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Abstract. The paper contains the formulation of the problem and an almost up-to-date
survey of some results in the area.

1. Formulation and some history of the problem. Let K denote either
C or R, Fj ∈ K[X1, . . . , Xn], j = 1, . . . , n and let

P(Kn) = {F = (F1, . . . , Fn) : Kn → Kn; Fj ∈ K[X1, . . . , Xn], j = 1, . . . , n},
i.e. P(Kn) is the set of polynomial mappings of Kn. Further let JacF (x) :=
det[∂Fi

∂xj
(x) : i, j = 1, . . . , n] denote the jacobian of the map F at a point x =

(x1, . . . , xn) ∈ Kn. Fix n > 1 and recall the formulation of the n-dimensional
Jacobian Conjecture (for short (JC)n)

(JC)n [F ∈ P(Kn) and JacF (x) 6= 0 for every x ∈ Kn]⇒ [F is injective],

and the so called Generalized Jacobian Conjecture (for short: (GJC)), namely

(GJC) (JC)n holds for every n > 1.

If K=C, then we call the Jacobian Conjecture the complex Jacobian Conjecture
(resp. the real Jacobian Conjecture if K=R). Although it is common to call the n-
dimensional Jacobian Conjecture or Generalized Jacobian Conjecture briefly: the
Jacobian Conjecture, to avoid any confusion we use the introduced terminology
in the paper. Since F ∈ P(Cn) can be treated as F̂ ∈ P(R2n) and Jac F̂ (x, y) =
|JacF (x+ iy)|2, it is evident that

the real (GJC) ⇒ the complex (GJC).
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But we do not know if

? real (JC)n ⇒ complex (JC)n

(note that there is a gap in the proof of ? given in [BCW]). If K is an algebraically
closed field with characteristic equal to 0, then many other equivalent formulations
of the complex Jacobian Conjecture are known, cf. e.g. [BCW, D4, Es1-3, KS,
R2, St]. Due to Lefschetz Principle it is sufficient in this case to deal only with
the complex Jacobian Conjecture if JacF = const. If K = R, then equivalent
formulations of the real Jacobian Conjecture are also given, cf. e.g. [MO1].

A special case of the complex two dimensional Jacobian Conjecture (JC)2, was
considered by O.-H. Keller in 1939, cf. [K]. Namely, Keller asked if a polynomial
map F : C2 → C2, JacF = 1, with integer coefficients is a polynomial auto-
morphism, i.e. the inverse F−1 exists and is a polynomial mapping with integer
coefficients. Hence, the two dimensional complex case of the Jacobian Conjecture
is often called Keller’s question or Keller’s Jacobian Conjecture. Note that if the
two dimensional complex Jacobian Conjecture is true, then Keller’s Problem has
the affirmative answer, cf. e.g. [D4].

Several alleged proofs of the Jacobian Conjecture have been published. The
most well-known is Engel’s proof, cf. [E], given in 1955. In 1973 A.G. Vitushkin,
cf. [V], pointed out two essential errors which invalidated Engel’s proof. Between
1956 and 1960 B. Segre published at least three wrong proofs of the Jacobian Con-
jecture, cf. [S1, S2, S3]. Since his “proofs” were of geometrical character, Segre
asked in [S3] for a purely algebraic proof of the Conjecture. In 1961 W. Gröbner,
cf. [G], tried to give a purely algebraic proof of the Jacobian Conjecture, but
O. Zariski found a computational error which ruined Gröbner’s argument and
pointed it out to the “MR” reviewer of Gröbner’s article. In 1980 S. Oda pub-
lished, cf. [O], an alleged proof which contains an evidently false lemma. For a nice
survey paper concerning, among others, some history of the Jacobian Conjecture
we refer the reader to [BCW, D4, Es2, M]. Up to now the Jacobian Conjecture
remains unsolved in the real and complex case even if n = 2.

On the other hand the Jacobian Conjecture is one of questions on the so
called Global Injectivity Problem: Let U be an open connected subset of Kn,
F ∈ C1(U,Kn) and let JacF (x) 6= 0 for x ∈ U .

? For which classes of mappings the mapping F (defined above) is injective?

