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In a series of papers Webster ([26], [27], [28]) has shown how Ck-estimates
for the tangential Cauchy-Riemann complex can be applied to several non-linear
problems in Complex Analysis. For example, he gave a simplification of the proof
of Kuranishi’s embedding theorem and an application to the integrability problem
for almost CR vector bundles.

Connected with Webster’s approach are some regularity assertions, whose pa-
rameters follow from the Ck-estimates. Therefore, an improvement of these esti-
mates would lead to an improvement in the applications. Now the author of this
article, together with Lan Ma, has given in [12] such an improvement. In two
subsequent papers this has been applied to Webster’s approach. The results are
formulated in two theorems at the end of this introduction.

Here we want to briefly describe the estimates for the tangential CR equations.
Let G be a strictly pseudoconvex domain in Cn with Cm-smooth boundary and
0 ∈ bG. By a local homotopy formula for the tangential Cauchy-Riemann operator
∂b we mean the following. There exists a neighborhood base {M} of relatively
open sets M , with 0 ∈ M ⊂ bG, and on each M there are given operators Rq
(q = 1, 2, . . . , n− 2), which fullfill the equation

f = ∂bRqf +Rq+1∂bf,

for f ∈ C00,q(M), ∂bf ∈ C00,q+1(M), (with ∂bf = 0 for q = n− 2). Our goal now is
to construct homotopy formulae, which satisfy Ck-estimates of the following kind
(k = 0, 1, . . . ,m− 3)

|Rqf |k,M ≤ c
(
|f |k,M + |∂bf |k,M

)
.
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Here Rqf is not necessarily a linear operator, but with the aid of a so-called
Seeley continuation operator one could always obtain one. For the applications
we have in mind, a linear operator is not always appropriate. The standard local
homotopy operators Rq go back to Henkin [6]. These operators are the starting
point for our construction. After a rotation, bG can be given locally as the graph
over its tangent space at 0 T0(bG) = {(z′, u)|z′ ∈ Cn−1, u ∈ R}, zn = u + iv.
Choose a strictly convex domain W in Cn−1 ×R and suppose, that on W we are
given a function H(z′, u), such that

M := {(z′, u+ iH(z′, u))|(z′, u) ∈W},

where H(·, u) is strictly convex for all fixed u (see the next section for more
details). The above situation can always be achieved. Namely, after a local bi-
holomorphic transformation bG can be assumed strictly convex. But because of
the above mentioned applications, we take a slightly more general viewpoint.

For specially chosen W the Henkin operator satisfies C0-estimates. This shall
also include that Rqf is continuous up to the boundary of M (see Theorem 1).
For Ck-estimates we need a modification of Rq. Let f ∈ Ck0,q(M), with ∂bf ∈
Ck0,q+1(M). Then we choose Ck-smooth continuations e1(f) of f, e2(∂bf) of ∂bf ,
with supp ei ⊂⊂ M̃ (M ⊂⊂ M̃ ⊂ bG). With e1 and e2 fixed, we can construct
forms R∗q(e)(f) ∈ Ck0,q−1(M) and R∗q+1(e)(∂bf) ∈ Ck0,q(M), such that

f = ∂bR
∗
q(e)(f) +R∗q+1(e)(∂bf)

on M and which satisfy

|R∗q(e)(f)|k,M ≤ c(|e1(f)|
k,M̃

+ |e2(∂bf)|
k,M̃

),

|R∗q+1(e)(∂bf)|k,M ≤ c|e2(∂bf)|
k,M̃

,

where the constant only depends on the geometry and k (see Theorem 2).
Introducing a so-called Seeley continuation operator E and setting e1(f) =

Ef, e2(∂bf) = E∂bf, then R∗q(e) turns to be a linear operator R∗q , which also
satisfies Ck-estimates (see Theorem 3). In this case the above estimates are in
terms of |Ef |

k,M̃
. From the definitions of E it follows that there are constants

ck(E), with |Ef |
k,M̃
≤ ck(E)|f |k,M . For solving the ∂b-equation, E is very useful.

