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1. Introduction. The notion of uniqueness goes back to Cantor: a subset E
of the unit circle Γ is said to be a set of uniqueness if the zero sequence is the
only sequence (cn)n∈Z of complex numbers such that∑

|n|≤m

cne
int−−−−→

m→∞
0

for every eit 6∈ E. A set of multiplicity is a set which is not a set of uniqueness.
Cantor [5] showed in 1870 that finite sets (in particular the empty set) are sets of
uniqueness, and more generally that “reducible” countable sets are sets of unique-
ness. It was only in 1908 that Young [32] was able to prove that all countable
sets are sets of uniqueness.

We will be only interested here in closed sets (we refer to Kechris–Louveau
[20] for a discussion of the notion of uniqueness for nonclosed sets). In this case E
is a set of multiplicity if and only if there exists a nonzero pseudofunction, i.e. a
distribution S (see Section 2) such that

Ŝ(n)−−−−→
|n|→∞

0 ,

with support contained in E. In other terms, if we denote by PF (E) the set of
pseudofunctions S such that SuppS ⊂ E, then E is a set of uniqueness if and
only if PF (E) = {0}. It follows immediately from this fact that if E has positive
Lebesgue measure then E is a set of multiplicity.

In Section 2 we describe some classical results concerning uniqueness, including
the famous Salem–Zygmund characterization of perfect symmetric sets of constant
ratio which are sets of uniqueness [28].
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An obvious strengthening of the notion of uniqueness is obtained by consid-
ering the set PM0(E) of all pseudomeasures S (i.e. distributions S such that
supn∈Z |Ŝ(n)| < ∞) such that SuppS ⊂ E and limn→−∞ Ŝ(n) = 0. Clearly,
PF (E) ⊂ PM0(E) and so any closed set E such that PM0(E) = {0} is a set
of uniqueness. It follows from the results of Kahane–Katznelson [16] that “strong
AA+-sets” (see Section 2) do possess this strong form of uniqueness.

Now denote by HD(Γ ) the set of all hyperdistributions on Γ (see Section 2)
and set HD0(Γ ) = {S ∈ HD(Γ ) | limn→−∞ Ŝ(n) = 0}; if E ⊂ Γ is closed, set
HD0(E) = {S ∈ HD0(Γ ) | SuppS ⊂ E}.

Let ω : Z+ → [1,∞[ be a submultiplicative weight. Let

PM0
ω(E) = {S ∈ HD0(E) | sup |Ŝ(n)|/ω(n) <∞} .

We will say that E is a set of ω-uniqueness if PM0
ω(E) = {0}. Since hyperdis-

tributions can be interpreted as analytic functions on C\Γ vanishing at infinity
there are obvious restrictions to these strong forms of uniqueness related to inner
functions: For every nonempty closed set E and every ε > 0 there exists a nonzero
S ∈ HD0(E) such that

lim sup
n→∞

log+ |Ŝ(n)|√
n

< ε ,

and for every uncountable closed set E there exists a nonzero S ∈ HD0(E) such
that limn→∞(log+ |Ŝ(n)|)/

√
n = 0. On the other hand, if S ∈ HD0(Γ ) satisfies

log+ |Ŝ(n)|√
n

−−−−→
n→∞

0

then SuppS is a perfect set, and so countable sets have the ω-uniqueness property
for all weights ω such that limn→∞(logω(n))/

√
n = 0 (see Zarrabi [34]). We

present a new proof of this result, based on analytic methods, in Section 3.
Now denote by E1/p the perfect symmetric set of constant ratio 1/p. We show

in Section 4 that every distribution S supported by E1/p such that limn→−∞ Ŝ(n)
= 0 vanishes. Stronger results are known, but the class of weights ω for which
E1/p has the ω-uniqueness property remains to be determined.

In Section 5 we show that no general ω-uniqueness property holds for Dirichlet
sets: given any weight ω such that limn→∞ ω(n) =∞ there exists a Dirichlet set
E and a nonzero distribution S ∈ PM0

ω(E). A similar result holds for Kronecker
sets [9], but the proof for Dirichlet sets, which is significantly simpler, is probably
more suitable to understand the nature of the phenomenon (which is somewhat
related to Kaufman’s construction [19] of Helson sets of multiplicity).

In Section 6 we discuss a related, stronger property [9]. A closed set E ⊂ Γ
is said to be ω-rigid if PMω(E) = PM(E) where PMω(E) is the set of all
hyperdistributions S with support contained in E which satisfy

sup
n<0
|Ŝ(n)| <∞, sup

n≥0

|Ŝ(n)|
ω(n)

<∞ .
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If E is ω-rigid for some unbounded weight ω, then E is a “strong” AA+-set,
and for strong AA+-sets ω-rigidity is equivalent to ω-uniqueness. This notion
has applications to operator theory: when E is ω-rigid, every contraction T on a
Banach space such that SpT ⊂ E and supn≥1 ‖T−n‖/ω(n) < ∞ satisfies in fact
supn≥0 ‖T−n‖ < ∞. Conversely, if the above property holds for every Banach
space X, then E is ω-rigid. Examples given in Section 6 show that this converse
does not hold if we restrict attention to Hilbert spaces.