The answer to the question is evidently positive in the case of K-linear maps
and also if Kn = R. Obviously in the complex case the answer is negative even if
n = 1 and F is holomorphic, e.g. f(z) = ez, z ∈ C. This example also works for
real analytic maps of two variables, namely the map g(x, y) := (Re ez, Im ez) =
(ex cos y, ex sin y) has everywhere positive jacobian, but it is not injective. In com-
plex multidimensional case the answer is also negative for holomorphic mappings
with nonzero constant jacobian, e.g. f(z, w) = (ze−w, ew), (z, w) ∈ C2. There-
fore, it is evident that the natural classes of mappings to which we should restrict
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our attention are polynomial and rational maps of Kn. The question has the
negative answer for complex rational maps, e.g. the map f(x, y) := (x2, y2x ),
(x, y) ∈ U := C2 \ {x = 0} has Jac f = 1, but f is not injective on U . Thus,
in the complex case we have to consider only polynomial maps with constant
nonzero jacobians. The problem for rational maps defined everywhere on Rn is
not decided yet. However, the following example (cf. [M]) shows difficulties of the
problem.

Example 1.1. Identify (x, y) ∈ R2 with z = x+iy ∈ C and define the mapping
F : R2 → R2 by the formula

F (x, y) :=


(
−Re z5

|z|4
,
− Im z5

|z|4

)
, when z 6= 0

(0, 0), when z = 0.

The mapping F is continuous everywhere on R2, smooth except for the point
z = 0 and JacF (x, y) = |∂f∂z |

2 − |∂f∂z̄ |
2 = 5 when z = x+ iy = (x, y) 6= (0, 0),

Jac f(0, 0) :=
∂f1

∂x
(0, 0)

∂f2

∂y
(0, 0)− ∂f1

∂y
(0, 0)

∂f2

∂x
(0, 0) = 1,

but F is not injective since f(1, 0) = (−1, 0) = f(cos 2π
5 , sin

2π
5 ).

The following remark is obvious.

R e m a r k 1.2. Without loss of generality we can consider in (GJC) (or in
(JC)n) only polynomial mappings having the form F (X) = X + R(X), where
R ∈ P(Kn) and ordR > 1. Then the assumption that JacF 6= 0 everywhere says
that JacF = 1, if K = C and JacF > 0, if K = R.

We finish this section with an equivalent formulation of the Jacobian Conjec-
ture.

Proposition 1.3. Let F ∈ P(Cn) and JacF = 1. Then

[F is injective]⇔ [∆(F ) := {(x, y) ∈ Cn × Cn : F (x) = F (y)} is connected ].

P r o o f. Assume that ∆(F ) is connected (in Zariski or in euclidean topology of
Cn). Then ∆(F ) is a smooth algebraic manifold. If ∆(F ) is connected, then, due
to the classical theorems, ∆(F ) is a smooth irreducible algebraic set. Evidently
the diagonal D = {(x, y) ∈ Cn×Cn : x = y} ⊂ ∆(F ) and dimD = dim ∆(F ) = n.
Since ∆(F ) is irreducible, we get the equality: ∆(F ) = D, i.e. F is injective. The
converse implication is obvious.

2. Basic facts on polynomial maps. Fortunately polynomial mappings
have nice properties not enjoyed by holomorphic mappings, and we recall such
properties.

Theorem 2.1 ([BR]). Every injective polynomial map of Kn is bijective.
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Note that such a theorem is not true for analytic maps, even in the com-
plex case. If n > 1, then there exist injective holomorphic maps of Cn with
nonzero constant jacobian whose images are not dense in Cn (the Poincaré-Fatou-
Bieberbach phenomenon).

Theorem 2.2 ([BCW, R2, W]. Any injective polynomial map F of Cn is a
polynomial automorphism, i.e. the inverse F−1 exists and is a polynomial map-
ping.

Remember that the above theorem is not true in the real case even if n = 1
and the jacobian of a polynomial mapping F is everywhere different from zero,
e.g. F (x) = x+x3, x ∈ R. If F is a polynomial automorphism, then it is possible
to give a sharp estimate for the degree of its inverse, namely

Theorem 2.3 ([BCW, RW]). If F is a polynomial automorphism of Kn, then

degF−1 ≤ (degF )n−1.

For a refined version of the above theorem see [P]. Finaly we recall a theorem
about the number of points in the fibre of a polynomial mapping with the jacobian
different from zero everywhere.

Theorem 2.4. Let F = (F1, . . . , Fn) : Kn → Kn be a polynomial map such
that JacF (x) 6= 0 for every x ∈ Kn.

(i) Then for every b ∈ Kn the equation F (x) = b has only isolated solutions
and

#{x ∈ Kn : F (x) = b} ≤ degF1 · . . . · degFn.

(ii) If K = C, then {y ∈ Cn : #F−1(y) < max{#F (b) : b ∈ Cn}} is either
empty or is an algebraic hypersurface of Cn.

