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Let D be a domain in Cn and F = F(D) be a subclass in the class O =
O(D) of functions holomorphic in D. Recall that D is called an F-domain of
holomorphy iff there exists a function f ∈ F(D) which cannot be holomorphically
extended across the boundary of D. If, for example, we take for F(D) the class
Otemp(D) of temperate holomorphic functions in D (i.e. holomorphic functions
in D growing less than a power of distance to the boundary of D) then the notion
of Otemp-domains of holomorphy will coincide with the usual notion of (O)-
domains of holomorphy according to Pflug [10]. On the other hand, considering
as F(D) the class H∞(D) of bounded holomorphic functions we obtain the notion
of H∞-domains of holomorphy which is quite different from the notion of (O)-
domains of holomorphy (cf. Sibony [13]). In this paper we are interested in the
case when D is invariant under the action of a compact Lie group K and F(D)
coincides with the class OK(D) of K-invariant holomorphic functions in D. From
first examples of OK-domains of holomorphy it becomes clear that this notion
differs much from the usual notion of domains of holomorphy. Consider, e.g., the
ring D = {1 < |z| < 2} in C1 with the action of the circle group S1 given by
rotations. Then the only S1-invariant holomorphic functions in D are constants
so they extend holomorphically across the boundary of D to all of C1 (note that
D is a domain of holomorphy in this example). Later on we shall give several
(less trivial) examples of that sort. This article based on recent results by Peter
Heinzner, Xiangyu Zhou and the author (cf. [4], [5], [12], [16]) contains some
general assertions about OK-domains of holomorphy and their holomorphic hulls
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with respect to K-invariant holomorphic functions (Section I). In Sec. II we apply
these general assertions to some particular K-invariant domains such as matrix
Reinhardt domains and the extended matrix disc. In order to avoid technicalities
and present the ideas rather than results in their full generality we restrict here to
the case of a compact connected Lie group K acting linearly on Cn. The general
case of a compact (maybe, not connected) Lie group acting holomorphically on a
Stein space is considered in Heinzner [4].

I. Complexification of invariant domains of holomorphy

1. Complexification of a compact Lie group. We assume throughout this paper
that K is a compact connected real Lie group. The complexification of K (cf.
Hochschild [6]) is a complex Lie group KC with a (continuous) homomorphism i :
K → KC such that for any (continuous) homomorphism ϕ : K → G to a complex
Lie group G there exists a unique holomorphic homomorphism ψ : KC → G
closing the commutative diagram

K
i→ KC

ϕ↘ ↙ψ

G

We list now some basic properties of group complexifications (cf. Hoch-
schild [6]).

(i) The complexification KC is uniquely defined up to biholomorphic homo-
morphisms.

(ii) The Lie algebra kC of KC is the complexification of the Lie algebra k of
K, i.e. kC = k + ik.

(iii) KC is Stein and i(K) is a totally real submanifold of KC with dimR i(K)
= dimC K

C.

Examples. 1. K = S1 ⇒ KC = C∗ = C \ 0 (multiplicative group of
complex numbers),

2. K = SU(n)⇒ KC = SL(n,C),
K = U(n)⇒ KC = GL(n,C).

2. Complexification of invariant domains. Let the group K act linearly on
Cn, i.e. the action of K on Cn is given by a representation ρ : K → GL(Cn).
By the definition of complexification this representation generates a holomorphic
representation ρC : KC → GL(Cn), i.e. a holomorphic linear action of KC on Cn.

Definition. Let D be a K-invariant domain in Cn. We call its complexifica-
tion the domain

DC = KC ·D,
i.e. the image of D under KC-action.

Note that DC is really a domain (i.e. an open connected set) if D is a domain.
The above definition agrees with the general definition of the complexification
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of a Stein space given in Heinzner [4]. We are going to show (cf. Theorems 1, 2)
that under some natural conditions on the K-action on D its complexification DC
coincides with the holomorphic hull of D with respect to invariant holomorphic
functions.

