with U = [−1, 1] and b = 1
4 shows also that the constant spec-

trum may be strictly contained in the Floquet spectrum and that the stabilizing
feedback may need at least two values, cp. [7], Section 6.

R e m a r k s. (a) The set of points from which a system is feedback stabilizable
at the origin can be a nontrivial subset of Rd, as the example above shows.

(b) If one is interested in feedback stabilization from all x 6= 0, i.e. K = Rd,
then no exceptional boundary points have to be considered, because each point
in Pd−1 can be controlled into the interior of the maximal control set int Dk.
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We now turn to the controllability problem for bilinear control systems of the
form (8). We note that the present approach is different from the one that is, e.g.,
used in [13]. A necessary condition for controllability is accessibility, which for
analytic systems is equivalent to the Lie algebra rank condition. Hence we will
assume from now on the following condition (Haff):

(Haff) dimLA
{
A0 +

m∑
i=1

uiAi

∣∣∣∣u ∈ U}(x) = d for all x ∈ Rd \ {0}.

Note that (Haff) implies (H) for the projected system.
It is clear that the system (8) cannot be completely controllable outside of

the cones in Rd generated by the control sets of the projected system. Note that
there are at most 2d cones in Rd, corresponding to the main control sets in Pd−1.
Using spectral theory for the family of matrices {A0 +

∑m
i=1 uiAi | u ∈ U} we

obtain for the cones over the main control sets:

7. Theorem. Assume that (Haff) holds, and let D be a main control set of
the projected system.

1. If 0 ∈ int ΣFl(D), then the system (8) is completely controllable in the cone
K := {αp | p ∈ intD, α > 0}.

2. If 0 6∈ ΣLy(cl(D)), then the system is not controllable in the cone generated
by D.

P r o o f. The second assertion is obvious and it only remains to show the first
one:

Let (u, p) ∈ U × intD be such that λ(u, p) = 0 and p ∈ PE(0) for gu ∈ intS.
Then there exist T > 0 and δ > 0 such that for all λ ∈ (−δ, δ) there is a
piecewise constant u ∈ U with λ ∈ spec gu, gu ∈ int S≤T and PE(λ, gu) ⊂ N ,
where N is a compact neighborhood of p with N ⊂ intD ⊂ Pd−1. Denote
Lp = {αp | α > 0} ⊂ Rd and let [αp, βp] be a compact interval on Lp. By
uniform boundedness of the first hitting time in N (see [6]) and the above, there
exist piecewise constant vi ∈ U , i = 1, 2, such that gv1(αp) = γ1p, gv2(βp) = γ2p
with γ1, γ2 ∈ (α, β). Hence we obtain⋃

n≥0

gnv1 [αp, βp] ∪
⋃
n≥0

gnv2 [αp, βp] = Lp.

Now pick x, y ∈K. Since πPx ∈ intD, there exist u1 ∈ U and t1 ≥ 0 such that
the corresponding solution on Pd−1 satisfies φ(t1, πPx, u1) = p. Hence, by (Haff),
there is an interval [α1p, β1p] ⊂ Lp with [α1p, β1p] ⊂ int O+(x). By a similar
argument we have that there is an interval [α2p, β2p] ⊂ Lp with [α2p, β2p] ⊂
int O−(y). Hence y ∈ O+(x), which proves the assertion.

R e m a r k. If ρ is a continuity point of the spectral intervals, then clΣFl(D) =
ΣLy(cl(D)), and the only case not covered by the theorem above is when 0 ∈
∂ΣLy(cl(D)), the boundary of ΣLy(cl(D)).
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