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Introduction. Let A = Aq be the annulus with parameter q ∈ (0, 1):

Aq = {λ ∈ C; q < |λ| < 1}.
Let CA,KA, and PA be the Carathéodory, the Kobayashi, and the P-metric on A,
respectively (for the definition of PA see Section 1). Since all the metrics CA,KA,
and PA are invariant for biholomorphic mappings and since A is one-dimensional,
the functions CPA(λ) := CA(X)/PA(X) and KPA(λ) := KA(X)/PA(X) for X
a non-zero holomorphic tangent vector at λ ∈ A are well-defined as functions on
A and invariant for holomorphic automorphisms of A.

The main purpose of this paper is to show the following.

Theorem A. Let r ∈ (0, 1) be defined by

(0.1)
log q
πi

=
πi

− log r
.

For every λ ∈ A = Aq with v ∈ (0, 1) such that

(0.2) |λ| = qv,

we have

CPA(λ) =
∏
n≥1

|e2πiv + r2n−1|2

(1 + r2n−1)2
,(0.3)

KPA(λ) =
∏
n≥1

|e2πiv − r2n|2

(1− r2n)2
.(0.4)
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Consequently , the functions α : (0, 1) 3 v 7→ CPA(qv) ∈ [0,+∞) and β : (0, 1) 3
v 7→ KPA(qv) ∈ [0,+∞) are unimodal ; moreover , α (resp. β) is strictly de-
creasing (resp. increasing) in (0, 1/2) and strictly increasing (resp. decreasing) in
(1/2, 1); therefore,

minCPA = minα = α(1/2) =
∏
n≥1

(1− r2n−1)2

(1 + r2n−1)2
,

maxKPA = maxβ = β(1/2) =
∏
n≥1

(1 + r2n)2

(1− r2n)2
.

Assertion (0.4) appeared in the proof of Proposition 3.4 in [2] and its proof in
this paper is different from that in [2], which comes from Myrberg’s theorem on
the Green function of a hyperbolic Riemann surface. The argument of this paper
is based on the theory of theta functions attached to the tori T(1, τ) = C/(Z+τZ)
and T(1,−1/τ) = C/(Z + (−1/τ)Z), where τ ∈ H = {τ ∈ C; Im τ > 0} is the
number given by

(0.5) τ =
log q
πi

, −1
τ

=
log r
πi

(see (0.1)). In fact, the functions CPA andKPA are directly represented by a ratio
of theta functions attached to the torus T(1,−1/τ) (Theorem C in Section 3).

Theorem A is important because as its consequence we get the following well-
known fact: All holomorphic automorphisms of A consist of the functions (λ 7→
eiθλ)θ∈R and (λ 7→ eiθq/λ)θ∈R. Indeed, let Cs = {λ ∈ A; |λ| = s} for s ∈ (q, 1).
Since the functions r : A 3 λ 7→ q/λ ∈ A and A 3 λ 7→ eiθλ ∈ A for θ ∈ R
are automorphisms of A, we see that CPA is constant on each Cs and that
CPA(Cs) = CPA(Cq/s). Let ϕ be a holomorphic automorphism of A. Theorem
A implies that for every s ∈ (q, 1), ϕ(Cs) coincides with Cs or Cq/s. Since the
function (q, 1) 3 s 7→ |ϕ(s)| ∈ (q, 1) is a homeomorphism, it follows that either
ϕ(Cs) = Cs for all s, or ϕ(Cs) = Cq/s for all s. Assume first that ϕ(Cs) = Cs for
all s. Then the function ϕ(λ)/λ has modulus 1 on A so that ϕ(λ) = eiθλ, λ ∈ A
for some real θ. If ϕ(Cs) = Cq/s for all s, then the last argument implies that
r ◦ ϕ(λ) = eiθλ, λ ∈ A for some real θ, as desired.

We also obtain the representation of CPA in terms of the Green function of A.