(iii) If K = R, then {y ∈ Rn : #F (y) := max{#F (b) : b ∈ Rn}} is a nonempty
open subset of Rn.

P r o o f. If K = C, then the inequality (i) is the well known Bézout Inequality.
If K = R, then the proof of (i) and (iii) can be found e.g. in [DT, Lemma 3.1].
The proof of (ii) is given in [D4].

3. Elementary algebraic approach: reduction of the degree. We re-
call the theorem which shows that it is sufficient to consider in the Jacobian
Conjecture only polynomial mappings of a special form.

Theorem 3.1 ([Y, BCW, D1]). If we consider (GJC) (i.e. the Jacobian Con-
jecture for every n > 1), then it is sufficient to consider , for every n > 1, only
polynomial mappings of the so called cubic homogeneous form F = I +H, where
I denotes identity , H = (H1, . . . ,Hn) and Hj : Kn → K is a cubic homogeneous
polynomial of degree 3 or zero, j = 1, . . . , n.
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R e m a r k 3.2. The cubic homogeneous form is invariant under the action of
the full linear group GLn(K), i.e. if F has a cubic homogeneous form, so has
L ◦ F ◦ L−1 for L ∈ GLn(K).

Let us recall the following important fact.

Proposition 3.3 ([BCW, D1). Let F = I+H has a cubic homogeneous form.
Then

JacF = 1⇔ the matrix H ′(x) is a nilpotent matrix for every x ∈ Kn.

P r o o f. Since K ⊂ C, we may treat the matrix H ′(x) as a complex matrix.
Note that H ′(x)=3H̃(x, x, ·), where H̃ denotes the unique symmetric three-linear
mapping such that H̃(x, x, x) = H(x). Hence αH ′(x) = H ′(

√
αx) for α ∈ K. Let

us write the characteristic equation of the matrix H ′(x), namely

0 = det[λI −H ′(x)] = λn det[I +H ′(x/
√
−λ)] = λn JacF (x/

√
−λ).

Assuming that JacF = 1, we get λn = 0, i.e. all eigenvalues λ of the matrix
H ′(x) are equal to 0. Hence the matrix H ′(x) is nilpotent.

The converse is obvious as det(I +A) = 1 for every nilpotent matrix A.

Hence, if Jac(I + H) = 1, then by the above proposition the matrix Hx :=
H̃(x, x, ·) is nilpotent. Therefore for every x∈Kn there exists the index of nilpo-
tency of the matrix Hx, i.e. a natural number p(x) such that Hp(x)

x = 0 and
H
p(x)−1
x 6= 0. We define the index of nilpotency of the mapping F to be the

number

indF := sup{p(x) ∈ N : Hp(x)
x = 0, Hp(x)−1

x 6= 0, x ∈ Kn}.

Obviously 1 ≤ p(x) ≤ 1 + rankHx for every x ∈ Kn. Now we present a theorem
which allowed us to reduce the verification of the Generalized Jacobian Conjecture
to the investigation of polynomial mappings of the so called cubic linear form.

Theorem 3.4 ([D3]). In order to verify (GJC) it is sufficient to check it (for
every n > 1) only for polynomial mappings F = (F1, . . . , Fn) of the cubic linear
form, i.e.

F (x) = (x1 + (a1x)3, x2 + (a2x)3, . . . , xn + (anx)3),

where x ∈ Kn, aj = (a1
j , . . . , a

n
j ) ∈ Kn, ajx := a1

jx1+. . .+anj xn, j = 1, . . . , n, hav-
ing an additional nilpotent property (N) of the matrix A := [aij : i, j = 1, . . . , n],
namely

(N) there exists a point c ∈ Kn such that A=Ac :=F ′(c)− I and indA=indF.

Now we recall a theorem which summarizes some partial results on the Gen-
eralized Jacobian Conjecture contained in [D1, D3, DR, Wr2].
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Theorem 3.5. I. If a polynomial map F = (F1, . . . , Fn) : Kn → Kn with
JacF = 1 has a cubic linear form and if

(i) rankA ≤ 3 or (ii) corankA < 3 or (iii) indF = 1, 2, 3, n,

then F is a polynomial automorphism.
II. If a polynomial map F = (F1, . . . , Fn) : Rn → Rn with JacF > 0 has a

cubic linear form and if rankA = 1 or rankA = n, then F is bijective.

For nontrivial applications of the above theorem to the problem of reducibility
of certain algebraic sets arising in the Jacobian Problem see [R1].