Example. Reinhardt domains in Cn are the domains invariant under the
action of the torus group (S1)n, i.e. domains D ⊂ Cn satisfying the condition

(z1, . . . , zn) ∈ D ⇒ (eiθ1z1, . . . , eiθnzn) ∈ D

for all (z1, . . . , zn) ∈ D and all real θ1, . . . , θn. The complexification of a Reinhardt
domain D is the domain

DC = (C∗)n ·D = {(λ1z1, . . . , λnzn) : (z1, . . . , zn) ∈ D; λj ∈ C∗, 1 ≤ j ≤ n}

which coincides with the direct product (C∗)r × Cn−r for some r, 0 ≤ r ≤ n.
Other examples of complexifications will be given in Sec. 2.

3. Orbit convexity. Main results on complexifications DC of K-invariant do-
mains D will be proved under a condition that orbits of KC in DC are “well-
behaved”. Roughly speaking, the “good behaviour” of KC-orbits means the fol-
lowing. First, since D is invariant under K we need to look only at the orbits
of KC going through points of D in the “orthogonal directions”, i.e. orbits of
KC tangent to the Lie subalgebra ik in kC. Their “good behaviour” means that
different orbits should not meet outside D. More precisely, we have the following
definition.

Definition (Heinzner [4]). Let D be a K-invariant domain in Cn. It is called
orbit convex if for any z ∈ D and any v ∈ ik the inclusion exp v · z ∈ D implies
that

exp(tv) · z ∈ D for 0 ≤ t ≤ 1.
Here exp : kC → KC is the exponential mapping.

Example. A Reinhardt domain in (C∗)n is orbit convex if and only if it is
log (logarithmically)-convex.

Further examples of orbit convex domains will be given in Sec. 2, now we want
to exploit the orbit convexity for the investigation of complexifications DC.

4. Holomorphic extension. We have the following extension theorem for K-
invariant functions.

Theorem 1. Let D be a K-invariant orbit convex domain in Cn. Then any
K-invariant holomorphic function f on D can be extended to a KC-invariant
holomorphic function f̂ on DC. Hence, DC is a natural holomorphic extension of
D with respect to K-invariant holomorphic functions.

The theorem in this form was proved in Heinzner–Sergeev [5] and in a more
general situation—in Heinzner [4]. For the extension of f to DC one needs to use
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the orbit convexity condition and identity principle to a holomorphic function on
the totally real subset i(K) in KC.

R e m a r k s. 1. In Theorem 1 one can substitute K-invariant holomorphic
functions f in D by K-equivariant holomorphic mappings f : D → Y to some
holomorphic KC-manifold Y . The assertion is still true, i.e. such a mapping
extends to a KC-equivariant holomorphic mapping f̂ : DC → Y . Here, a mapping
f : D → Y is called K-equivariant iff f(k · z) = k · f(z) for any z ∈ D, k ∈ K; the
KC-equivariance of f̂ : DC → Y is defined analogously.

2. There is a partial converse to Theorem 1 proved in Heinzner [4]. Suppose
that D is a K-invariant domain of holomorphy in Cn and Ω is a KC-invariant
domain in Cn such that any K-equivariant holomorphic map f : D → V to a
finite-dimensional representation space V = Ck extends to a holomorphic KC-
equivariant map f̂ : Ω→ V . Then D is orbit convex.

5. Holomorphic convexity of DC. According to Theorem 1 K-invariant holo-
morphic functions from an orbit convex domain D extend to DC. The natural
question is whether they could be extended further, or, to put it in another way,
whether DC is the holomorphic hull of D with respect to K-invariant holomorphic
functions. The answer is positive for orbit convex domains D.

Theorem 2. Let D be a K-invariant orbit convex domain of holomorphy in
Cn. Then DC is also a domain of holomorphy which represents the holomorphic
hull of D with respect to K-invariant holomorphic functions.

This theorem is proved in Heinzner–Sergeev [5] (assuming thet DC is satu-
rated) and in Heinzner [4] in a more general setting. The proof is based on an
invariant form of Cartan’s theorem formulated next.

Cartan’s theorem. Let D be a K-invariant domain of holomorphy in Cn
and A is a K-invariant analytic subset in D. Then any K-invariant analytic
function f on A can be extended to a K-invariant holomorphic function F on D
so that F |A = f .

For a compact Lie group K this invariant version of Cartan’s theorem follows
immediately from the usual Cartan theorem. Indeed, using the last theorem we
extend f to a holomorphic function in D and then integrate it over the group K.
The integrated function F is the one we are looking for.