But for the applications we have in mind, the behavior of ck(E) is not appropriate,
especially when M̃ shrinks.

In his approach Webster has given in [25] interior estimates for Rq(f). In Rq(f)
no continuation is involved. But a drawback is that the constants in the estimates
contain negative powers of the boundary distance. This causes a great loss of
regularity. In our approach the constant is harmless. The loss of regularity now
occurs in passing over from the Ck-norms of ei(f) to those of f. Local estimates,
related to the ∂b-operator and using integral formula methods, were also given in
[3], [4], [20], [22], [23], [24].
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A non-mechanical application to Webster’s method, by using the Nash-Moser
iteration scheme, gives the following improvement (cf. [13], [14]) of Webster’s
results.

Kuranishi’s Embedding Theorem. Let n ≥ 4. If M is a (2n − 1)-dimen-
sional strictly pseudoconvex CR-manifold of differentiability class Cm, then M
admits, locally near each point , a holomorphic embedding of class Ck, provided

m ≥ k + 13, k ≥ 18.

(Webster’s result: m ≥ 6k + 5n− 2, k ≥ 21.)

Theorem on CR-bundles. Let M be a Cm-smooth strongly pseudoconvex
real hypersurface in Cn. Suppose that (E,D) is a Cm-smooth almost CR vector
bundle over M. Then every point of M has a neighborhood , over which a Ck-
smooth CR frame for (E,D) exists, if m ≥ k + 7, k ≥ 6, n ≥ 4.

(Webster’s result: m ≥ 4n+ 5k + 12, k ≥ 8.)

1.Local solutions. Our first goal is to define M as a graph over R2n−1. Let
m,n ∈ N, m,n ≥ 3, R2n−1 = Cn−1 × R 3 (z′, u), z′ = (z1, z2, . . . , zn−1), zn =
u+ iv.

We choose a convex domain W̃ ⊂⊂ R2n−1, with 0 ∈ W̃ and diam(W̃ ) ≤ 1.
On W̃ we are given a Cm-smooth function H : W̃ → R, with

H(z′, u) = q2(z′, u) + h(z′, u),

where q2 is a quadratic form in (z′, u) and h(z′, u) = O((|z′|+ |u|)3).
We assume that H(·, u) is a strictly convex function and that there exist

positive constants κ1, κ2, with

κ1|z′|2 ≤ q2(z′, u) ≤ κ2(|z′|2 + u2).

R e m a r k. In Webster’s approach to the Kuranishi embedding theorem, q2
only depends on z′. But if for example H is strictly convex, q2 will also depend
on u.

We define an embedding Z : W̃ → M̃ =: Z(W̃ ) ⊂ Cn, by Z(z′, u) = (z′, zn),
with zn = u+ iv = u+ iH(z′, u). Therefore we have

M̃ = {Z(z′, u)|(z′, u) ∈ W̃}.

Set r(z) := −v + H(z′, u). Then M̃ = {z ∈ W̃ × R|r(z) = 0}, T0M̃ = R2n−1,

Th0 M̃ = Cn−1.

Now we construct the desired neighborhood base of 0. Let s = s(zn) be a
real valued Cm-function of one complex variable, with s(zn) = v + O(|zn|2). For
sufficiently small 0 < ρ < 1, we assume with

W := Wρ := {(z′, u) ∈ W̃ |s(u+ iH(z′, u)) < ρ},
M := Mρ := {z ∈ M̃ |s(zn) < ρ} = Z(Wρ),
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that Wρ ⊂⊂ W̃ . Moreover we assume that for a sequence of numbers ρ, converging
to 0, Wρ is strictly convex and dρ ∧ ds|bMρ 6= 0, bWρ ∈ Cm.

