1. Preliminaries

1. In the following new results on foliations with complex leaves are announced. Complete proofs will appear elsewhere.

A foliation with complex leaves is a (smooth) foliation X of dimension $2n+k$ whose local models are domains $U = V \times B$ of $\mathbb{C}^n \times \mathbb{R}^k$, $V \subset \mathbb{C}^n$, $B \subset \mathbb{R}^k$ and whose local transformations are of the form

$$\begin{cases}
z' = f(z,t), \\
t' = h(t),
\end{cases}$$

where f is holomorphic with respect to z. A domain U as above is said to be a distinguished coordinate domain of X and $z = (z_1, \ldots, z_n)$, $t = (t_1, \ldots, t_k)$ are said to be distinguished local coordinates. k is called the real codimension of X.

As an example of such foliations we have the Levi flat hypersurfaces of \mathbb{C}^n ([13], [4], [11]).

If X is a smooth foliation as above, then the leaves are complex manifolds of dimension n. Let \mathcal{D} be the sheaf of germs of smooth functions, holomorphic along the leaves (namely the germs of CR-functions on X). \mathcal{D} is a Fréchet sheaf and we denote by $\mathcal{D}(X)$ the Fréchet algebra $\Gamma(X, \mathcal{D})$.

It is natural to study foliations with complex leaves in the spirit of the theory of complex spaces, in particular, the convexity with respect to the algebra $\mathcal{D}(X)$ and the cohomology of X with values in \mathcal{D}. In this talk I will discuss some recent results obtained in a joint paper with G. Gigante.

2. Let X be a smooth foliation with complex leaves. X is said to be a q-complete foliation if there is an exhaustive, smooth function $\Phi : X \to \mathbb{R}$ which is strictly q-pseudoconvex along the leaves. X is a Stein foliation if

(a) $\mathcal{D}X$ separates points of X.

1991 Mathematics Subject Classification: 32F, 53C.

The paper is in final form and no version of it will be published elsewhere.
(b) X is \mathcal{D}-convex,
(c) for every $x \in X$ there exist $f_1, \ldots, f_n, h_1, \ldots, h_k \in \mathcal{D}(X)$ such that
\[\text{rank} \frac{\partial (f_1, \ldots, f_n, h_1, \ldots, h_k)}{\partial (z_1, \ldots, z_n, t_1, \ldots, t_k)} = n + k \]
($z_1, \ldots, z_n, t_1, \ldots, t_k$ distinguished local coordinates at x).

One can prove that a Stein foliation is 1-complete.

Remark. If we replace \mathbb{R}^k by \mathbb{C}^k and in ($*$) we assume $t \in \mathbb{C}^k$ and that f, h are holomorphic with respect to z, t then we obtain the notion of complex foliation of (complex) codimension k.

3. Every real analytic foliation can be complexified. Precisely, we have the following

Theorem 1. Let X be a real analytic foliation with complex leaves, of codimension k. Then there exists a complex foliation \tilde{X} of codimension k such that:

1. $X \hookrightarrow \tilde{X}$ by a closed real analytic embedding which is holomorphic along the leaves;
2. every real analytic CR-function $f : X \to \mathbb{R}$ extends holomorphically to a neighbourhood of X;
3. if X is a q-complete foliation with exhaustive function Φ then for every $c \in \mathbb{R}$, $\overline{X}_c = \{ \Phi \leq c \}$ has a fundamental system of neighbourhoods which are q-complete manifolds.

Remark. \tilde{X} with the properties (1)–(3) is essentially unique.

As a corollary, using the approximation theorem of M. Freeman ([5]) we prove the following

Theorem 2. Under the assumptions of Theorem 1, if X is 1-complete, a smooth CR-function on a neighbourhood of \overline{X}_c can be approximated by smooth global CR-functions.

Remark. A similar argument can be applied to prove that in the previous statement \overline{X}_c can be replaced by an arbitrary \mathcal{D}-convex compact K (i.e. $\hat{K} = K$).

2. Applications

1. The approximation theorem allows us to prove an embedding theorem for real analytic Stein foliations ([7]).

Let X be a smooth foliation with complex leaves of dimension n and of codimension k. Let us denote by $\mathcal{A}(X; \mathbb{C}^N)$ the set of smooth CR-maps $X \to \mathbb{C}^N$. Then $\mathcal{A}(X; \mathbb{C}^N)$ is Fréchet. We have the following

Theorem 3. Assume X is a real analytic Stein foliation. Then there exists a smooth CR-map $X \to \mathbb{C}^N$, $N = 2n + k + 1$, which is one-to-one, proper and regular.
2. We apply the above theorem to obtain information about the topology of X.

Theorem 4. Let X be a real analytic Stein foliation. Then $H_j(X, \mathbb{Z}) = 0$ for $j \geq n + k + 1$ and $H_{n+k}(X, \mathbb{Z})$ has no torsion.

Sketch of proof. Embed X in \mathbb{C}^N and consider on X the distance function ϱ from a point $z^0 \in \mathbb{C}^N \setminus X$. z^0 can be chosen in such a way that ϱ is a Morse function. Next we show that ϱ has no critical point of index $j \geq n + k + 1$ ([14]).