To conclude this review we indicate in Section 7 the link between these strong
forms of uniqueness and the structure of closed ideals of A+, the algebra of ab-
solutely convergent Taylor series. The results of Section 4 imply that a closed
ideal I of A+ such that h(I) ∩ Γ = E1/p, where h(I) is the hull of I, is entirely
determined by its inner factor [10]. This proves, in a special case, an old conjec-
ture of Bennett and Gilbert [3]. On the other hand, it follows from the results of
Section 5 that this conjecture is not true in general [9].

2. Classical uniqueness theory

Definition 2.1 [17]. A hyperdistribution is a holomorphic function S on C\Γ
such that S(z)→ 0 as |z| → ∞. The Fourier coefficients of S are defined by the
formulae

S(z) =
∑
n≥1

Ŝ(n)zn−1 (|z| < 1) ,

S(z) = −
∑
n≤0

Ŝ(n)zn−1 (|z| > 1) .

A point z0 ∈ Γ is said to be regular for S if there exist % > 0 and Fz0
holomorphic on D(z0, %) such that S(z) = Fz0(z) for z ∈ D(z0, %), |z| 6= 1.
Nonregular points are said to be singular, and the support of S, denoted by
SuppS, is the set of singular points of S.

A hyperdistribution S is said to be (1)

• a pseudofunction if Ŝ(n)→ 0 as |n| → ∞;
• a pseudomeasure if ‖S‖PM = supn∈Z |Ŝ(n)| <∞;
• a distribution if |Ŝ(n)| = O(|n|k) as |n| → ∞ for some k ≥ 0.

We denote by PM(Γ ), PF (Γ ), D(Γ ), HD(Γ ) the sets of all pseudomeasures,
pseudofunctions, distributions, and hyperdistributions. Also if E ⊂ Γ we denote
by PF (E) the set of all pseudofunctions S such that SuppS ⊂ E, and we define in
the same way PM(E), D(E), andHD(E). It follows immediately from Liouville’s
theorem that SuppS 6= ∅ for every nonzero S ∈ HD(Γ ).

We summarize the link between uniqueness and pseudofunctions in the fol-
lowing theorem [17, Chapter 5, §4].

(1) Editorial note: See also the theorems of G. Pólya and S. M. Shah cited on pp. 371–372
in this volume.



130 J. ESTERLE

Theorem 2.2. Let E ( Γ be a closed set , and let (cn)n∈Z be a family of
complex numbers. We have:

1) If limm→∞
∑
|n|≤m cne

int = 0 for eit ∈ Γ\E, then cn → 0 as |n| → ∞.
2) If cn → 0 as |n| → ∞, set

S(z) =
∞∑
n=0

cnz
n (|z| < 1) ,

S(z) = −
−1∑

n=−∞
cnz

n (|z| > 1) ;

then the following conditions are equivalent :

(i) limm→∞
∑
|n|≤m cne

int = 0 for every eit ∈ Γ\E;
(ii) SuppS ⊂ E.

We thus see that E is a set of uniqueness if and only if PF (E) = {0}. The
notion of uniqueness can also be interpreted in terms of the classical Wiener
algebra

A(Γ ) =
{
f ∈ C(Γ )

∣∣∣ ‖f‖1 =
∑
n∈Z
|f̂(n)| <∞

}
,

the algebra of absolutely convergent Fourier series; (A(Γ ), ‖ · ‖1) is a regular
Banach algebra, and the characters of A(Γ ) are the morphisms χz : f → f(z)
where z ∈ Γ .

Let I(E) = {f ∈ A(Γ ) | |f |E = 0} and denote by J(E) the closure in (A(Γ ),
‖ · ‖1) of the set of all f ∈ A(Γ ) such that Supp f ∩ E = ∅, where we denote by
Supp f the closed support of f .

If I is a closed ideal of A(Γ ) set h(I) = {z ∈ Γ | f(z) = 0 (f ∈ I)}. Then it
follows from standard results about regular algebras [18] that

h(I(E)) = h(J(E)) = E and J(E) ⊂ I ⊂ I(E)

for each closed ideal I of A(Γ ) such that h(I) = E. We can identify A(Γ ) with
the dual of PF (Γ ) and PM(Γ ) with the dual of A(Γ ) by using the formula

(2.3) 〈f, S〉 =
∑
n∈Z

f̂(−n)Ŝ(n) (f ∈ A(Γ ), S ∈ PM(Γ )),

and routine computations show that we have

(2.4) 〈f, S〉 = lim
r→1−

1
2iπ

∫
Γ

f(ζ)[S(rζ)− S(ζ/r)] dζ .

It follows from (2.4) that 〈f, S〉 = 0 if Supp f ∩ SuppS = ∅, so that PM(E) ⊂
[J(E)]⊥.

To obtain the converse, denote by α : z → z the identity map on Γ . Then
α̂p(p) = 1 and α̂p(n) = 0 for n 6= p, so that Ŝ(n) = 〈α−n, S〉 for n ∈ Z.
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So we have the formula

(2.5) 〈(α− z)−1, S〉 = S(z) (z ∈ C\Γ, S ∈ PM(Γ )) .