Theorems 1 and 2 give a description of OK–holomorphic hulls of domains of
holomorphy in Cn under the assumption that they are orbit convex. Thus we are
motivated to study more carefully the orbit-convexity condition.

6. Orbit connectedness. First we note that the orbit-convexity condition can be
slightly weakened without violating the assertions of Theorems 1 and 2. Namely,
this condition can be substituted by a condition of orbit-connectedness which is
formulated (in contrast with the orbit-convexity condition referring only to orbits
tangent to ik) in terms of full KC-orbits of points in D.
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Definition (Heinzner [4]). Denote for z ∈ Cn by bz : KC → Cn the orbit map
bz(h) = h · z, h ∈ KC. A K-invariant domain D in Cn is called orbit connected
iff the preimage

b−1
z (D) = {h ∈ KC : h · z ∈ D}

is connected in KC for any z ∈ Cn.

It follows from the polar decomposition of KC that the orbit-convexity of D
implies its orbit-connectedness.

The same proof as in Theorem 1 applied to K-invariant orbit connected do-
mains in Cn yields the assertion of this theorem for such domains. So from the
partial converse to Theorem 1 (cf. Remark 2 after this theorem) we obtain that
for K-invariant domains of holomorphy the orbit-connectedness implies orbit-
convexity. Hence in this case both notions are equivalent and Theorem 2 is also
true for K-invariant orbit connected domains of holomorphy.

Zhou has proved recently an extension of Theorem 2 for orbit connected do-
mains which are not holomorphically convex.

Theorem 3 (Zhou [16]). Let D be a K-invariant orbit connected domain in
Cn. Then its holomorphic hull E(D) is schlicht and orbit connected ⇔ E(DC) is
schlicht. Moreover , in this case

E(DC) = KC · E(D).

In the next section we shall give further results on orbit-convexity and or-
bit-connectedness and consider non-trivial examples of domains satisfying these
conditions.

II. Orbit convex and orbit connected domains. Applications

1. Orbit pseudoconvex domains. Let D be a K-invariant domain in Cn given
in the form

D = {z ∈ Cn : ϕ(z) < 0}
where ϕ is a K-invariant real C2-smooth function on Cn.

Definition (Heinzner–Sergeev [5]). The function ϕ is called orbit plurisub-
harmonic (with respect to KC-action on Cn) if the Levi form of ϕ is non-negative
in complex directions tangent to KC-orbits in all points of D. Domains D defined
by orbit plurisubharmonic functions ϕ are called orbit pseudoconvex .

Note that in this definition we do not require ϕ to be plurisubharmonic (i.e. we
do not suppose that the Levi form of ϕ is non-negative in all complex directions).

Proposition (Heinzner–Sergeev [5]). Let D be an orbit pseudoconvex domain
in Cn. Then it is orbit convex.

2. Matrix Reinhardt domains. As we have noted before, Reinhardt domains
in (C∗)n are orbit convex ⇔ they are log-convex. Such domains in (C∗)n are
always orbit connected. We see that the orbit-convexity of Reinhardt domains is
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closely related to their holomorphic convexity — recall that a complete Reinhardt
domain D in Cn is holomorphically convex if and only if it is log-convex. Here D is
complete iff with any point (z0

1 , . . . , z
0
n) it contains also the polydisc {(z1, . . . , zn) :

|zi| ≤ |z0
i |, i = 1, . . . , n}. Any complete log-convex Reinhardt domain in Cn is

orbit convex.
Let us consider now a generalization of Reinhardt domains to the matrix case.

Denote by Cn[m×m] the space of n matrix variables, i.e. a point Z ∈ Cn[m×m]
is an n-tuple Z = (Z1, . . . , Zn) where all Zi, 1 ≤ i ≤ n, are m×m-matrices with
complex entries.

Definition (Sergeev [12]). A domain D ⊂ Cn[m × m] is called a matrix
Reinhardt domain if with any point (Z1, . . . , Zn) ∈ D all points of the form

(U1Z1V1, . . . , UnZnVn)

for arbitrary unitary matrices Ui, Vi, 1 ≤ i ≤ n, also belong to D.