If ρ is chosen sufficiently small, then Mρ is a strictly pseudoconvex surface
with Cm-smooth boundary.

R e m a r k. If H is strictly convex, s = v would be a good choice. However, for
the embedding theorem one has to take s = Re(z2

n − izn).

Set for ζ, z ∈ Cn, and for i = 1, 2, . . . n, ∂i := ∂/∂ζi, ri := ∂ir,

Φ(ζ, z) :=〈∂r(ζ), ζ − z〉 :=
n∑
i=1

ri(ζ)(ζi − zi),

Φ∗(ζ, z) :=〈∂r(z), ζ − z〉 :=
n∑
i=1

ri(z)(ζi − zi),

S := i

n∑
i=1

(ri(ζ)∂i − ri(ζ)∂i).

Φ, Φ∗ are barrier functions, from which the kernels will be derived. S is a tangen-
tial vector field, which is transversal to the holomorphic tangent space. Now we
assume that there exists a positive constant κ3 with

|SΦ(ζ, z)| ≥ κ3, |SΦ∗(ζ, z)| ≥ κ3,

|Φ(ζ, z)| ≥ κ3|ζ − z|2, |Φ∗(ζ, z)| ≥ κ3|ζ − z|2,

for all ζ, z ∈ M̃. Set κ := 1
2 min(1, κ1, κ

−1
2 , κ3).

For sufficiently small W̃ this can be achieved if M̃ is locally strictly convex or
in the situation of [26], [28].

Near M̃ there exists the local frame of (1, 0)-vector fields

Yi := ∂/∂zi − ri/rn∂/∂zn, i = 1, 2, . . . , n− 1,
Yn := i/rn∂/∂zn.

The dual coframe is

ωi := dzi (i < n), ωn := θ := −i∂r.
Let U ⊂ Cn be an open neighborhood of M and f ∈ Ck0,q(U). By using {ω1, . . .
. . . , ωn}, f has the unique decomposition

f = ft + fn ∧ θ,
where ft, fn do not contain θ.

Definition. We call f ∈ Ck0,q(U) tangential when f decomposes into

f =
∑

1≤iν<n

fi1,i2,...,iqdzi1 ∧ dzi2 ∧ · · · ∧ dziq .

f is called simply tangential if additionally the coefficients do not depend on v.
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On open sets in Euclidean space, we take the usual Ck-norms. For a tangential
form g, we define the tangential Ck-norm

|g|k,Mρ := |Z∗g|k,Wρ := max
I
|gI(Z(z′, u))|k,Wρ

and for f ∈ Ck0,q(U) we set

|f |k,Mρ
:= |ft|k,Mρ

+ |fn|k,Mρ
.

Define

C̃k0,q(Mρ) := {g|∃U ⊃Mρ : g ∈ Ck0,q(U), g simply tangential}.

To any f ∈ Ck0,q(U) we can attach a simply tangential form f0 ∈ C̃k0,q(U), namely

f0(z) := ft(Z(z′, u)).

f0 = ft on Mρ. We call two forms f and f̃ equivalent if f0 = (f̃)0, the equivalence
class is denoted by [f ]. Clearly f0 ∈ [f ], so every class contains a unique simply
tangential representative. We define

[Ck0,q(Mρ)] := {[f ]|f0 ∈ C̃k0,q(Mρ)},
with norm

|[f ]|k,Mρ
:= inf

g∈[f ]
|g|k,Mρ

.

This implies
|[f ]|k,Mρ

= |f0|k,Mρ
= |f0|k,Wρ

.

Then the mapping [Ck0,q(Mρ)] → C̃k0,q(Mρ), [f ] → f0, is an isometry of Banach
spaces. The classes [f ] are exactly those on which ∂b operates. Now we define a
representative for ∂b on f0. Set for a function

∂Mf :=
∑
i<n

Yifdzi, ∂Mf :=
∑
i<n

Y ifdzi.