Now assume that S ∈ J(E)⊥ and let π : A(Γ )→ A(Γ )/J(E) be the canonical
map. Since h(J(E)) = E, characters of A(Γ )/J(E) have the form π(f) → f(z)
for some z ∈ E, and Spπ(α) = E. For f ∈ A(Γ ) set 〈π(f), L〉 = 〈f, S〉.

Then L is a continuous linear functional on A(Γ )/J(E). If we set S̃(z) =
〈(π(α)−z)−1, L〉, we obtain an analytic extension of S to C\E, so that SuppS ⊂ E
(the function S̃ is the “Domar–Gelfand transform of S” [8]; curiously enough, the
fact that J(E)⊥ ⊂ PM(E) is usually proved in a much more complicated way).
Hence we have the following standard result.

Proposition 2.6. For every closed set E ⊂ Γ , PM(E) = [J(E)]⊥.

The w∗-topology in A(Γ ) is, by definition, the weak topology σ(A(Γ ), PF (Γ ))
on A(Γ ), A(Γ ) being identified with the dual space of PF (Γ ) (the w∗-topology
agrees with the topology of pointwise convergence of Fourier coefficients on
bounded subsets of A(Γ )).

It follows from Theorem 2.2 and Proposition 2.6 that we have the following
characterization of sets of uniqueness:

Corollary 2.7. Let E ⊂ Γ be a closed set. Then the following conditions are
equivalent :

(1) E is a set of uniqueness.
(2) PF (E) = {0}.
(3) J(E) is w∗-dense in A(Γ ).

A function f ∈ A(Γ ) satisfies synthesis for E, by definition, iff f ∈ J(E). If
J(E) = I(E), which means that all functions vanishing on E satisfy synthesis for
E, then E is a set of synthesis. We thus see that a set of synthesis E is a set of
uniqueness if and only if I(E) is w∗-dense in A(Γ ) (for a discussion of w∗-density
see for example [11, Chapter 4]).

Now if µ is a regular Borel measure on Γ (which we write as a periodic measure
on R) set

Sµ(z) =
1

2π

2π∫
0

dµ(t)
eit − z

(z ∈ C\Γ ) .

Then Sµ ∈ PM(E), where E is the closed support of µ, and Ŝµ(n) = µ̂(n)
(n ∈ Z). Identifying µ with Sµ, we thus see that a measure is a pseudomeasure,
and an L1-function is a pseudofunction. In particular, every closed set of positive
Lebesgue measure is a set of multiplicity, since its characteristic function is a
nonzero pseudofunction. The map µ → Sµ extends in an obvious way to an
isomorphism of the dual space of C∞(Γ ) (distributions in the usual sense) into
the set D(Γ ) introduced in Definition 2.1, and Suppµ = SuppSµ.
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For ζ ∈ (0, 1/2) denote by

Eζ =
{

exp
(

2iπ
∑
n≥1

εnζ
n−1(1− ζ)

) ∣∣∣ εn = 0 or 1
}

the perfect symmetric set of constant ratio ζ. Recall that t > 0 is said to be a Pisot
number if there exist integers a0, . . . , an−1 such that tn +an−1t

n−1 + . . .+a0 = 0
and such that all other roots of the above equation lie in the open unit disc.

The Salem–Zygmund theorem ([28] or [17, Chapter 6]) gives the following
characterization of uniqueness for the sets Eζ .

Theorem 2.8. Eζ is a set of uniqueness if and only if 1/ζ is a Pisot number.

When 1/ζ is not a Pisot number, a nonzero element of PF (Eζ) is given by a
nonatomic measure concentrated on Eζ , but there are examples of sets of multi-
plicity E, due to Pyateckĭı-Shapiro [25], for which PF (E) does not contain any
nonzero measure [11, p. 104].

Now denote by A+ the algebra of absolutely convergent Taylor series, i.e. the
algebra of analytic functions f on the open unit disc such that

‖f‖1 =
∞∑
n=0

|f (n)(0)|
n!

<∞ .

By identifying elements of A+ with their restrictions to the unit circle, we can
isometrically identify A+ with the algebra {f ∈A(Γ ) | f̂(n)= 0(n < 0)}. A set E
is said to be a set of AA+-interpolation, or an AA+-set , if A+(E) = A(E) where
we denote by A+(E) (resp. A(E)) the algebra of restrictions to E of elements of
A+ (resp. A(Γ )). In other terms, E is an AA+-set if and only if I(E) + A+ =
A(Γ ). This suggests the following definition:

Definition 2.9. A closed set E ⊂ Γ is a strong AA+-set if J(E) + A+ =
A(Γ ). If E is a strong AA+-set, the strong AA+-constant of E is ‖i−1‖ where
i : f+J+(E)→ f+J(E) is the natural injection fromA+/J+(E) intoA(Γ )/J(E).

