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We give an overview on discrepancy theorems based on bounds of the loga-
rithmic potential of signed measures. The results generalize well-known results of
P. Erdős and P. Turán on the distribution of zeros of polynomials. Besides of new
estimates for the zeros of orthogonal polynomials, we give further applications
to approximation theory concerning the distribution of Fekete points, extreme
points and zeros of polynomials of best uniform approximation.

1. Introduction. In many situations in approximation theory the distribu-
tion of points with respect to some set is of interest. For example, an important
problem is the distribution of the points of alternation of the error function in
polynomial Chebyshev approximation on a real interval. This problem was first
considered by Kadec [10] and leads to estimates between the distribution of these
points and the equilibrium measure of the interval. Walsh [20] considered inter-
polations points on the boundary of a set E where the function f has to be
approximated by polynomials. Again the distribution of the interpolation points
has to be related to the equilibrium distribution of E to obtain sufficiently good
approximations.

If we know only a bound on the Chebyshev norm of a polynomial on some
set in the complex plane, the first result on the distribution of the zeros of this
polynomial dates back to Erdős and Turán: Let p ∈ Πn be a monic polynomial
where Πn denotes the set of all algebraic polynomials of degree at most n and let
τ be the normalized zero-counting measure of p, i.e.

(1.1) τ(A) :=
number of zeros of p in A

n
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where A is any point set in C and the zeros are counted with their multiplicities.
If all zeros of p are in the interval [−1, 1] then Erdős and Turán [6] proved for

any subinterval [a, b] of [−1, 1] that

(1.2)
∣∣∣∣τ([a, b])− β − α

π

∣∣∣∣ ≤ 8
log 3

√
log 2 +

log ‖p‖[−1,1]

n

where a = cosβ, b = cosα, 0 ≤ α ≤ β ≤ π, and ‖p‖[−1,1] denotes the Chebyshev
norm of p on [−1, 1]. Note that

log 2 +
log ‖p‖[−1,1]

n
≥ log 2

n
.

The corresponding result for the unit disk was also proved by Erdős and Turán
[7]:

Let pn(z) = zn + . . .+ a0 ∈ Πn be a monic polynomial, a0 6= 0, and let

Sα,β = {reiϕ : r ≥ 0, 0 ≤ α ≤ ϕ ≤ β ≤ 2π}
then

(1.3)
∣∣∣∣τ(Sα,β)− β − α

2π

∣∣∣∣ ≤ 16

√
log ‖p‖|z|=1

n
− log |a0|

2n

where ‖p‖|z|=1 is the uniform norm of p on the unit circle. Remember that

log ‖p‖|z|=1

n
− log |a0|

2n
≥
∣∣∣∣ log |a0|

2n

∣∣∣∣ > 0.

The main idea to generalize (1.2) resp. (1.3) to other situations can be found
by rewriting the discriminant under the square root in a potential theoretical way.
Therefore we need some basis facts from potential theory.

Let E ⊂ C be compact and M(E) denote the collection of all positive unit
Borel measures supported on E. For σ ∈M(E) the energy of σ is defined by the
formula

(1.4) I[σ] :=
∫
Uσ(z) dσ(z)

where

(1.5) Uσ(z) :=
∫

log
(

1
|z − t|

)
dσ(t)

is the logarithmic potential of σ. If

W (E) := inf
σ∈M(E)

I(σ)

then the (logarithmic) capacity of E is defined by

(1.6) cap(E) := exp(−W (E))

If cap(E) > 0 then there exists (cf. [19], Chapter III) a unique measure µE ∈
M(E) such that

(1.7) I[µE ] = W (E).
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The measure µE is called the equilibrium measure of E. Let G be the Green’s
function of the unbounded component Ω(E) of C∪{∞}\E. If cap(E) > 0, then
G is connected with the logarithmic potential of µE by

(1.8) UµE (z) = −G(z)− log cap(E), z ∈ Ω(E)

([19], Theorem III. 37, p. 82). G tends to zero at all regular points of the boundary
of Ω(E). In particular, if E is a Jordan curve or a Jordan arc then G can be
continuously extended to E such that G(z) = 0 for z ∈ E and (1.8) holds for
z ∈ E.

