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Convexity is the key concept of functional analysis, but apart from some no-
table exceptions, it has played a relatively minor rôle in several complex variables
theory. The work of Lempert has focused attention on convex domains, and in
these two lectures I will present examples involving invariant metrics in complex
analysis where convexity, whether realized as in the case of bounded symmetric
domains or assumed as in the case of Blp , is essential. Functional analysis brings
to problems a variety of developed concepts such as complex extreme points, com-
plex uniform convexity and an approach which is often coordinate and dimension
free. I hope to illustrate these points in my lectures.

Throughout this article X will denote a Banach space over the complex num-
bers C, BX will denote the open unit ball in X and BX its closure. We denote
by ∆ the open unit disc in C.

Our first example relates the maximum modulus theorem of complex analysis
with the functional analytic concept of complex extreme point. A point x in X,
(‖x‖ = 1), is a complex extreme point (of the unit ball) if ‖x + λy‖ ≤ 1 for all
λ ∈ ∆ implies y = 0. The strong maximum modulus theorem, due to Thorp and
Whitely in 1965, states the following:

If f : ∆ → X is holomorphic and all unit vectors in X are complex extreme
points, then ‖f‖ is constant if and only if f is constant.

The converse is also true and the result has been extended in a variety of
directions. The following is used in the study of complex geodesics:

If f : ∆ → BX is holomorphic and f(∆) ∩ ∂BX is non-empty then f(∆) ⊂
∂BX and if f(∆) contains a complex extreme point , then f is a constant function
(∂ denotes the boundary).
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Our second example concerns bounded symmetric domains. A bounded sym-
metric domain is a complex manifold modelled on a Banach space which is biholo-
morphically equivalent to a bounded domain and such that through each point x
there exists a unique biholomorphic symmetry of the domain δx, δ2

x = 1, with x as
its unique fixed point. Convexity plays no rôle in this definition. Nevertheless, a
deep result of Kaup shows that each bounded symmetric domain can be realized
as the unit ball of a Banach space. Moreover, the Banach spaces X for which
BX is symmetric can be endowed with a triple product {x, y, z} which satisfies
axioms similar to those satisfied by C∗ algebras.

Example 1 (Simple but contains the ‘generic’ example.) Let H and K be
complex Hilbert spaces and let L(H,K) denote the set of all continuous linear
operators from H to K. The triple product which captures the symmetric struc-
ture of the open unit ball is given by

{A,B,C} =
AB∗C + CB∗A

2
.

If H = K and dim(H) = n <∞ we have the space of all n×n matrices which
is a C∗ algebra while if dim(H) = n and dim(K) 6= n we obtain a Banach space
which is not a C∗ algebra.

We call X a JB∗ triple if BX is a bounded symmetric domain. If X is ‘too
large’ then BX does not admit any C2 (biholomorphically invariant) metrics. A
functional analytic characterization of ‘not too large’ is reflexivity. We introduce
tripotents to give an algebraic characterization. An element e in X is called a
tripotent if e3 := {e, e, e} = e. This is the triple product analogue of a partial
isometry.

If we fix y ∈ X and consider the operator

y y : x→ {y, y, x}

then y is a tripotent if and only if 1 is an eigenvalue of y y and y belongs to
its 1-eigenspace. The tripotent e is said to be minimal if the 1-eigenspace of
e e is 1-dimensional. If the JB∗ triple is a dual space then it has a unique
predual and there is a one to one correspondence between minimal tripotents in
X and complex extreme points of the predual. Tripotents e and f are said to be
orthogonal if

(e e)(f) = {e, e, f} = 0

i.e. if f is an eigenvector in the 0-eigenspace of e e.
The algebraic characterization we are seeking is the following:

Proposition 2. If X is a JB∗ triple then the following are equivalent :

(a) X is reflexive,
(b) there exists an integer r such that any set of mutually orthogonal tripotents

contains at most r elements,
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(c) there exists an integer s such that any polydisc P which sits isometrically
in BX (i.e. ∂P ⊂ ∂BX) has dimension ≤ s.