Otherwise, matrix Reinhardt domains are the domains invariant under the
natural action of the group [U(m)×U(m)]n on Cn[m×m].

A matrix Reinhardt domain D is, in general, not a Reinhardt domain in Cnm2

but we can always associate with D a Reinhardt open set (maybe not connected)
diagD in Cnm, namely

diagD = {(Z1, . . . , Zn) ∈ D :
Zi are complex diagonal m×m-matrices, 1 ≤ i ≤ n}.

We have the following matrix analogue of the above assertions for Reinhardt
domains.

Proposition. A matrix Reinhardt domain D ⊂ [GL(m,C)]n is orbit con-
nected. Hence, D is orbit convex if it is a domain of holomorphy.

This proposition is a corollary of general results on invariant domains in ho-
mogeneous spaces collected in the following

Theorem 4. (i) Let H be a closed connected complex subgroup in KC and D
is a K-invariant domain in the homogeneous space KC/H provided with the left
action of KC on KC/H. Then D is orbit connected.

(ii) Let L be a closed connected subgroup in K and D is a K-invariant domain
in the homogeneous space KC/LC. Then its holomorphic hull E(D) is schlicht
and orbit convex.

(iii) Suppose, in addition to the assumptions of (ii), that (K,L) form a sym-
metric pair , i.e. there exists an involutive automorphism σ of K such that K0

σ⊂
L ⊂ Kσ where Kσ is the subgroup of K consisting of points fixed by σ and K0

σ

is its identity connected component. Then D ⊂ KC/LC is holomorphically convex
⇔ D is orbit convex.

The assertions of the theorem (and other results in this direction) are con-
tained in the papers by Lasalle [8], Rothaus [11], Loeb [9], Cœuré–Loeb [2].
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Passing to the case of general matrix Reinhardt domains D in Cn[m × m]
we have the following analogue of the above assertion for Reinhardt domains:
a complete matrix Reinhardt domain D is holomorphically convex ⇔ diagD is
holomorphically convex⇔ diagD is log-convex (Sergeev [12]). Here, D is complete
iff with any point (Z0

1 , . . . , Z
0
n) it contains also the matrix polydisc {(Z1, . . . , Zn) :

‖Zi‖ ≤ ‖Z0
i ‖, i = 1, . . . , n} where ‖Z‖ = max{eigenvalues of

√
Z∗Z} is the

spectral norm of a matrix Z. In fact, a stronger result is true.

Theorem 5. Let D be a matrix Reinhardt domain in Cn[m×m]. Then D is
holomorphically convex ⇔ diagD is a connected holomorphically convex Rein-
hardt domain in Cmn.

This theorem is proved by Bedford–Dadok [1], the sufficient part is proved in-
dependently by Zhou [15]. (Another proof of this result was proposed in Fels [3].)
Bedford–Dadok [1] also considered domains invariant under so called polar actions
of classical groups and proved a similar criterion for their holomorphic convexity.

3. Extended matrix disc. Another important example of orbit convex domains
is provided with the extended matrix disc — a domain which arises naturally in
the quantum field theory.

The matrix disc is a domain ∆ in the space C[2× 2] of the form

∆ = {Z ∈ C[2× 2] : ‖Z‖ < 1}.
The condition ‖Z‖<1 where ‖·‖ is the spectral norm of Z (cf. above) is equivalent
to the positive-definiteness of the Hermitian matrix I − Z∗Z. The matrix disc is
invariant under the action of the group K = SU(2)× SU(2) given by

Z 7→ UZV −1, Z ∈ ∆, U, V ∈ SU(2).

The action of the complexified group KC = SL(2,C) × SL(2,C) on C[2 × 2] is
given by the same formula and the complexification ∆C is equal to

∆C = KC ·∆ = {Z ∈ C[2× 2] : |detZ| < 1}.
C[2× 2] (but not a Reinhardt domain in C4).

The extended matrix disc ∆′n is defined as

∆′n = {(AZ1B
−1, . . . , AZnB

−1)∈Cn[2× 2] : (Z1, . . . , Zn)∈∆n, A,B∈SL(2,C)}.
Otherwise speaking, we consider the matrix polydisc

∆n = {(Z1, . . . , Zn) ∈ Cn[2× 2] : ‖Zi‖ < 1, i = 1, . . . , n}
with the diagonal action of the group K = SU(2)× SU(2) on Cn[2× 2]

(Z1, . . . , Zn) 7→ (UZ1V
−1, . . . , UZnV

−1), U, V ∈ SU(2).