We denote by

(1.9) Γα := {z ∈ Ω(E) : G(z) = logα}, α > 1,

the level lines of the Green function G(z) and set, for α > 1,

(1.10) Eα := {z ∈ Ω(E) : 0 < G(z) ≤ logα} ∪ E.
Every level line Γα is analytic at each point z where gradG(z) 6= 0. Moreover, Γα
consists of a finite number of Jordan curves which are naturally exterior except
for a finite number of critical points ([20]) where gradG(z) = 0.

2. Erdős–Turán-type theorems: Estimates by one-side bounds of
Uµ − Uτ . The main idea for generalizing (1.2) to more general situations is to
rewrite a bound for the Chebyshev norm of p ∈ Πn,

(2.1) ‖p‖[−1,1] ≤
An
2n

= An cap(E)n,

(where E = [−1, 1]) in a potential theoretical way. Hence (2.1) leads to
1
n

log |p(z)| − log cap(E)−G(z) ≤ logAn
n

for z ∈ E (cf. [2]) or

(2.2) Uµ(z)− Uτ (z) ≤ logAn
n

, z ∈ E,

where τ is the normalized zero-counting measure of p and µ = µE is the equi-
librium measure of E = [−1, 1]. Since Uµ − Uτ is subharmonic, the maximum
principle yields

(2.3) (Uµ − Uτ )(z) ≤ logAn
n

=: ε, z ∈ C.

and we get by (1.2) and (2.1)

(2.4)
∣∣∣∣τ([a, b])− β − α

π

∣∣∣∣ = |(τ − µ)([a, b])| ≤ 8
log 3

√
ε.

Hence, we have got an estimate for the modulus of µ − τ on subintervals of
E = [−1, 1] by a one-sided bound for the logarithmic potential Uµ − Uτ .

Instead of E = [−1, 1], let E be a Jordan arc of class C2+ and let τ be again
the normalized zero-counting measure of a polynomial p. Let us now introduce
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the so-called Green lines (see [12]). These are orthogonal trajectories of the family
of level lines of G(z) and any z ∈ E is the endpoint of a unique Green line L(z).
For any subarc J of E we define

(2.5) S+
α (J) =

( ⋃
z∈J

L(z)
)
∩ Eα.

Then the generalization of the Erdős–Turán estimate (2.4) is the following.

Theorem 1 [2]. Let E be a Jordan arc of class C2+, c0 > 0 fixed. Then there
exists a constant C > 0, depending on E and c0, such that for all subarcs J of E
and all α ≥ 1 + c0

√
ε the estimate

(2.6) |(µ− τ)(S+
α (J)| ≤ C

√
ε

holds where τ is the normalized zero-counting measure of a polynomial , µ the
equilibrium measure of E and

(2.7) ε := sup{Uµ−τ (z) : z ∈ C}.
We remark that S+

α (J) is a neighbourhood of each interior point of the Jordan
arc J and we have not any more the condition that τ is supported by E.

Next, we consider the generalization of (1.2) to a Jordan curve E instead of the
unit circle: Let E be Jordan curve of class C2+, and let S+

α (J) be defined as above,
α > 1. Moreover, we fix a point z0 in the interior of E. Let G0(z) = G0(z, z0) be
the Green function of the region F = int(E) with pole at z0. For z ∈ E we denote
by L0(Z) the Green line of G0(z) ending in z ∈ E, and let

(2.8) Fα := {z ∈ F : 0 < G0(z) ≤ logα} ∪ E
for α > 1, and set for any subarc J of E

(2.9) S−α (J) =
( ⋃
z∈J

L0(z)
)
∩ Fσ

and

(2.10) Sα(J) = S+
α (J) ∪ S−α (J).