By using duality arguments, Kahane and Katznelson showed in [16, Theo-
rem 2.1] that E is an AA+-set if and only if there exists K > 0 such that
‖S‖PM ≤ K lim supn→∞ |Ŝ(−n)| for every pseudomeasure S ∈ I(E)⊥, where
‖S‖PM = supn∈Z |Ŝ(n)|, and the AA+-constant of E, defined as the norm of the
inverse of the natural injection from A+(E) intoA(E), is the smallest K satisfying
the inequality above. Also it was noticed in [35] that E is an AA+-set if and only
if I+(E) is w∗-sequentially dense in A+ (the w∗-topology on A+ is obtained by
identifying A+ to the dual of c0, and it is the restriction to A+ of the w∗-topology
on A(Γ )). The following proposition extends these results to strong AA+-sets.

Proposition 2.10. Let E ⊂ Γ be a closed set. Then the following conditions
imply each other :

(1) E is a strong AA+-set.
(2) J+(E) is w∗-sequentially dense in A+.
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(3) There exists K > 0 such that

‖S‖PM ≤ K lim sup
n→−∞

|Ŝ(n)| (S ∈ PM(E)) .

Moreover , the strong AA+-constant of E is the smallest K > 0 satisfying (3).

P r o o f. Denote by π : A(Γ ) → A(Γ )/J(E) and π+ : A+ → A+/J+(E) the
canonical maps. If E is a strong AA+-set, let K be the strong AA+-constant of E.

Then ‖π+(α)−n‖ ≤ K‖π(α)−n‖ = K and so there exist fn ∈ A+ and ϕn ∈
J+(E) such that ‖fn‖ ≤ K + 1/n and αnfn = 1 + ϕn. Since fn ∈ A+, the
sequence (−ϕn)n≥1 converges w∗ to 1 and J+(E) is w∗-sequentially dense in
A+. Conversely, assume that there exists a sequence (ψn)n≥1 in J+(E) which
converges w∗ to 1. It follows from the Banach–Steinhaus theorem that M =
lim supn→∞ ‖ψn‖1 < ∞, and limn→∞ ψ̂n(0) = 1, limn→∞ ψ̂n(m) = 0 for m ≥ 1.
Fix p ≥ 1 and set

Un,p =
p−1∑
m=0

ψ̂n(m)αm, Rn,p =
∞∑
m=p

ψ̂n(m)αm−p .

Then limn→∞ ‖1− Un,p‖1 = 0, and so Un,p is invertible when n is large enough,
and limn→∞ ‖U−1

n,p‖ = 1. We obtain 1 = (ψn − αnRn,p)U−1
n,p and so

‖π+(α)−p‖ ≤ lim sup
n→∞

‖Rn,pU−1
n,p‖1 ≤M .

Now let f ∈A(Γ ). The series
∑
n∈Z f̂(n)π+(α)n converges in A+/J+(E), and

we have
i
(∑
n∈Z

f̂(n)π+(α)n
)

=
∑
n∈Z

f̂(n)π(α)n = π(f) .

Hence i is onto, and (1) holds. Notice that the arguments above show that the
AA+-constant of E is the smallest constant M for which there exists a sequence
(ψn), which converges w∗ to 1, such that lim supn→∞ ‖ψn‖ ≤M .

If (1) holds, let p ≥ 1 and ε > 0; denote again by K the strong AA+-constant
of E. There exist f ∈ A+ and g ∈ J(E) such that 1 = αn+pf + g, so that
α−n = αpf + gα−n, with ‖f‖1 ≤ K + ε.

Let S ∈ PM(E). We obtain

|Ŝ(p)| = |〈α−pf, S〉| =
∣∣∣ ∞∑
n=0

f̂(n)Ŝ(−p− n)
∣∣∣ ≤ (K + ε) sup

n≥0
|Ŝ(−n− p)| .

Hence ‖S‖PM ≤ K lim supn→∞ |Ŝ(−n)|, and (3) holds.
The fact that (3) implies (1), and the assertion concerning the AA+-constant

of E, follow from the same duality argument as in [16, Theorem 2.1].

Strong AA+-sets give a large class of sets of uniqueness. The simplest example
is given by countable sets [16, Theorem 3.1] since pseudomeasures with countable
support are almost periodic. Other examples are given by H-sets, i.e. sets E
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such that there exists a strictly increasing sequence (pn) of integers such that⋃
n≥1E

pn is not dense in Γ (the argument given in [16] shows that H-sets are
strong AA+-sets). It is immediate that E1/p is an H-set if p ≥ 3 is an integer, and
this remains true for Eζ if 1/ζ is a quadratic Pisot number. The sets Eζ , where
1/ζ is a Pisot number of degree ≥ 3, belong to the more general class of H(p)-sets
of Pyateckĭı-Shapiro [17, p. 59]. These sets are also strong AA+-sets—this also
follows from the proof of [16, Theorem 3.3].

Definition 2.11. Let E ⊂ Γ be a closed set.

(1) E is a Kronecker set if for every f ∈ C(E) with |f(z)| ≡ 1 on E, there
exists a sequence (pn) of integers such that limn→∞ zpn = f(z) uniformly on E.

(2) E is a Dirichlet set if there exists a strictly increasing sequence (pn) of
integers such that limn→∞ zpn = 1 uniformly on E.

(3) E is a Helson set if A(E) = C(E).