(d) BX admits an invariant C2 metric.

If these equivalent conditions are satisfied, then the maximum value of r that
may occur in (b) is equal to the maximum of s that may occur in (c) and is called
the rank of the bounded symmetric domain. By (c) one sees that this coincides
with the dimension of the maximal torus contained in BX . The spin factors are
examples of infinite dimensional bounded symmetric domains of finite rank. All
finite dimensional bounded symmetric domains have finite rank.

In [1] and [5] the authors discuss the following problem:

Given a bounded symmetric domain BX find an invariant C2 metric α on BX
which gives the best constant in the Schwarz Lemma.

The solution to this problem uses an invariant inner product defined using
minimal tripotents. If the JB∗ triple X has finite rank r, then for each x ∈ X
there exist nonnegative real numbers λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0 and minimal
tripotents e1, . . . , er such that

x =
r∑
i=1

λiei.

If φe is the complex extreme point in X ′ associated with e then

〈x, y〉a =
r∑
i=1

λiφei(y)

defines an inner product on X which is invariant under (surjective) linear isome-
tries of X i.e. if L : X → X is a linear mapping satisfying ‖Lx‖ = ‖x‖ for all
x ∈ X then

〈Lx,Ly〉a = 〈x, y〉a for all x, y ∈ X.
We use this invariant inner product to define a metric on the tangent space

at the origin. If mx denotes a Möbius transformation which takes x to 0 then

α2(x, v) = 〈m′x(0)(v),m′x(0)(v)〉a
defines an invariant C2 metric on BX which gives the best constant in the Schwarz
lemma. More precisely, we have the following result.

Proposition 3. If X is a JB∗ triple of finite rank r then for any holomorphic
f : BX → BX , we have

α(f(x), f ′(x)(v)) ≤
√
rα(x, v).

Moreover , if β is an invariant C2 metric on BX and

β(f(x), f ′(x)(v)) ≤Mβ(x, v)

for all holomorphic f : BX → BX then M ≥
√
r and M =

√
r if and only if β is

a positive multiple of α.
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Before moving to the next topic we will mention just two further results.
The first once more emphasizes the relationship between concepts in functional
analysis and complex analysis.

Proposition 4. If X is a JB∗ triple system then the following sets coincide;

(a) the complex extreme points of BX ,
(b) the maximal tripotents in BX (e is maximal if e e is invertible),
(c) the distinguished boundary of BX ,
(d) the Shilov boundary of H∞(BX) (the space of bounded C-valued holomor-

phic functions on BX).

Our second remark is that BX , X a JB∗ triple, is irreducible—with respect to
either its algebraic or holomorphic structure—if and only if 〈 , 〉a is the unique
inner product, up to positive scalar multiples, which is invariant by isometries.
This observation and the realization that the same property is satisfied by other
Banach spaces is a key element in our next set of examples.

A well known Schwarz Lemma of H. Cartan says the following:

If D is a bounded domain in Cn, a ∈ D, and f : D → D is holomorphic
with fixed point a, then |det(f ′(a))| ≤ 1 and |det(f ′(a))| = 1 if and only if f is
biholomorphic.

One can consider the same problem with different domain and range.

Problem. If D1 and D2 are bounded domains in finite dimensional Banach
spaces, x0 ∈ D1, y0 ∈ D2, then:

(i) find max{|det(f ′(x0))| : f : D1 → D2 holomorphic and f(x0) = y0};
(ii) characterize all f which achieve the extremal value (we call f extremal in

this case).

In this case the Banach spaces must have the same finite dimension. The
determinant is defined by taking a unit vector basis in each space. Carathéodory
considered the problem of characterizing f(D1) for extremal f , Alexander and
Lempert looked at the problem for D1 = Bl1 , D1 = Bl∞ and D2 = Bl2 and
Kubota and Travaglini studied the case where D1 is a finite dimensional bounded
symmetric domain and D2 = Bl2 . For detailed references we refer to Dineen and
Timoney [2].