So ∂f = ∂Mf + Ynfθ. For forms f =
∑
fIdzI we set

∂Mf =
∑
I

∂MfI ∧ dzI , ∂Mf =
∑
I

∂MfI ∧ dzI .

If f is simply tangential, then ∂Mf also. Now it is easy to see, that

∂b[f ] = ∂b[f0] = [∂f0] = [∂Mf0]

and (∂f)0 = ∂Mf0. So instead of working with ∂b on classes, we can use ∂M
on simply tangential forms. The pull-back to W allows to give a transparent
interpretation of the constants involved in the estimates.

For g ∈ C̃k0,q(M), ∂Mg ∈ C̃k0,q+1(M), we choose fixed Ck-continuations e1(g) ∈
C̃k0,q(M̃), e2(∂Mg) ∈ C̃k0,q+1(M̃), which are supported in M̃.

If convenient, we can construct such extensions by a so called Seeley contin-
uation operator (cf. also [10], [21]) E : C0(W ρ) → C0(W̃ ), with suppE ⊂⊂ W̃ ,
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E(Ck(W ρ)) ⊂ Ck(W̃ ), and which is bounded in Ck-norms, such that

|Eg|
k.W̃
≤ ck(E)|g|k,Wρ .

Next we describe the construction of the kernels for the homotopy operators. Set

η0(ζ, z) :=
dζn

ζn − zn
, η+(ζ, z) :=

∂ζr(ζ)
Φ(ζ, z)

, η−(ζ, z) :=
∂ζr(z)
Φ∗(ζ, z)

,

∆0+− := {λ = (λ0, λ+, λ−) ∈ R3|λν ≥ 0, λ0 + λ+ + λ− = 1},
∆0+ := {λ ∈ ∆0+−|λ− = 0}, ∆0 := {λ ∈ ∆0+−|λ+ = λ− = 0}.

∆0−, ∆+−, ∆+, ∆− are defined analogously. The simplices are oriented as follows

b∆0+− = ∆+− −∆0− +∆0+, b∆ab = ∆b −∆a,

for a, b ∈ {0,+,−}. ∆a are positively oriented points. Set

η(ζ, λ, z) := λ0η0(ζ, z) + λ+η+(ζ, z) + λ−η−(ζ, z)

and for 0 ≤ q ≤ n− 1

Dn,q(η) := cn,qη ∧ ((∂ζ + dλ)η)n−q−1 ∧ (∂zη)q,

Dn,n = Dn,−1 = 0, with a constant cn,q.
These kernels have the crucial property (cf. [19])

(∗) (∂ζ + dλ)Dn,q(η) = (dζ + dλ)Dn,q(η) = (−1)q∂zDn,q−1(η).

Let f ∈ C̃00,q(M) be a simply tangential form. Set on M = Mρ

Rqf(z) :=
(
−
∫

M×∆+−

f(ζ) ∧Dn,q−1(η)(ζ, λ, z)

+
∫

bM×∆0+−

f(ζ) ∧Dn,q−1(η)(ζ, λ, z)
)

0

.

In [25] it was shown for 1 ≤ q ≤ n − 2 and ∂Mf ∈ C̃00,q+1(M) (∂Mf = 0 for
q = n− 2), z ∈M that

f(z) = ∂MRqf(z) +Rq+1(∂Mf)(z).

Now we modify Rq. Set S := M̃\M. Then bS = bM̃ − bM. We define for z ∈M
R∗q(e)f(z) := Rqf(z) +Hq(e)f(z),

R∗q+1(e)∂Mf(z) := Rq+1∂Mf(z) +Hq+1(e)∂Mf(z),

with

Hq(e)f(z) :=
( ∫
S×∆0+−

e2(∂Mf) ∧Dn,q−1(η)
)

0

− ∂M
( ∫
S×∆0+−

e1(f) ∧Dn,q−2(η)
)

0

+
( ∫
S×∆0+

e1(f) ∧Dn,q−1(η)
)

0

,
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Hq+1(e)(∂Mf)(z) := −∂M
( ∫
S×∆0+−

e2(∂Mf)(ζ) ∧Dn,q−1(η)(ζ, λ, z)
)

0

.