Theorem B. If GA(·, λ) is the Green function on A with pole at λ ∈ A, then

(0.6) CPA(λ) = exp (−GA(−q/λ, λ))

for λ ∈ A.

The author would like to thank Professor S. Egami for his helpful suggestion
on the subject of this note. This work was partially done in the discussion in
the Complex Analysis Semester, Warsaw in October, 1992. The author is very
grateful to the staff of the Banach Center for their heartfelt hospitality.
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1. Invariant metrics on the annulus. For a point p ∈ M of a complex
manifold M , we define a subspace PSM (p) of the space NPS(M) of all negative
plurisubharmonic functions on M as follows:

PSM (p) = {f ∈ NPS(M); f(q)− log ‖z(q)− z(p)‖ ≤ O(1) as q → p},
where z is a holomorphic coordinate around p and ‖ ‖ means the complex eu-
clidian norm on Cm,m = dimM . Here, we assume the function −∞ identically
belongs to NPS(M). The definition of PSM (p) does not depend on the choice of
the coordinate z. For q ∈M , let

uMp (q) = uM (q, p) = sup {f(q); f ∈ PSM (p)}.

The function uMp is called the pluri-complex Green function with pole at p (cf.
[14], [9], [1], [2], [3], [6], [10], [8], [11]).

Let X ∈ TpM be a holomorphic tangent vector at p ∈ M . Let E = {λ ∈
C; |λ| < 1} be the unit disk in C. Taking a holomorphic function ϕ from an
ε-neighborhood εE of 0 in C to M with ϕ(0) = p and ϕ′(0) = X, we define

PM (X) = lim sup
λ→0,λ6=0

exp ◦uMp ◦ ϕ(λ)
|λ|

(cf. [1], [2], [6], [10], [11]). The definition of PM (X) does not depend on the choice
of ϕ (cf. [2], [6]), and the function PM is a pseudo-metric on M , that is, PM is
[0,+∞)-valued on the holomorphic tangent bundle TM satisfying PM (λX) =
|λ|PM (X) for any X ∈ TM and λ ∈ C. The assignment M 7→ PM of pseu-
dometrics possesses the decreasing property, i.e., for a holomorphic mapping Φ
from M to M ′, PM

′
(Φ∗X) ≤ PM (X) for all X ∈ TM and the metric PE for

the unit disk E in C coincides with the Poincaré metric on E, which implies that
if CM and KM denote the Carathéodory and the Kobayashi pseudo-metrics re-
spectively, then CM ≤ PM ≤ KM for any complex manifold M (cf. [1], [2], [6]).
Furthermore, if by ISM (p) = {X ∈ TpM ;SM (X) < 1} we denote the indicatrix
at p ∈M for a pseudo-metric SM on M , then the following are well-known:

(1) ICM (p) is convex for all p ∈M ([5]).
(2) IPM (p) is pseudoconvex for all p ∈M ([2]).
(3) IKM (p) is not necessarily pseudoconvex ([7]).

If M is a hyperbolic Riemann surface, then the function −uMp is the usual
Green function GM (·, p) of M with pole at p (cf. [9], [1]). Let z be a holomorphic
coordinate around p and µ(d/dz)p, µ ∈ C, be a holomorphic tangent vector at p.
If

ϕ := z−1 ◦ (εE 3 λ 7→ z(p) + µλ ∈ C) : εE →M,

then ϕ(0) = p and ϕ′(0) = ϕ∗((d/dλ)0) = µ(d/dz)p, so that

(1.1) PM
(
µ

(
d

dz

)
p

)
= |µ|

∣∣∣∣∣ d exp ◦uMp ◦ z−1(z(p) + λ)
dλ

∣∣∣∣∣
λ=0

∣∣∣∣∣ .
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It is well-known ([17], [9], [2]) that the pluri-complex Green function uA on the
annulus A = Aq is given by

(1.2) uAλ (µ) = (1− v) log |µ|+ log |Θλ(µ)| (λ, µ ∈ A),

where

Θλ(µ) =

∏
n≥1(1− q2nµ/λ)(1− q2n−2λ/µ)∏
n≥1(1− q2n−2λµ)(1− q2n/(λµ))

and v = v(λ) ∈ (0, 1) with

(1.3) qv = |λ|.
It follows from (1.1) that

(1.4) PA
((

d

dλ

)
λ

)
=

q−v
2 ∏

n≥1(1− q2n)2∏
n≥1(1− q2n−2+2v)(1− q2n−2v)

.