In [2] the problem is studied for D1 = BX , D2 = Bl2 and x0 = y0 = 0.
Interchanging the domain and range leads to a dual problem. In this situation
the classical Schwarz Lemma shows that f : D1 → D2 implies f ′(0)(D1) ⊂ D2

and so problem (i) reduces to a linear problem while problem (ii) is replaced by
the more specialized problem of finding conditions under which the maximum is
always achieved by a linear mapping. Let H denote a finite dimensional Hilbert
space. The image of BH by a linear mapping is called an ellipsoid (a different
meaning is given to the term ellipsoid in complex analysis [6]). Let X denote
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a Banach space with dim(X) = dim(H) and let T : BX → BH be linear. The
problem (i) mentioned above is to find

max{|det(T )|;T : BX → BH}.

Because of the classical formula relating volumes and determinants we see that
the linear mapping T which maximizes the determinant is also the linear mapping
which realizes, as T−1(BH), the minimum volume ellipsoid containingBX . A deep
result of F. John (1948) says that this linear operator is unique up to composition
by unitary operators of H and moreover the inner product on X given by 〈x, y〉 =
〈Tx, Ty〉H is invariant under isometries of X.

Motivated by the bounded symmetric domain case we were led to consider
Banach spaces with unique inner products, up to positive multiples, invariant
under isometries. Examples of such spaces are lp. Having considered such spaces
it is natural to consider spaces of the form

X1 ⊕X2 ⊕ . . .⊕Xn

where each Xi has the unique invariant inner product property (defined in an
obvious way). For such spaces any inner product invariant under isometries can
be shown to have the form

〈 , 〉 =
n∑
i=1

ci〈 , 〉i

where ci > 0 and 〈 , 〉i is an inner product on Xi invariant under isometries
of Xi.

Using Haar measure on the group of all isometries it is easily shown that each
finite dimensional Banach space admits an inner product which is invariant under
isometries.

At this stage we require a concept which is widely used in Banach space
theory—the Banach-Mazur distance d( · , · ). For isomorphic Banach spaces X
and Y this is defined in the following fashion

d(X,Y ) = inf{‖T‖‖T−1‖;T : X → Y is a linear isomorphism}

= inf
{
ρ ≥ 1 :

1
ρ
BY ⊂ T (BX) ⊂ BY

}
.

The second formula for d(X,Y ) clearly indicates its relationship with the Schwarz
Lemma.

Let e(X) = d(X, l2). Now, if X has the unique invariant inner product prop-
erty then

e(X)2 =
sup‖x‖=1〈x, x〉
inf‖x‖=1〈x, x〉

where 〈 , 〉 is any invariant inner product and if X = X1 ⊕ X2 ⊕ . . . ⊕ Xn,
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where each Xi has the unique invariant inner product property, then

e(X)2 = inf
ci>0

[ sup‖
∑

x‖=1

∑
ci〈xi, xi〉i

inf‖
∑

x‖=1

∑
ci〈xi, xi〉i

]
where each 〈 , 〉i is an invariant inner product on Xi. Using Lagrange multi-
pliers this gives a fairly useful computational tool. The fact that the minimum
volume ellipsoid and the Banach-Mazur distance are both calculated using invari-
ant inner products leads to the following proposition.

Proposition 5. If X = (X1 ⊕ X2 ⊕ . . . ⊕ Xn)lp , 2 ≤ p ≤ ∞, each Xi has
the unique invariant inner product property , 1/r + 2/p = 1, dj = dim(Xj) and
d =

∑n
j=1 dj then

max{|det(f ′(0))|; f : BX → BH holomorphic, f(0) = 0}

= d−d/2r
n∏
j=1

(
d

1
r
j

e(Xj)2

)dj/2
.

We now turn to problem (ii). The solution here depends on the set of points of
contact, C(X), between the minimum volume ellipsoid containing BX and ∂BX ,
and on a further Schwarz Lemma due to Harris.