Theorem 2 [2]. Let E be a Jordan curve of class C2+, z0 a fixed point of the
interior of E, c0 > 0. Then there exists a constant C > 0, depending on E, z0
and c0 such that for all subarc J of E and all α ≥ 1 + c0

√
Uτ−µ + 2ε

(2.11) |(µ− τ)(Sα(J))| ≤ C
√
Uτ−µ(z0) + 2ε

where τ is the normalized zero-counting measure of a polynomial p, µ = µE and

(2.12) ε := sup{Uµ−τ (z) : z ∈ C}.
The estimate (1.2) of Erdős–Turán fits in this general framework. Namely, if

E is the unit circle we choose z0 to be the point z0 = 0. Then

G0(z) = − log |z|, |z| < 1,

and
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Uτ−µ(z) = Uτ (z)− Uµ(z) = − log |pn(z)|
n

since Uµ(z) = 0 for |z| ≤ 1. Hence,

(2.13) Uτ−µ(z0) = Uτ−µ(0) = − log |a0|
n

,

(2.14) ε = sup{Uµ−τ (z) : z ∈ C} =
log ‖p‖|z|=1

n

and we obtain immediately from (2.11) the former inequality (1.3) of Erdős and
Turán.

We remark that in [2] Theorems 1 and 2 were proved for the more general
situation that E can be a general regular set, but J has to be a subarc of a Jordan
curve (resp. Jordan arc). Recently, these theorems were generalized by Grothmann
[9] for the case that τ is any probability measure satisfying the one-side bound
(2.7), resp. (2.12), between the logarithmic potentials of the measure τ and the
equilibrium distribution of E. Moreover, Grothmann has given estimates in the
case that E is a Jordan curve (resp. Jordan arc) with corners. In his results the
angles of the corners play a significant role. So far it is not known how sharp the
results of Grothmann are. On the other hand the result of Theorem 1 is sharp.
This was already pointed out by Erdős and Turán.

3. Estimates by two-sided bounds of Uµ − Uτ . The sharpness of the
Erdős–Turán results for E = [−1, 1] can be shown by modified Jacobi polynomials
having multiple zeros at the endpoints ([4]), i.e. if we know only the norm of the
polynomial

p(x) = xn + . . .

on [−1, 1] then no better estimates can be given besides of the constant 8/ log 3
in (1.2) (cf. [8], [14]). But if we assume that all zeros are “sufficiently simple” the
estimate can be substantially improved. To be precise let

(3.1) ‖p‖[−1,1] ≤ An
1
2n

and let

(3.2) |p′(xi)| ≥
1
Bn

1
2n

for all zeros xi of p, i = 1, . . . , n.

Theorem 3 [3]. Let p be a monic polynomial of degree n with simple zeros
xi on [−1, 1] such that (3.1) and (3.2) hold. Moreover , let τ be the normalized
zero-counting measure of p and µ the equilibrium distribution of [−1, 1]. Then
there exists a constant c > 0 such that for any subinterval [a, b] of [−1, 1]

(3.3) |(µ− τ)([a, b])| ≤ c log n
logCn
n

where Cn = max(An, Bn, n).
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V. Totik [18] has obtained better estimates in Theorem 3, namely

(3.4) |(µ− τ)([a, b])| ≤ c logCn
n

log
(

n

logCn

)
if logCn/n is less than a fixed constant less than 1. Moreover, Totik could prove
that (3.4) is sharp.

The proof of (3.3) in [3] is of function theoretical nature and uses essentially
the fact that the conditions (3.1) and (3.2) lead to

(3.5) |Uτ−µ(z)| ≤ c logCn
n

, |z| ≥ 1 + n−κ

where κ > 0 and the constant c may depend on κ but is independent of n.
The starting point for generalizing Theorem 3 to a Jordan curve or arc E is

the two-sided bound (3.5) outside certain level lines of the Green function G(z) of
the exterior of E. Let us introduce the notion of discrepancy D[σ+−σ−] between
two probability measures σ+ and σ−, i.e.

(3.6) D[σ+ − σ−] := sup |(σ+ − σ−)(J)|
where the supremum is taken over all subarc J ⊆ E. Now, the general discrepancy
theorem only makes use of a bound

(3.7) ε(α) ≥ max
z∈Γα

|Uσ
+−σ−(z)|

Theorem 4 [5]. Let E be a Jordan curve or a Jordan arc of class C1+, σ+ and
σ− two probability measures on E. Moreover , let M > 0, 0 < γ ≤ 1 be constants
such that for all subarc J of E

(3.8) σ+(J) ≤M
(∫
J

ds

)γ
.

Then there exists a constant c > 0 depending on E, M and γ such that

D[σ+ − σ−] ≤ cε(α) log
1

ε(α)

for all α with α ≤ 1 + ε(α)1+1/γ and ε(α) < 1/e.