We note that the Kobayashi metric KA on A coincides with the usual Poincaré
metric on A by virtue of the following fact ([6], [13]): If π : N →M is a (not nec-
essarily universal) covering of a complex manifold M , then KM (π∗X) = KN (X)
for all X ∈ TM . Let H = {η ∈ C; Im η > 0} be the upper half plane in C. Since
the mapping H 3 η 7→ eτ log η ∈ A with

τ =
log q
πi

is a covering on A ([2]), and since |dη|/(2 Im η) is the Poincaré metric on H, we
see

(1.5) KA

((
d

dλ

)
λ

)
=

π

(−2 log q)qv sinπv

for λ ∈ A with v as in (1.3).
Concerning the Carathéodory metric CA on A, the following is well-known

([17], [2]): For λ ∈ A with v in (1.3),

(1.6) CA
((

d

dλ

)
λ

)
=

∏
n≥1(1− q2n)2(1 + q2n−1+2v)(1 + q2n−1−2v)∏
n≥1(1 + q2n−1)2(1− q2n−2+2v)(1− q2n−2v)

.

2.Theta functions and their transformation formulas. By T(ω1, ω2) we
denote the torus C/(ω1Z+ω2Z) with basic periods (ω1, ω2) satisfying ω2/ω1 ∈ H;
the number ω2/ω1 is called the modulus of the torus T(ω1, ω2). For τ ∈ H and
v ∈ C, let

θ∗0(v, τ) = 2e
πiτ
4
∏
n≥1

(1− e2nπiτ )(1− e2πi(nτ+v))(1− e2πi(nτ−v)),(2.1)

θ0(v, τ) = (sinπv)θ∗0(v, τ),

θ3(v, τ) =
∏
n≥1

(1− e2nπiτ )(1 + e2πi((n−1/2)τ+v))(1 + e2πi((n−1/2)τ−v))(2.2)
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(cf. [4, p. 69]). Then, the functions θj(·, τ) (j=0, 3) are two of four theta functions
attached to the torus T(1, τ) and satisfy

θ0(v + 1, τ) = −θ0(v, τ), θ0(v + τ, τ) = −q−1e−2πivθ0(v, τ),

θ3(v + 1, τ) = θ3(v, τ), θ3(v + τ, τ) = q−1e−2πivθ3(v, τ)

(cf. [4, pp. 58, 64]).
Since we have holomorphic isomorphisms

T(1, ω2/ω1) ∼= T(ω1, ω2) ∼= T(−ω2, ω1) ∼= T(1,−ω1/ω2),

the second one of which comes from the mapping C 3 λ 7→ λ − ω1 ∈ C, if τ ∈
H, then T(1, τ) ∼= T(1,−1/τ). We need the transformation formulas connecting
θj(·, τ) and θj(·,−1/τ) for j = 0, 3. If v ∈ C and τ ∈ H, then

θ0(v,−1/τ) = −ieπiτv
2√

τ/i θ0(τv, τ),(2.3)

θ3(v,−1/τ) = eπiτv
2√

τ/i θ3(τv, τ),(2.4)

where the square root is taken so that
√
τ/i = 1 for τ = i (cf. [4, pp. 73, 75]).

3. Proof of Theorem A and Theorem B. We first show the following.

Theorem C. Let τ ∈ H be defined by

(3.1) q = eπiτ .