Proposition 6. Every f : BX → BY , X and Y Banach spaces, with f(0) = 0
and f ′(0) = T is linear if and only if T is a complex extreme point of H∞(BX , Y ).

We have let H∞(BX , Y ) denote the Banach space of all bounded Y -valued
holomorphic functions on BX .

Proposition 7. If C(X) is not contained in the zero set of a non-zero homo-
geneous polynomial then every extremal f in H(BX , Bl2) satisfying f(0) = 0 is
linear and

|det(f ′(0))| = max{|det(g′(0))|; g : BX → Bl2 holomorphic and g(0) = 0}.
The conditions in the above proposition are satisfied by lp, 2 ≤ p ≤ ∞. If

1 ≤ p < 2 and 0 < ε < 24/p(1− 21−2/p)/3, then

f(z1, z2) = (z1 + εz1z
2
2 , z

2
2)

is a non-linear holomorphic function which achieves the maximum.
For 1 ≤ p < ∞, p 6= 2, all biholomorphic automorphisms of Blp have the

origin as a fixed point and consequently are the restrictions to the unit ball of
linear isometries of lp. Hence Blp is not a bounded symmetric domain for p 6= 2
and we do not have the use of Mobius transformations. We have compensated
for this lack of global symmetry by confining ourselves to mappings which take
the origin to the origin and to spaces which admit sufficiently many symmetries
through the origin.

Finally, we consider complex geodesics. We let ρ denote the Poincaré metric
or distance on ∆—it will be clear, from the context, to which we are referring.
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We let KD( · , · ) and CD( · , · ) denote the Kobayashi and Carathéodory distances
respectively on the domain D in the Banach space X and let kD and cD denote
the corresponding infinitesimal metrics. For detailed references we refer to [3].

Proposition 8. If φ : ∆ → D is a holomorphic mapping then the following
are equivalent :

(i) φ is a complex geodesic, i.e. for all p, q ∈ ∆ we have

ρ(p, q) = CD(φ(p), φ(q)),

(ii) there exists p 6= q in ∆ such that

ρ(p, q) = CD(φ(p), φ(q)),

(iii) there exists p ∈ ∆ such that

ρ(p, 1) = cD(φ(p), φ′(p)),

(iv) φ is biholomorphic onto its image and φ(∆) is a holomorphic retract of
D, i.e. there exists r ∈ H(D,D) such that r2 = r ◦ r = r and φ(∆) = r(D),

(v) KD|φ(∆) = C
D
∣∣φ(∆)

and φ is biholomorphic onto its image,

(vi) φ is biholomorphic onto its image and all g ∈ H(φ(∆),∆) can be extended
to g̃ ∈ H(D,∆),

(vii) there exists ψ ∈ H(D,∆) such that ψ ◦ φ = 1∆.

Condition (ii) is useful as it tells us that it is only necessary to check that the
distance between two distinct points is preserved. Condition (iii) is an infinites-
imal version of (ii) and restricts attention to a single point. By (vi) we see that
the ranges of complex geodesics are precisely the 1-dimensional submanifolds for
which we have a holomorphic Hahn-Banach extension theorem and condition (iv)
tells us that the ranges of complex geodesics are also the ranges of holomorphic
projections. The final condition tells us that complex geodesics give precisely the
ways in which discs can be passed through the domain.

If the domain D is a convex bounded domain then any pair of points in D lie
in the range of a complex geodesic and in this situation condition (v) implies that
KD = CD.

The main problems connected with complex geodesics are existence, unique-
ness, continuity to the boundary, estimates near the boundary and specific for-
mulae for prescribed domains.

I shall confine myself here to the problem of continuity to the boundary, and
to the case D = BX . Afterwards I consider complex geodesics on Blp . A complex
geodesic φ : ∆→ BX is said to be continuous (or continuous to the boundary) if
there exists a continuous function φ̃ : ∆→ BX such that φ̃|∆ = φ.