The rightmost integral in the first equation is holomorphic in z. Evidently we
have ∂MHq(e)f = −Hq+1(e)(∂Mf). This implies

f(z) = ∂MR
∗
q(e)f(z) +R∗q+1(e)(∂Mf)(z).

For f ∈ C̃10,q(M), R∗q(e) can be given in a more suitable way. Namely, for z ∈M,

we get by using (∗), Stokes formula and 4 := ∂Me1(f)− e2(∂Mf)

R∗q(e)f(z) =
(
−
∫

S×∆0+−

4(ζ) ∧Dn,q−1(η)(ζ, λ, z)

−
∫

M̃×∆+−

e1f(ζ) ∧Dn,q−1(η)(ζ, λ, z)
)

0

.

An analogous formula holds for R∗q+1(e)(∂Mf)(z). For the estimates it is crucial
that 4 vanishes on M and that the supports of e1 and e2 are contained in M̃.

Then the following theorems are true:

Theorem 1. Let M be a strictly pseudoconvex Cm-smooth surface as defined
above, m ≥ 3, 1 ≤ q ≤ n − 2. f ∈ C̃00,q(M), ∂Mf ∈ C̃00,q+1(M). Then Rqf ∈
C̃00,q−1(M) and there exist positive constants c(n) and m(n) ∈ N, independent of
f, such that

|Rqf |0,M ≤ c(n)
(

1
κ

+ |h|3,W
)m(n)

(|f |0,M + |∂Mf |0,M ).

Theorem 2. Let M be a strictly pseudoconvex Cm-smooth surface as defined
above, m ≥ 3, 1 ≤ q ≤ n − 2, k = 0, 1, 2, . . . ,m − 3, f ∈ C̃k0,q(M), ∂Mf ∈
C̃k0,q+1(M). Then R∗q(e)f ∈ C̃k0,q−1(M), R∗q+1(e)(∂Mf) ∈ C̃k0,q(M) and there exist
positive constants c(n, k) and m(n, k) ∈ N, independent of f, such that

|R∗q(e)f |k,M ≤ c(n, k)
(

1
κ

+ |h|
k+3,W̃

)m(n,k)

(|e1(f)|
k,M̃

+ |e2(∂Mf)|
k,M̃

),

|R∗q+1(e)(∂Mf)|k,M ≤ c(n, k)
(

1
κ

+ |h|
k+3,W̃

)m(n,k)

|e2(∂Mf)|
k,M̃

.

The properties of the Seeley operator E yield

Theorem 3. Let M be a strictly pseudoconvex Cm-smooth surface as defined
above, m ≥ 3, 1 ≤ q ≤ n − 2, k = 0, 1, 2, . . . ,m − 3, f ∈ C̃k0,q(M), ∂Mf ∈
C̃k0,q+1(M). Then R∗qf := R∗q(E)f ∈ C̃k0,q−1(M) and there exist positive constants
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c(n, k) and m(n, k) ∈ N, independent of f, such that

|R∗qf |k,M ≤ c(n, k)ck(E)
(

1
κ

+ |h|
k+3,W̃

)m(n,k)

(|f |k,M + |∂Mf |k,M ).

For R∗q+1(∂Mf) an analogous estimate holds.

2. Sketch of the proof. Rq(f) decomposes into

Rq(f) =
∫
bM

f ∧KI
q +
∫
M

f ∧KII
q .

C0-estimates for the second integral are easy to show. For the first integral we
proceed as follows:∫

bM

f ∧KI
q = c
∫
bM

f ∧ dζn
ζn − zn

∧ ∂ζr(ζ)
Φ

∧ ∂ζr(z)
Φ∗

∧ . . .