Any finite set is a Dirichlet set, and any finite independent set is a Kronecker
set [17, appendix 5].

A Kronecker set is a Dirichlet set and a Helson set, and is of synthesis by a
theorem of Varopoulos [30]. Clearly, Dirichlet sets are H-sets, and Dirichlet sets
have strong AA+-constant 1 [15, p. 98].

Helson sets are AA+-sets by a theorem of Wik [31], so that the condition
A(E) = C(E) ensures in fact that A+(E) = C(E). In particular, I+(E) is w∗-
sequentially dense in A+, and this argument seems new (the weaker fact that
I(E) is w∗-sequentially dense in A(Γ ) is proved in [11, Theorem 4.5.2] by more
complicated arguments). We refer to the classical books [11], [15], [17] for further
information (sets of uniqueness are closed under closed countable unions, there
are sets of uniqueness such that J(E) is not sequentially w∗-dense in A(Γ ), etc. . . )
and we conclude this section by the famous and surprising result of Körner and
Kaufman.

Theorem 2.12 [19], [22]. Every set of multiplicity contains a Helson set of
multiplicity.

3. Strong uniqueness properties of countable sets

Definition 3.1. HD0(Γ ) = {S ∈ HD(Γ ) | limn→−∞ Ŝ(n) = 0}. If E ⊂ Γ is
closed, HD0(E) = HD0(Γ ) ∩HD(E).

We are interested here in geometric conditions on E which ensure that ev-
ery element S of HD0(E) such that (Ŝ(n))n≥0 satisfies some growth condition
vanishes.

Of course, PF (Γ ) ⊂ HD0(Γ ). We now introduce examples of elements of
HD0(Γ ) related to inner functions. Let E ⊂ Γ be closed, and let µ be a positive



UNIQUENESS 135

singular measure concentrated on E. Let

Fµ(z) = exp
(

1
2π

2π∫
0

eit + z

eit − z
dµ(t)

)
− exp(−‖µ‖) (z ∈ C\E)

where

‖µ‖ =
1

2π

2π∫
0

dµ(t)

is the total variation of µ. Then Fµ ∈ HD(Γ ), the function

z → 1
Fµ(z) + exp(−‖µ‖)

(z ∈ D)

is inner, and the function z → Fµ(1/z) + exp(−‖µ‖) (|z| < 1), extended by
continuity at 0, is also inner. This shows that∑

n≤0

|F̂µ(n)|2 <∞

and so Fµ ∈ HD0(Γ ).
If µ = 2πλδt0 and z0 = eit0 , we have

Fµ(z) = exp
(
λ
z0 + z

z0 − z

)
− e−λ .

Routine computations using Cauchy estimates lead to the following observation
(see [2], [9], [33]).

Proposition 3.2. For every z0 ∈ Γ , and every ε > 0, there exists a nonzero
Sε ∈ HD0{z0} such that

lim sup
n→∞

log+ |Sε(n)|√
n

< ε .

Now let E be an uncountable, closed subset of Γ . It is well known that E
contains a closed, perfect set F . If F has positive Lebesgue measure, then F is
a set of multiplicity. If F has zero Lebesgue measure, then F is the support of
a positive, singular, nonatomic measure µ. Applying Cauchy’s inequalities to Fµ,
and using standard estimates of Poisson integrals, we also obtain the following
result [34].

Proposition 3.3. For every uncountable closed set E ⊂ Γ there exists a
nonzero S ∈ HD0(E) such that

lim sup
n→∞

log+ |Ŝ(n)|√
n

= 0 .

Now set
E = {S ∈ HD0(Γ ) | log+ |Ŝ(n)|/

√
n−−−−→

n→∞
0} .
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(Using Cauchy’s inequalities, it is easy to see that

E = {S ∈ HD0(Γ ) | (1− |z|) log |S+(z)| −−−−→
|z|→1−

0}.)

We now wish to prove, by analytic methods, that the support of every nonzero
element of E is a perfect set, a result implicitly contained in [34]. First, we need
to discuss decompositions of elements of HD(Γ ) with disconnected support. If
S ∈ HD(Γ ), then

1
2iπ

∫
Γ (0,r)

S(ζ)
ζ − z

dζ = 0 for r > sup(1, |z|)

where Γ (a, r) is the circle {ζ ∈ C | |ζ − a| = r} oriented positively.
Now if K and L are disjoint closed subsets of the circle such that SuppS ⊂

K ∪ L it is easy, using some suitable contour integrals and the Cauchy formula,
to construct SK , SL ∈ HD(Γ ) such that SK + SL = S and SuppSK ⊂ K,
SuppSL ⊂ L. This decomposition is unique, since K and L are disjoint.

If K = {z0}, which means that there exists % > 0 such that SuppS∩D(z0, %) ⊂
{z0}, we have

SK(z) = − 1
2iπ

∫
Γ (z0,ε(z))

S(ζ)
ζ − z

dζ

where ε(z) is any element of (0, inf(%, |z0 − z|)).
We have the following lemma (the author was not able to avoid the use of

regular Beurling algebras to prove it).