Then ∆n is invariant under K and ∆′n coincides with the image of ∆n under the
diagonal action of KC = SL(2,C)× SL(2,C) given by the above formula

∆′n = ∆n
C = KC ·∆n.

Note that ∆′n is not a matrix Reinhardt domain (Zhou).
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There was a conjecture proposed by some mathematicians and physicists (I’ve
heard about it from V. S. Vladimirov) asserting that the extended matrix disc is a
domain of holomorphy. It is in fact a compact version of the well-known “extended
future tube conjecture” from quantum field theory (cf. Sec. II.4 below). Using the
results of Sec. I we can prove that the “extended matrix disc conjecture” is true.

Theorem 6 (Heinzner–Sergeev [5]). The extended matrix disc ∆′n is a domain
of holomorphy in Cn[2× 2] = C4n for any n.

The theorem follows from Theorems 1 and 2 from Sec. I if we prove that ∆n

is a K-invariant orbit convex domain of holomorphy in C4n. To check its orbit
convexity one could use the Proposition from Sec. II.1 above.

4. Extended future tube conjecture and non-compact groups. We formulate now
the extended future tube conjecture (cf., e.g., Vladimirov [14]). To define the
extended future tube τ ′n we need to substitute the matrix polydisc ∆n in the
definition of ∆′n from the Sec. II.3 by the direct product of future tubes τ+ ×
. . .×τ+ (n times) = τ+

n where τ+ = {z = x+iy ∈ C4 : y2
1 > y2

2 +y2
3 +y2

4 , y1 > 0}.
Also the KC-action on Cn[2× 2] should be substituted by the diagonal action of
the identity component LC

+ of the complex Lorentz group LC = O(4,C). In other
words, the extended future tube τ ′n is defined by

τ ′n = {(Λz(1), . . . ,Λz(n)) ∈ C4n : z(i) ∈ τ+, i = 1, . . . , n; Λ ∈ LC
+}.

So in the case of the extended future tube τ ′n the notations of Sec. I are interpreted
as follows:

D = τ+ × . . .× τ+ (n times) = τ+
n ,

DC = τ ′n = KC · τ+
n ,

K = L↑+, identity component of L = O(1, 3)

KC = LC
+, identity component of O(4,C).

The extended future tube conjecture asserts that τn is a domain of holomorphy for
any n. It is still open for n > 2. We believe that the reason why it is still unproved
is of quite general character related to the lack of a comprehensive geometric
invariant theory for non-compact groups. In our situation it means that some of
the results of Sec. I used in the proof of the compact version of the extended
future tube conjecture do not extend to the non-compact group K = L↑+. To be
more precise, there exists an analogue of Theorem 1 from Sec. I for τ ′n proved by
Bargmann–Hall–Wightman (cf. Jost [7]). There is also an analogue of the Hilbert
theorem used in the proof of Theorem 2, Sec. I — it is a theorem of Hall (cf. Jost
[7]). However the Cartan theorem (also used in the proof of Theorem 2) is not
true for non-compact groups as could be seen from the following simple example
communicated to me by Zhou (cf. also Heinzner [4]). Take D=C2 with the action
of K = R given by the representation

R→ GL(2,C), t 7→
(

1 t
0 1

) (
z1
z2

)
= (z1 + tz2, z2).
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Consider the analytic submanifold A = {(z1, z2) ∈ C2 : z2 = 0} invariant under
R. Then R-invariant analytic functions on A are given by arbitrary holomorphic
functions f(z1). However, R-invariant holomorphic functions on C2 are the entire
fucntions F on C2 satisfying the condition

F (z1 + tz2, z2) = F (z1, z2) for any (z1, z2) ∈ C2, t ∈ R.
In particular, such functions F should be constant in z1. Hence, the invariant
version of Cartan’s extension theorem is not true in this case.
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[2] G. Cœur é and J. J. Loeb, Univalence de certaines envelopes d’holomorphie, C. R. Acad.
Sci. Paris Sér. I 302 (1986), 59–61.
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