Gentili has shown that if all complex geodesics are continuous, then all unit
vectors in X are complex extreme points. A partial converse is known ([3], [7])
which involves a qualitative concept of extreme point. If x is a unit vector in X
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and y ∈ X, then for 0 < r < 1 we may consider

δr(x, y) = sup{α;α > 0, rx+ α∆y ⊂ BX}.
Clearly limr→1− δr(x, y) = 0 for all y if and only if x is a complex extreme point.
If the rate at which this tends to zero is uniform with respect to unit vectors x
and y then we say that X is a complex uniformly convex space. In a more precise
fashion let us put

δX(ε) = sup{r > 0;∃z, v ∈ X, ‖z‖ ≥ 1− ε, ‖v‖ = 1, such that z + rv∆ ⊂ BX}.
If δX(ε) → 0 as ε → 0 then we say that X is complex uniformly convex. If X
is a finite dimensional space then using compactness one sees that X is complex
uniformly convex if and only if every unit vector is a complex extreme point.

Example 9. If 2 ≤ p < ∞ then δlp(ε) ≤ Aε1/p for some positive constant A
and if 1 ≤ p < 2 then there exists B > 0 such that

δlp(ε) ≤ Bε1/2

If X is the predual of a C∗ algebra, for instance if X=L1, then there exists C>0
such that

δX(ε) ≤ Cε1/2.
Proposition 10. If there exists A > 0 and s > 0 such that δX(ε) ≤ Aεs then

every complex geodesic on BX is continuous.

We now consider complex geodesics on Blp , 1 ≤ p <∞. Initial contributions
to this analysis were made by Poletskii and Gentili and the final solution was
found using different methods and independently in [3] and [6]. An important
rôle in the solution in [3] is played by a sufficient criterion on a holomorphic
function in order that it be a complex geodesic. The main ideas for this are due
to Lempert. We first need the concept of supporting hyperplane. If X is a Banach
space and x is a unit vector in X then the Hahn-Banach theorem assures us of
the existence of at least one Nx ∈ X ′ satisfying Nx(x) = ‖Nx‖ = 1. We use the
notation Nx for any choice of such a functional. The set {y : Nx(y) = 1} is called
a supporting hyperplane at the point x.

Proposition 11. Let X be a complex Banach space and let φ : ∆ → BX
denote a continuous map satisfying

(i) φ|∆ is holomorphic and φ(∆) ⊂ BX ,
(ii) φ(∂∆) ⊂ ∂BX ,
(iii) there exists a choice of Nφ(eiθ) for almost all eiθ ∈ ∂∆, a measurable

function p : ∂∆→ R+ and h ∈ H∞(∆, X ′) such that

[eiθp(eiθ)Nφ(eiθ)](x) = lim
r→1−

h(reiθ)(x)

for all x ∈ X and almost all eiθ ∈ ∂∆.

Then φ is a complex geodesic.
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Proposition 12. Let Bp denote the open unit ball of lp, 1 ≤ p ≤ ∞. Any
two distinct points of Bp can be joined by a continuous complex geodesic which is
unique up to reparametrization of ∆. Moreover , a non-zero mapping φ = (φj)∞j=1,
is a complex geodesic in Bp if and only if

φj(ξ) = cj

(
ξ − αj
1− αjξ

)βj(1− αjξ
1− γξ

)2/p

, ξ ∈ ∆,

where γ ∈ ∆, αj ∈ ∆, cj ∈ C, βj = 0 or 1
∞∑
j=1

|cj |p(1 + |αj |2) = 1 + |γ|2(1)

∞∑
j=1

|cj |pαj = γ.(2)

We now give some new results obtained by applying proposition 12.
For z ∈ Bp and v ∈ lp let

(3) φ(0) = z

and

(4) φ′(0) =
v

kBp(z, v)
.