Corollary 5. Let $X \subset \mathbb{P}^N(\mathbb{C})$ be a closed oriented real analytic foliation and let W be a smooth algebraic hypersurface which does not contain X. Then the homomorphism $H_j(X, \mathbb{Z}) \to H_j(X \cap W, \mathbb{Z})$ induced by $X \cap W \to X$ is bijective for $j < n - 1$ and injective for $j = n - 1$. Moreover, the quotient group $H^{n-1}(X \cap W, \mathbb{Z})/H^{n-1}(X, \mathbb{Z})$ has no torsion.

3. Cohomology

1. Given a q-complete smooth foliation X, according to the Andreotti and Grauert theory for complex spaces it is natural to expect that the cohomology groups $H^j(X, \mathcal{D})$ vanish for $j \geq q$. This is actually true for domains in $\mathbb{C}^n \times \mathbb{R}^k$ ([1]). More generally, we prove the following:

Theorem 6. Let X be a 1-complete real analytic foliation. Then $H^j(X, \mathcal{D}) = 0$ for $j \geq 1$.

Sketch of proof. Assume $k = 1$ and let Φ be an exhaustive function for X. Then the vanishing theorem for domains in $\mathbb{C}^n \times \mathbb{R}^k$, the bumps lemma and the Mayer–Vietoris sequence ([1]) yield the following: for every $c > 0$ there is $\varepsilon > 0$ such that

\[
H^j(X_{c+\varepsilon}, \mathcal{D}) \to H^j(X_c, \mathcal{D})
\]

is onto for $j \geq 1$ (and this holds true for $j \geq q$ whenever X is a q-complete smooth foliation).

Now let \tilde{X} be the complexification of X and consider the compact $\overline{X}_c = \{ \Phi \leq c \}$. In view of Theorem 1, \overline{X}_c has a fundamental system of Stein neighbourhoods U in \tilde{X}. X is oriented around \overline{X}_c and consequently $U \setminus X$ has two connected components U_+, U_- (U is connected).

Denote by \mathcal{O}_+ (resp. \mathcal{O}_-) the sheaf of germs of holomorphic functions on U_+ (resp. U_-) that are smooth on $U_+ \cup (U_+ \cap X)$ (resp. $U_- \cup (U_- \cap X)$). Then we have the exact sequence

\[
0 \to \mathcal{O} \to \mathcal{O}_+ \oplus \mathcal{O}_- \xrightarrow{\text{re}} \mathcal{D} \to 0
\]

(2) (here \mathcal{O}_+ (resp. \mathcal{O}_-) is a sheaf on \overline{U}_+ (resp. \overline{U}_-) extended by 0 on all U and $\text{re}(f \oplus g) = f|_X - g|_X$). Since U is Stein we derive from (2) that

\[
H^j(U_+, \mathcal{O}_+) \oplus H^j(U_-, \mathcal{O}_-) \cong H^j(U \cap X, \mathcal{D})
\]

(3)
for \(j \geq 1 \) (and this holds true for \(j \geq q \) whenever \(X \) is a \(q \)-complete real-analytic foliation of codimension 1).

Let be a \(j \)-cocycle of \(D \) on a neighbourhood of \(X \). In view of (2) we have \(\xi = \xi_+ - \xi_- \) where \(\xi_+ \) and \(\xi_- \) are represented by two \((0,j)\)-forms \(\omega_+ \), \(\omega_- \) on \(U_+ \), \(U_- \) respectively which are smooth up to \(X \).

Moreover, according to [6] it is possible to construct pseudoconvex domains \(U'_+ \) and \(U'_- \) satisfying the following conditions: \(U'_+ \subset U_+ \), \(U'_- \subset U_- \), \(\partial U'_+ \), \(\partial U'_- \) are smooth and \(\partial U'_+ \cap X \), \(\partial U'_- \cap X \) contain a neighbourhood of \(X \).

Then Kohn’s theorem ([10]) implies that on \(U'_+ \) and \(U'_- \) respectively we have \(\omega_+ = \partial v_+ \), \(\omega_- = \partial v_- \) where \(v_+ \in C^\infty(\overline{U'_+}) \), \(v_- \in C^\infty(\overline{U'_-}) \). It follows that \(H^j(\overline{X}_c, D) = 0 \) for \(j \geq 1 \) and from (1) we deduce that \(H_j(x_c, D) = 0 \) for every \(c \in \mathbb{R} \) and \(j \geq 1 \).

At this point, in order to conclude our proof we can repeat step by step the proof of the Andreotti–Grauert vanishing theorem for \(q \)-complex spaces ([1]).

If \(k \geq 2 \) the situation is much more involved. Using the Nirenberg Extension Lemma ([10]) it is possible to reduce the cohomology \(H^*(x, D) \) to the \(\mathcal{O} \)-cohomology of \(\tilde{X} \) with respect to the differential forms on \(\tilde{X} \) which are flat on \(X \) and to conclude invoking a theorem of existence proved by J. Chaumat and A. M. Chollet ([3]).