4. The Jacobian Conjecture in C2. We begin with the following theorem
which stresses the connections between the two dimensional Jacobian Conjecture
and the problem of the decomposition of 2×2-matrices over a ring k as a product
of the so called elementary matrices. We call a 2 × 2-matrix A over a ring k
elementary if A is of the form

A =
(

1 w
0 1

)
or A =

(
1 0
v 1

)
, where v, w ∈ k.

P. M. Cohn, cf. [Co] has proved that the matrix(
1 +X1X2 X1

2

−X2
2 1−X1X2

)
is not elementary. Due to D. Wright, cf. [Wr1], we have the following formulation
of the Jacobian Conjecture in C2.

Theorem 4.1. Let F = (f, g) : C2 → C2 be a polynomial mapping with
JacF = 1. The matrix F ′(X1, X2) is a product of elementary matrices over the
ring C[X1, X2] if and only if F is a polynomial automorphism.

Now we present the theorem which uses the analytic approach to the Jacobian
Conjecture and combines some results.

Theorem 4.2. Let F = (f, g) : C2 → C2 be a polynomial mapping with
JacF = 1. If , additionally , one of the following conditions is fulfilled :

(i) g has one branch at infinity (i.e. g has one point at∞ and g is analytically
irreducible at this point),

(ii) g− c has at most two branches at infinity for an infinite number of c ∈ C,
(iii) f is proper on g−1(0) (i.e. lim |f(x, y)| = ∞ when ‖(x, y)‖ → ∞ and

g(x, y) = 0,
(iv) max{#F−1(w) : w ∈ C2} ≤ 3,

then F is injective.

P r o o f. (i) is proved in [A], (ii) in [D2], (iii) in [D2] and, independently, in
[CK]. If F is a two sheeted (branched) covering, then injectivity of F was well
known, and for three sheeted covering the proof is [Or].
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Recall that the two dimensional complex Jacobian Conjecture is true if
max{deg f, deg g} < 100, cf. [Mo].

5.Global stability problem and the real Jacobian Conjecture. Partial
answers to the real Generalized Jacobian Conjecture considered in the cubic linear
form was given in Theorem 3.5.II. We think that the remarkable results in the
area of the two dimensional real Jacobian Conjecture are due to Meisters and
Olech, cf. [MO1, MO2, MO3], and we recall their solution of the two dimensional
Global Stability Conjecture for polynomial mappings.

Theorem 5.1 ([MO2]). Let F = (F1, F2) be a polynomial map of R2, F (0, 0) =
(0, 0). Let further JacF (x1, x2) > 0 and

TrF ′(x1, x2) :=
∂F1

∂x1
(x1, x2) +

∂F2

∂x2
(x1, x2) < 0

for every (x1, x2) ∈ R2. Then the map F is bijective and the autonomous system
of differential equations

(AS) ẋ1(t) = F1(x1, x2), ẋ2(t) = F2(x1, x2)

is globally asymptotically stable with the rest point (0, 0).

We made an attempt to extend the above theorem to the n-dimensional case,
but we had to impose some additional technical conditions on the eigenvalues of
the symmetric part of the matrix of the derivative F ′(x).

Theorem 5.2 ([DT]). Let F = (F1, . . . , Fn) be a polynomial map of Rn,
F (0) = 0. Let further H(y) := 1

2 [F ′(y) + F ′(y)T ], let λ1(y), . . . , λn(y) be the
eigenvalues of the matrix H(y) and let α(y) := max{(λj(y) + λk(y)) : j 6= k,
j, k = 1, . . . , n}, y ∈ Rn.

Assume that the following conditions hold

(i) Jac(y) 6= 0 for every y ∈ Rn,
(ii) all eigenvalues of the matrix F ′(b) have negative real parts if F (b) = 0.
(iii) α(y) ≤ 0 for every y ∈ Rn.

Then the solution y(·) = 0 is a GAS solution of the differential equation (?)
ẏ = F (y) and the mapping F is bijective.

Meisters and Olech have also obtained interesting results on injectivity of C1

mappings of R2, cf. [MO3], which were improved, namely

Theorem 5.3 ([Ch]). Let F = (f, g) : R2 → R2 be a polynomial map and
± JacF > 0. If there exists a vector v ∈ R2 and C > 0 such that

(0, 0) 6∈ convex hull of {dxF (v) : x ∈ R2, ‖x‖ > C},

then F is injective.
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As an immediate consequence of the above theorem we have the following:

Corollary 5.4 ([Ch]). If a polynomial map F = (f, g) : R2 → R2 has the
property that JacF and at least one of the four partial derivatives ∂f

∂x , ∂f∂y , ∂g
∂x , ∂g

∂y

never vanishes on R2, then F is injective.
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