A formula for kBp(z, v) could be found by solving equations (1), (2), (3) and (4)
in terms of z and v. These equations, however, do not appear to yield simple
solutions except in the case βj = 0 for all j i.e. only in the case where the
component functions of the complex geodesic have no zeros. We shall write k(z, v)
in place of kBp(z, v).

For p ≥ 2 let Nz = (|zi|p−2zi)∞i=1. We have Nz ∈ (lp)′ and if ‖z‖ = 1 then Nz
is the unique supporting hyperplane at z. We define a ‘quasi inner product’ on
lp × lp by the formula

(Nz, v) =
∞∑
i=1

|zi|p−2zivi

where z = (zi)∞i=1 and v = (vi)∞i=1 belong to lp.
If p = 2 then Nz = z and this reduces to the usual inner product on the

Hilbert space l2. For all p and all z we have (Nz, z) = ‖z‖p.
We now assume βj = 0 for all j, p ≥ 2, φj(0) = zj 6= 0, and φ′j(0) = vj/k(z, v)

where (zj)j ∈ Bp and (vj)j ∈ lp. By (3) we have φj(0) = cj = zj for all j. By (4)

(5) φ′j(0) =
vj

k(z, v)
=

2
p
zj(γ − αj).

Hence ∑∞
j=1 |zj |p−2zjvj

k(z, v)
=

2
p
γ

∞∑
j=1

|zj |p−2zjzj −
2
p

∞∑
j=1

|zj |p−2zjzjαj
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and by (2)
(Nz, v)
k(z, v)

=
2
p
γ‖z‖p − 2

p
γ = −2

p
γ(1− ‖z‖p).

We thus have

(6) γ = −p
2

(Nz, v)
k(z, v)

· 1
1− ‖z‖p

and by (5) we have

(7) αj = γ − p

2
vj

zjk(z, v)
.

Substituting (6) and (7) into (1) yields
∞∑
j=1

|zj |p +
∞∑
j=1

|zj |p
(−p2 )2

k2(z, v)

∣∣∣∣ (Nz, v)
1− ‖z‖p

+
vj
zj

∣∣∣∣2 = 1 +
(
p

2

)2 |(Nz, v)|2

k2(z, v)
· 1

(1− ‖z‖p)2
.

Hence

‖z‖p +

(
p
2

)2
k2(z, v)

[
‖z‖p|(Nz, v)|2

(1− ‖z‖p)2
+
∞∑
j=1

|zj |p−2|vj |2 + 2 Re
∞∑
j=1

|zj |p(Nz, v)
1− ‖z‖p

vj
zj

]

= ‖z‖p +

(
p
2

)2
k2(z, v)

[
‖z‖p|(Nz, v)|2

(1− ‖z‖p)2
+
∞∑
j=1

|zj |p−2|vj |2 +
|(Nz, v)|2

1− ‖z‖p

]

= 1 +
(
− p

2

)2 |(Nz, v)|2

k2(z, v)
· 1

(1− ‖z‖p)2
.

Collecting terms we get(
p
2

)2
k2(z, v)

[
|(Nz, v)|2

(
‖z‖p

(1− ‖z‖p)2
+

2
1− ‖z‖p

− 1
(1− ‖z‖p)2

)
+
∞∑
j=1

|zj |p−2|vj |2
]

= 1− ‖z‖p.
Hence

k2(z, v) =
(
p

2

)2(∑∞
j=1 |zj |p−2|vj |2

1− ‖z‖p
+
|(Nz, v)|2

(1− ‖z‖p)2

)
.

We now consider another special case. Let A = {j ∈ N ; zj = 0} and suppose
βj = 0 for all j 6∈ A. If A is the empty set this reduces to the previous case. Let

kp1(z, v) =
(
p

2

)2(∑∞
j=1 |zj |p−2|vj |2

1− ‖z‖p
+
|(Nz, v)|2

(1− ‖z‖p)2

)
If A is the empty set then kp1(z, v) = k2(z, v).