Lemma 3.4. Let S ∈ E , and let K,L be disjoint closed subsets of Γ such that
SuppS ⊂ K ∪ L. Then SK ∈ E and SL ∈ E.

P r o o f. Routine elementary computations [33] that we omit show that there
exists a submultiplicative weight ω : N→ [1,∞[ such that

sup
n≥0

|Ŝ(n)|
ω(n)

<∞ and
logω(n)√

n
−−−−→
n→∞

0 .

Let τ(n) = 1 (n ≥ 0), τ(n) = ω(−n) (n < 0) and consider

Aτ (Γ ) =
{
f ∈ C(Γ )

∣∣∣ ∑
n∈Z
|f̂(n)|τ(n) <∞

}
.

Then Aτ (Γ ) is a regular Banach algebra with respect to the norm ‖f‖τ =∑
n∈Z |f̂(n)|τ(n) (see [18]), since∑

n∈Z

log τ(n)
1 + n2

<∞ .

Let
HDτ (Γ ) = {T ∈ HD(Γ ) | sup

n∈Z
|T̂ (n)|/τ(−n) <∞} .
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Then we can identify isometrically HDτ (Γ ) with the dual space of Aτ (Γ ) by
the duality formula 〈f, T 〉 =

∑
n∈Z f̂(n)T̂ (−n). Formula (2.4) and Proposition 2.6

remain valid (using synthesis with respect to Aτ (Γ ) instead of synthesis for A(Γ )).
For g ∈ Aτ (Γ ) and T ∈ HDτ (Γ ) set 〈f, gT 〉 = 〈fg, T 〉 (f ∈ Aτ (Γ )). Then gT ∈
HDτ (Γ ) and Supp gT ⊂ Supp g ∩ SuppT . Also gT ∈ HD0(Γ ) if T ∈ HDτ (Γ ) ∩
HD0(Γ ). Since Aτ (Γ ) is regular, there exist g and h such that Supp g ∩ L = ∅,
Supph ∩ K = ∅, g + h ≡ 1. Since S ∈ HD0(Γ ) ∩ HDτ (Γ ) we have gS ∈ E ,
hS ∈ E , Supp gS ∩ L = ∅, Supp gS ⊂ S so Supp gS ⊂ K.

Similarly SupphS ⊂ L. Hence SK = gS, SL = hS, which proves the lemma.

Theorem 3.5. Let S ∈ HD(Γ ) such that

Ŝ(n)−−−−→
n→−∞

0,
log+ |Ŝ(n)|√

n
−−−−→
n→∞

0 .

Then SuppS is a perfect set.

P r o o f. Assume that there exists % > 0 such that SuppS ∩D(z0, %) ⊂ {z0}.
We can assume without loss of generality that z0 = 1 and % < 1. Denote by log ζ
the branch of the logarithm in D(1, %) which vanishes at 1. For z ∈ C set

F (z) =
1

2iπ

∫
Γ (1,ε(z))

S(ζ)ζz−1 dζ ,

where ε(z) ∈ (0, inf(%, |z − 1|)).
Clearly, F is an entire function of exponential type 0, since the definition

above does not depend on the choice of ε(z). Let T = S{1}. Then, since S − T is
holomorphic in D(1, %), we have

F (z) =
1

2iπ

∫
Γ (1,ε(z))

T (ζ)ζz−1 dζ .

By integrating T (ζ)ζz−1 over two suitable other circles of radii respectively
smaller and larger than 1 centered at the origin, we deduce from Cauchy’s theorem
that F (n) = −T̂ (−n) (n ∈ Z). Hence

F (n)−−−−→
n→∞

0,
log+ |F (n)|√

n
−−−−→
n→−∞

0 .

Since limn→∞ F (n) = 0 and since F is of exponential type 0, it follows from
Cartwright’s theorem [4, Theorem 10.2.1] that limt→∞ F (t) = 0. Now define√
−iz, for Im z ≥ 0, by taking the argument of −iz in [−π/2, π/2] and set

Gε(z) = e−ε
√
−iz (Re z ≥ 0). Since supn∈Z |F (n)Gε(n)| < ∞ it follows again

from Cartwright’s theorem that FGε is bounded on the real line, and it follows
from the Phragmén–Lindelöf principle [4, Theorem 1.4.1] that FGε is bounded
in the upper half-plane.
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Hence

lim sup
|z|→∞
Im z≥0

log+ |F (z)|√
|z|

= 0 .

Using a similar argument for the lower half-plane we see that in fact

lim sup
|z|→∞

log+ |F (z)|√
|z|

= 0 .

But another standard application of the Phragmén–Lindelöf principle [4, Theo-
rem 3.1.5] shows then that F ≡ 0, since limx→∞ F (x) = 0. Hence T̂ (n) = 0
(n ∈ Z), T = 0, and 1 is regular for S since T = S{1}.

This shows that SuppS cannot have isolated points, and the theorem is
proved.

4. Strong uniqueness properties of the Cantor set. We now use a very
different argument to establish the following result (first proved in [9] by using
the recent results about closed ideals of A+).

Theorem 4.1. Let S be a distribution on Γ . If SuppS ⊂ E1/p, and if
limn→−∞ Ŝ(n) = 0, then S = 0.