For λ ∈ A with v = v(λ) ∈ (0, 1) such that

(3.2) |λ| = qv,

we have

CPA(λ) =
θ3(v,−1/τ)
θ3(0,−1/τ)

,(3.3)

KPA(λ) =
θ∗0(v,−1/τ)
θ∗0(0,−1/τ)

.(3.4)

We note that (3.1) is equivalent to (0.5).

P r o o f o f T h e o r e m C. Items (1.4) and (1.6) imply that

(3.5) CPA(λ) =
qv

2 ∏
n≥1(1 + q2n−1−2v)(1 + q2n−1+2v)∏

n≥1(1 + q2n−1)2
.

Using (2.1) to get

θ3(τv, τ) =
∏
n≥1

(1− q2n)(1 + q2n−1+2v)(1 + q2n−1−2v),

we have

(3.6) CPA(λ) =
qv

2
θ3(τv, τ)
θ3(0, τ)

.
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By the transformation formula (2.4) we have

θ3(v,−1/τ) = qv
2√

τ/i θ3(τv, τ);

therefore, assertion (3.3) follows.
Similarly, items (1.4) and (1.5) imply that

KPA(λ) =
π

− log q
qv

2

2qv sinπv

∏
n≥1(1− q2n−2+2v)(1− q2n−2v)∏

n≥1(1− q2n)2
.

Since sinπτv = (1− q2v)/(2iqv), it follows that

KPA(λ) =
qv

2

τ

sinπτv
sinπv

∏
n≥1(1− q2n+2v)(1− q2n−2v)∏

n≥1(1− q2n)2
.

Using (2.1) to get

θ∗0(τv, τ) = 2q1/4
∏
n≥1

(1− q2n)(1− q2n+2v)(1− q2n−2v),

we have

(3.7) KPA(λ) =
qv

2

τ

sinπτv
sinπv

θ∗0(τv, τ)
θ∗0(0, τ)

.

By the transformation formula (2.3) we have

θ∗0(v,−1/τ) sinπv = −iqv
2√

τ/i (sinπτv)θ∗0(τv, τ).

Dividing both sides by sinπv and taking the limit as v → 0, we see

θ∗0(0,−1/τ) = −i
√
τ/i τθ∗0(0, τ),

so that we get

θ∗0(v,−1/τ)
θ∗0(0,−1/τ)

=
sinπτv
sinπv

qv
2

τ

θ∗0(τv, τ)
θ∗0(0, τ)

.

Combining this with (3.7) we obtain formula (3.4) and complete the proof of
Theorem C.

We shall show Theorem A stated in Introduction.

P r o o f o f T h e o r e m A. By virtue of (3.2), using the definition (2.2) of
θ3(·,−1/τ), noticing the fact

r = e−2πi/τ

(see (0.1)), we have

CPA(λ) =

∏
n≥1(1 + r2n−1e2πiv)(1 + r2n−1e−2πiv)∏

n≥1(1 + r2n−1)2
.

Since e2πiv = e−2πiv because v is real, we have obtained assertion (0.3) in Theo-
rem A.
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Similarly, by virtue of (3.3), using (2.1) we have

KPA(λ) =

∏
n≥1(1− r2ne2πiv)(1− r2ne−2πiv)∏

n≥1(1− r2n)2
,

and assertion (0.4) in Theorem A. The proof is complete.

P r o o f o f T h e o r e m B. We first note that the Green function GA(·, λ) of
A with pole at λ ∈ A coincides with −uAλ (see Section 1). It follows from (1.2)
that

exp (−GA(−q/λ, λ)) = expuA(−q/λ, λ)

=
q(1−v)

2 ∏
n≥1(1 + q2nq/|λ|2)(1 + q2n−2|λ|2/q)∏

n≥1(1 + q2n−1)2

=
qv

2 ∏
n≥1(1 + q2n−1−2v)(1 + q2n−1+2v)∏

n≥1(1 + q2n−1)2
.

By virtue of (3.5) we have proved the desired assertion of Theorem B.
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[17] R. R. S imha, The Carathéodory metric of the annulus, Proc. Amer. Math. Soc. 50
(1975), 162–166.