If (φj)∞j=1 is a complex geodesic with

φ(0) = z, φ′(0) =
v

k(z, v)
and φj(ξ) = cj

(
ξ − αj
1− αjξ

)βj(1− αjξ
1− γξ

)2/p
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then we may suppose βj = 1 and αj = 0 for all j ∈ A. Otherwise, cj = 0 and this
is covered by the previous case. Hence, for j ∈ A, we have

φj(ξ) =
cjξ

(1− γξ)2/p
and φ′j(0) = cj =

vj
k(z, v)

.

If j 6∈ A then φj(0) = cj = zj and

φ′j(0) =
vj

k(z, v)
=

2
p
zj(γ − αj).

Hence equations (6) and (7), for j 6∈ A, are still valid. Precisely the same method
of analysis leads to the equation

(8) kp(z, v)− kp−2(z, v)kp1(z, v)−
∑
j∈A |vj |p

1− ‖z‖p
= 0

Proposition 13, below, is a summary of the results we have just proved together
with some other results which can be derived from equation (8). The formulae
we have obtained for k( · , · ) satisfy equations (1), (2), (3) and (4) but only apply
when |αj | ≤ 1 and the associated mapping φ is not constant. In our case, various
necessary conditions in terms of z and v are easily derived from (6) and (7). This
limits the range of applicability of the formulae but it is still possible to obtain
non-trivial sets of pairs {(z, v)} where we have obtained the precise form of the
infinitesimal Kobayashi metric. In using proposition 13 the formula in (a),. . . ,(d)
is first used to obtain a value for k(z, v) and substitution into (9) confirms if the
value obtained is valid.

In the following proposition we let

kp2(z, v) =
∑
j,zj=0

|vj |p

1− ‖z‖p
.

Proposition 13. Let A = {j; zj = 0}. Suppose that

(9) sup
j 6∈A

∣∣∣∣ (Nz, v)
1− ‖z‖p

+
zjvj
|zj |2

∣∣∣∣2 ≤ k2(z, v)(
p
2

)2 .

(a) If p ≥ 2 and A is the empty set , then

k(z, v) =
p

2

[∑∞
j=1 |zj |p−2|vj |2

1− ‖z‖p
+
|(Nz, v)|2

1− ‖z‖p

]1/2

.

(b) If p = 3 and A is arbitrary , then

k(z, v) =
∑
ε=±1

(
k3

2(z, v)
2

+ ε
(81(k3

2(z, v))2 − 12(k3
1(z, v))1/2

18

)1/3

.
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(c) If p = 4 and A is arbitrary , then

k(z, v) =
[
k4

1(z, v) + ((k4
1(z, v))2 + 4k4

2(z, v))1/2

2

]1/2

=
{

2
{∑∞

j=1 |zj |2|vj |2

1− ‖z‖4
+
|(Nz, v)|2

(1− ‖z‖4)2

}
+
{

4
[∑∞

j=1 |zj |2|vj |2

1− ‖z‖4
+
|(Nz, v)|2

(1− ‖z‖4)2

]2

+

∑
j∈A |vj |4

1− ‖z‖4

}1/2}1/2

(d) Explicit formula (rather complicated) can also be found for arbitrary A
under the same conditions when p = 6 and p = 8.

(e) If A = N then z = 0 and , for all p, the above reduce to

(k(0, v))p =
∞∑
j=1

|vj |p.

The next step is to consider the situation in which βj = 1 and αj 6= 0 for
some j. This leads to quite complicated, but interesting, equations of the form

Arp +Brp−1 + Crp−2 +D = 0

where A, B, C and D are parameters involving the αj for which βj = 1. So far
no elegant solution, in fact no solution of any kind, is emerging and it appears
doubtful if there exists one single explicit formula which prescribes k(z, v) for all
z ∈ Bp and v ∈ lp.

We urge the reader to consult the references in the articles and book [4] we
have given in our very short bibliography and take the opportunity to point
out (apologetically) that the bar signs—denoting mainly complex conjugates and
closures—disappeared in the final electronic transmission of [3] to the editors and
did not appear in print.
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