P r o o f. Let A∞(D) be the algebra of infinitely differentiable functions on the
closed unit disc D which are analytic on D.

Routine computations show that
2π∫
0

log
2

dist(eit, E1/p)
dt <∞ ,

and it follows then from the Taylor–Williams improvement [29] of a result of
Carleson [6] that there exists a nonzero f ∈ A∞(D) vanishing exactly on E1/p.
Fix q ∈ Z and set fn(z) = z−qf(zp

n

) (n ≥ 1, z ∈ Γ ). Then fn is infinitely
differentiable on Γ , and fn vanishes on E1/p. Since E1/p is perfect, f (k)

n vanishes
also on E1/p for k ≥ 1.

It follows then from a standard result about distributions that 〈fn, S〉 = 0
(n ≥ 1). We obtain

0 = 〈fn, S〉 =
∞∑
m=0

Ŝ(q −mpn)f̂(m) (n ≥ 1) .

Hence

|Ŝ(q)| ≤
∞∑
m=1

|f̂(m)| |Ŝ(q −mpn)| ≤ ‖f‖1 sup
m≥1
|Ŝ(q −mpn)|

for each n ≥ 1. Since Ŝ(m)→ 0 as m→ −∞, Ŝ(q) = 0 for every q, and S = 0.
Theorem 4.1 holds for every set E such that the closure of

⋃
n≥1E

kn satis-
fies the Carleson condition for some strictly increasing sequence (kn) of positive
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integers. Clearly, such sets are H-sets, but we shall see in the next section that
Theorem 4.1 is not true in general for H-sets. By using the geometric properties
of E1/p and some variant of the Beurling–Pollard method [15, p. 61] it is possible
to obtain the following stronger result, that we mention without proof.

Theorem 4.2 [9]. Let S ∈ HD0(E1/p). If

lim sup
n→∞

log+ |Ŝ(n)|
nα

<∞ for some α <
log p− log 2

2 log p− log 2
,

then S = 0.

In the other direction, by using singular measures concentrated on E1/p as in
Section 3, it is possible to construct nonzero S ∈ HD0(E1/p) such that

lim sup
n→∞

log+ |Ŝ(n)|
nβ

> 0, where β =
2 log p− log 2

4 log p

(see [26]). The best constant for which Theorem 4.2 holds is not known.

5. Distributions on Dirichlet sets. We now prove that Theorem 4.1 does
not extend in general to Dirichlet sets. The following lemma is well known.

Lemma 5.1. Let E ( Γ be a closed set. Then I(E) +A+ is dense in A(Γ ).

P r o o f. Let S ∈ PM(Γ ) such that S⊥(I(E) +A+). Since S⊥I(E), S⊥J(E)
and so SuppS ( Γ . Since S⊥A+, Ŝ(n) = 0 (n ≤ 0) and so S(z) = 0 if |z| > 1.
By the principle of analytic continuation, S = 0.

If S ∈ PM(Γ ) and f ∈ A(Γ ) we define fS by the formula

〈g, fS〉 = 〈fg, S〉 (g ∈ A(Γ )) ,

so that fS ∈ PM(Γ ). Clearly, f̂S(n) =
∑
p∈Z f̂(p)Ŝ(n − p) (n ∈ Z), and

Supp fS ⊂ Supp f ∩ SuppS. Also ‖fS‖PM ≤ ‖f‖1‖S‖PM , where ‖S‖PM =
sup |Ŝ(n)| (n ∈ Z), and fS ∈ PF (E) if S ∈ PF (E).

Definition 5.2. Let ω : N→ [1,∞[. Let

PMω(Γ ) = {S ∈ HD(Γ ) | sup
n≤0
|Ŝ(n)| <∞, sup

n>0
|Ŝ(n)|/ω(n) <∞} .

For S ∈ PMω(Γ ) set

‖S‖ω = max(sup
n≤0
|Ŝ(n)|, sup

n>0
|Ŝ(n)|/ω(n)) .

Clearly, PMω(Γ ) is a Banach space if lim supn→∞ ω(n)1/n < 1, and PMω(Γ )∩
HD0(Γ ) is a closed subspace of PMω(Γ ). We omit the proof of the following
elementary lemma [9].

Lemma 5.3. Let S ∈ PF (Γ ). If limn→∞ ω(n) = ∞, then limn→∞ ‖αnS‖ω =
0.
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Lemma 5.4. Suppose limn→∞ ω(n) = ∞ and let S ∈ PF (Γ ). Then for every
ε > 0 and every q ≥ 1 there exist p ≥ q and f ∈ A(Γ ) which satisfy the following
two conditions:

1) ‖fS − S‖ω < ε.
2) Supp f ⊂ {z ∈ Γ | |zp − 1| ≤ ε}.
P r o o f. We may assume S 6= 0. Let E = {z ∈ Γ | |z−1| ≥ ε}. It follows from

Lemma 5.1 that there exists a sequence (gn) in I(E) and a sequence (hn) in A+

such that limn→∞ ‖α−1−gn+hn‖1 = 0. We have limn→∞ ‖1+αhn−αgn‖1 = 0,
and so limn→∞ α̂gn(0) = 1. Let f = [α̂gn(0)]−1αgn where n is chosen so that∑

m<0

|f̂(m)| < ε

2‖S‖PM
.