4. Applications

(a) Zeros of Chebyshev polynomials. Let E be a Jordan arc of class C2+ and
let Tn(z) be the monic Chebyshev polynomial on E of degree n. We denote by
Zn(K) the number of zeros of Tn(z) in K. Due to a result of Widom [21] there
exists a constant c > 0 such that

‖Tn‖E ≤ c cap(E)n.

Now, Theorem 1 yields (for any fixed α0 > 0)∣∣∣∣Zn(S+
α (J))
n

− µE(S+
α (J))

∣∣∣∣ ≤ C/√n
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for all α ≥ α0 where C is a constant depending on E and α0.

(b) Zeros of polynomials of best uniform approximation. Let E be a Jordan
arc of class C2+ and f a continuous function on E which is not infinitely often
differentiable on the boundary of E. Let p∗n be the polynomial of best uniform
approximation to f on E of degree ≤ n. Again, τ∗n denotes the normalized zero
counting measure of p∗n. Then by Theorem 1

|(τ∗n − µE)(S+
α (J)| ≤ C

√
log n
n

for any subarc J ⊂ E and any α ≥ α0 > 1 where C is a constant depending on
E and α0 (Blatt, Grothmann [2]).

If E is a Jordan curve an analogous result is true (cf. [2], Corollary 4).

(c) Fekete points. Let E be a Jordan arc or curve as section 3 and let Fn(E)
be any n-point subset S of E for which the Vandermonde expression

V (S) :=
{ ∏
z,t∈S
z 6=t

|z − t|
}1/2

is as large as possible. The points in Fn(E) are called Fekete points of E and
these points are related to the capacity by

lim
n→∞

V (Fn(E))2/n(n−1) = cap(E).

Let νn denote the measure that associates the mass 1/n with each of the Fekete
points in Fn(E) then

D[νn − µE ] ≤ c (log n)2

n
where c is a constant dependent on E (Blatt, Mhaskar [5]). Previous results are
due to Kleiner [11] and Pommerenke [15], [16].

(d) Extreme points. Let E be again a Jordan arc or Jordan curve of class C1+.
If E is a Jordan arc then we set K := E. In the case that E is a Jordan curve we
define K as the closed region bounded by E. Next, we consider the approximation
of a continuous function f on K which is analytic in the interior of K. Let p∗n
be the best Chebyshev approximation to f on K by Πn. The distribution of the
points in the extreme point set

An(f) := {z ∈ E : |f(z)− p∗n(z)| = ‖f − p∗n‖E}
can be estimated at least for the Fekete points of this set. Let Fn+2(An(f)) be
any n+ 2 point Fekete set of An(f) and let νn+2 be the measure that associates
the mass 1/n+ 2 with each point of this set. Then Blatt, Saff and Totik proved
in [1] that

(4.1) D[νn+2 − µE ] ≤ c log n√
n
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for infinitely many integers n in the case of a Jordan curve E of class C1+. Now,
Theorem 4 yields for infinitely many n

(4.2) D[νn+2 − µE ] ≤ c (log n)2√
n

if E is either Jordan curve or a Jordan arc of class C1+ ([5]), a result which is
slightly weaker than (4.1), but is true for a Jordan arc too.

(e) Orthogonal polynomials. Let E = [−1, 1] and τ be a unit Borel measure
with finite moments. Moreover, we assume that the support of τ is infinite. Then
there exists a unique system of orthonormalized polynomials

pn(x) = γnx
n + . . . , γn > 0

such that
1∫
−1

pnpm dτ = δn,m, n,m = 0, 1, . . .

For each integer n ≥ 1, the polynomials pn have n simple zeros in [−1, 1]. If the
Radon–Nikodym derivative τ ′ satisfies τ ′ ≥ κ > 0 on [−1, 1] then

D[νn − µE ] ≤ c (log n)2

n

where νn is the normalized zero-counting measure of the zeros of pn ([3]). More
general results can be found in Blatt, Mhaskar [5] as well results on the distribu-
tion of the zeros of orthogonal polynomials on the unit circle.
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[15] Ch. Pommerenke, Über die Verteilung der Fekete-Punkte, Math. Ann. 168 (1967),

111–127.
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