Assume that \(X \) is real analytic and let \(O' \) be the sheaf of germs of real analytic CR-functions. Then an analogous statement for \(O' \) is not true. Andreotti and Nacinovich ([2]) showed that \(H^1(X, O') \) is never zero. However by Theorem 1 we have for arbitrary \(k \), \(H^j(\overline{X}_c, O') = 0 \) for \(j > 0 \) whenever \(X \) is \(q \)-complete.

2. Using the same method of proof, under the hypothesis of Theorem 6, we have the following

Theorem 7. Let \(A = \{x_\nu\} \) be a discrete subset of \(X \) and let \(\{c_\nu\} \) be a sequence of complex numbers. Then there exists \(f \in D(X) \) such that \(f(x_\nu) = c_\nu \), \(\nu = 1, 2, \ldots \). In particular, \(X \) is \(D \)-convex and \(D(X) \) separates points of \(X \).

Remark. A vanishing theorem can be also proved for the sheaf of germs of “CR-sections” of \(E \to X \) where \(E \) is a fibre vector bundle with fibre \(\mathbb{C}^m \times \mathbb{R}^b \).

4. The Kobayashi metric

1. Let \(X \) be a foliation with complex leaves of codimension \(k \), and let \(T(X) \xrightarrow{\pi} X \) be the tangent bundle of \(X \). The collection of all tangent spaces to the leaves of \(X \) forms a complex subbundle \(T_H(X) \) of \(T(X) \). Let \(D \) be the unit disc in \(\mathbb{C} \) and denote by \(CR(D, X) \) the set of all CR-maps \(D \to X \).

Given \(\zeta \in T_H(X) \) with \(x = \pi(\zeta) \) we define the function \(F = F_X \) on \(X \times T_H(X) \) by

\[
F(x, \zeta) = \inf \{ s \in \mathbb{R} : s \geq 0, s \varphi'(0) = \zeta \}
\]

where \(\varphi \in CR(D, X) \) and \(\varphi(0) = x \).
When \(k = 0 \), \(F \) reduces to the Kobayashi “infinitesimal metric” of the complex manifold \(X \) ([8]). In particular, if \(X = \mathbb{C}^n \times \mathbb{R}^k \), then \(F = 0 \).

If \(X' \) is another foliation as above and \(\phi : X \to X' \) is a CR-map then \(d\phi : T_H(X) \to T_H(X') \) and

\[
F_X(\phi(x), d\phi \zeta) \leq F_X(x, \zeta).
\]

Theorem 7. \(F_X \) is upper semicontinuous.

According to the complex case [8], \(X \) is said to be hyperbolic if \(F(x, \zeta) > 0 \) for every \(x \in X \) and \(\zeta \in T_H(X) \), \(\zeta \neq 0 \).

Remarks.
1) The fact that all the leaves are hyperbolic does not imply that \(X \) itself is hyperbolic.
2) Every bounded domain in \(\mathbb{C}^n \times \mathbb{R}^k \) is hyperbolic.
3) Following [12] it can be proved that if \(X \) admits a continuous bounded function \(u \), p.s.h. along the leaves and strictly p.s.h. in a neighbourhood of \(x \), then \(X \) is hyperbolic at \(x \).

2. Now consider a riemannian metric on \(X \) and let \(V \) be a smooth distribution of transversal tangent \(k \)-spaces. Then every \(\zeta \in T(X) \) splits into \(\zeta_0 + \zeta_c \) where \(\zeta_0 \in V \), \(\zeta_c \in T_H(X) \) and we denote by \(\tau(\zeta_0) \) the length of \(\zeta_0 \).

Let \(F \) be the infinitesimal Kobayashi metric on \(X \) and for \(\zeta \in T_x(X) \) set \(g(x, \zeta) = F(x, \zeta_c) + \tau(x, \zeta_0) \). Then \(g \) is an upper semicontinuous pseudometric.

If \(\gamma = \gamma(s), 0 \leq s \leq 1 \), is a smooth curve joining \(x, y \in X \) the pseudo-length of \(\gamma \) with respect to \(g \) is

\[
L(\gamma) = \int_0^1 g(\gamma(s), \dot{\gamma}) \, ds
\]

and the pseudo-distance between \(x, y \) is

\[
d(x, y) = \inf_\gamma L(\gamma).
\]

\(d \) is a real distance on \(X \) inducing the topology of \(X \) if \(X \) is hyperbolic. \(X \) is said to be complete if a field \(V \) can be chosen making \(X \) complete with respect to \(d \).

For example, the unit ball in \(\mathbb{C} \times \mathbb{R} \) is complete for the choice

\[
V = \lambda(t) \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right) + (1 + t^2)^{-1} \frac{\partial}{\partial t}
\]

where \(\lambda(t) = 2 \arctan [(1 + t^2)^{-1} (1 - \arctan^2 t)^{-3/2}] \).

The interest of this construction is due to the following

Theorem 8. Let \(\Omega \subset \mathbb{C}^n \times \mathbb{R}^k \) be with the riemannian structure induced by \(\mathbb{C}^n \times \mathbb{R}^k \). If \(\Omega \) is hyperbolic and complete then \(\Omega \) is \(\mathcal{D} \)-convex.
References