Obviously, the singularity of the kernel is of mixed type, which causes a consid-
erable difficulty. The main difficulties occur at the so-called characteristic points,
where

∂r

∂ζi
= 0,

for all i < n. At characteristic points, the holomorphic tangent space to M coin-
cides with the tangent space to bM. In our situation, these points form a nowhere
dense closed subset. So it suffices to show uniform continuity and the estimates
only at the non-characteristic points. For such a point z, which is near bM, we
can apply the Stokes theorem and obtain∫

bM

f ∧KI
q = lim

ε→0

∫
bM,|ζn−zn|≥ε

f ∧KI
q = T1 + T2 + T3,

with

T1 :=
∫
M

∂Mf ∧KI
q , T2 := (−1)q

∫
M

f ∧ ∂MKI
q ,

T3 := ± lim
ε→0

∫
M,|ζn−zn|=ε

f ∧KI
q .

In T1 and T2 the kernels are integrable. Passing to the limit yields

T3 =
∫

M,ζn=zn

f ∧ E1(ζ ′, z′)∂′r(ζ ′) ∧ . . .
Φ(ζ ′, zn; z)n−q−1Φ∗(ζ ′, zn; z)q

,

with |E1(ζ ′, z′)| ≤ c|ζ ′−z′|. Therefore, the domain of integration depends on z. By
assumption on H, the surface {M |ζn = zn} is a closed strictly convex hypersurface
in Cn−1 and the restrictions of Φ, Φ∗ are the respective barrier functions. A local
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problem now has turned to a global one for a strictly convex domain. A careful
analysis now yields

|T3| ≤ c|f |0,M
and the uniform convergence of T3 to a continuous limit, when z tends to a
characteristic point.

For T1 and T2 we need lemmata like this:

Lemma. For ε > 0, i < n∫
M,|ζn−zn|<ε

|dζ1 ∧ . . . ∧ dζi−1 ∧ dζi+1 ∧ . . . ∧ dζn ∧ dζ1 ∧ . . . ∧ dζn|
|ζn − zn||Φ∗|n−1

≤ cε1/8.

This lemma can be shown by applying a transformation of Bruna and Burgués
(cf. [5]). Set q(z) := (|r1(z)|2 + · · ·+ |rn−1(z)|2)1/2 and assume q(z) > 0. Define
an affine isometric isomorphism

ϕ̃z :
{

Cn−1 → Cn−1

ζ ′ 7→ w′

with

w1 = (ϕ̃z)1(ζ ′) =
1
q(z)

n−1∑
i=1

∂ir(z)(ζi − zi), |w′| = |ζ ′ − z′|.

Then we obtain the following affine isometric isomorphism of Cn:

ϕz(ζ) :=
(
ϕ̃z(ζ ′),

rn(z)
|rn(z)|

(ζn − zn)
)

=: (w1, . . . , wn).

In the ϕz-coordinates we have Φ∗(ζ, z) = q(z)w1 + |rn(z)|wn. A rather explicit
calculation now gives the desired estimate.

For Ck-estimates we proceed as follows. Similarly as for Rq

R∗q(e1)(f) =
∫
S

∆ ∧KIII
q +
∫
M̃

e1(f) ∧KIV
q .

The estimates for the second integral are simple. By carefully applying several
times Stokes formula to the first integral, one eventually arrives at terms which
are similar to those of the C0-estimates for Rq(f). The proof needs a series of
lemmas, which cannot be given here. The main ideas are taken from [10], [16],
[17]. We confine ourselves to the following remark. If

∂

∂ζi
+

∂

∂zi

is applied to ζn − zn, Φ and Φ∗, the result has some vanishing order for ζ = z.
So one can try to transform z-derivatives to ζ-derivatives. Then Stokes theorem
should be applied. But the above derivation is a non-tangential vector field, so
an appropriate switch from vector fields in Cn to tangential vector fields of M is
necessary.
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