We have f ∈ I(E). For p ≥ 1 define fp(z) = f(zp) (z ∈ Γ ). Clearly, Supp fp ⊂
{z ∈ Γ | |zp − 1| ≤ ε}. Also

fpS − S =
∑
m<0

f̂(m)αpmS +
∑
m>0

f̂(m)αpmS ,

the series above being norm convergent in PM(Γ ). Since ‖T‖ω ≤ ‖T‖PM (T ∈
PM(Γ )) we obtain

‖fpS − S‖ω ≤
(∑
n<0

|f̂(n)|
)
‖S‖PM + ‖f‖1 sup

n≥p
‖αnS‖ω

and it follows from Lemma 5.3 that

lim sup
p→∞

‖fpS − S‖ω < ε .

The lemma follows.

We set D0(Γ ) = {S ∈ D(Γ ) | limn→−∞ Ŝ(n) = 0}. We now show that
Theorem 4.1 is not true in general for Dirichlet sets.

Theorem 5.5. Let E be a set of multiplicity , and let ω : N → [1,∞[ be such
that limn→∞ ω(n) = ∞. Then there exists a nonzero S ∈ D0(Γ ) which satisfies
the following conditions:

1) SuppS ⊂ E, and SuppS is a Dirichlet set.
2) supn≥1 |Ŝ(n)|/ω(n) <∞.

P r o o f. By setting ω1(n) = inf(ω(n), n) (n ≥ 1) we can assume without loss
of generality that ω(n) ≤ n, so that PMω(Γ ) ⊂ D(Γ ). Let S ∈ PF (E), S 6= 0.
It follows from Lemma 5.4 that we can define by induction a sequence (fn)n≥1

in A(Γ ) and a strictly increasing sequence (pn) of positive integers which satisfy
the following conditions:

(1) ‖S − f1S‖ω < ‖S‖ω/4.
(2) ‖f1 . . . fn+1S − f1 . . . fnS‖ω < ‖S‖ω · 2−n−2 (n ≥ 1).
(3) Supp fn ⊂ {z ∈ Γ | |zpn − 1| ≤ 1/n}.
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It follows from (1) and (2) that there exists a nonzero T ∈PMω(Γ ) such that
limn→∞ ‖f1 . . . fnS − T‖ω = 0. Set Vn = Supp f1 . . . fnS and let ϕ be a smooth
function on Γ such that Suppϕ ∩ (

⋂
n≥1 Vn) = ∅. There exists n0 ≥ 1 such that

Suppϕ ∩ Vn = ∅ for n ≥ n0. Hence 〈ϕ, T 〉 = limn→∞〈ϕ, f1 . . . fnS〉 = 0. This
shows that SuppT ⊂

⋂
n≥1 Vn, and so SuppT is a Dirichlet set contained in E.

Since HD0(Γ )∩PMω(Γ ) is closed, limn→−∞ T̂ (n) = 0 and the theorem is proved.

Theorem 5.5, Lemma 5.3 and Lemma 5.4 remain true if we replace PF (Γ )
by PM0(Γ ) = {S ∈ PM(Γ ) | limn→−∞ Ŝ(n) = 0}. A refinement of the proof
of Theorem 5.5 and Lemma 5.4 gives Kronecker sets instead of Dirichlet sets [9].
The nature of the construction has some analogies with Kaufman’s construction
of a Helson set of multiplicity ([17] and [11, p. 117]). Notice that if we apply
Theorem 5.5 to Eζ , where 1/ζ is not a Pisot number, we obtain a Dirichlet set
which satisfies the Carleson condition and is even a set of “A∞-interpolation” in
the sense of [1] (see [9]).

6. Negative powers of contractions

Definition 6.1. Let ω : N→ [1,∞[ be a submultiplicative weight such that

lim
n→∞

logω(n)√
n

= 0 .

A closed set E ⊂ Γ is ω-rigid if PMω(E) = PM(E).

It follows from the considerations at the beginning of Section 3 that PMω(E)
) PM(E) for every nonempty set E if lim infn→∞(logω(n))/

√
n > 0, and so the

condition limn→∞(logω(n))/
√
n = 0 is not a real restriction.

It was proved in [9] that for every submultiplicative weight ω such that
limn→∞(logω(n))/

√
n = 0 there exists a perfect Kronecker set Eω ⊂ Γ which is

ω-rigid.
If ω is a submultiplicative weight, and E a closed set, set PM0

ω(E)=HD0(Γ )∩
PMω(E).

The following characterization of ω-rigid sets is given in [9].

Theorem 6.2. Let E ( Γ be a closed set and let ω be a submultiplicative
weight such that limn→∞ ω(n) = ∞ and limn→∞(logω(n))/

√
n = 0. Then the

following conditions are equivalent :

1) E is ω-rigid.
2) For every Banach space X and every linear contraction T on X such that

SpT ⊂ E and supn≥1 ‖T−n‖/ω(n) <∞, we have supn≥1 ‖T−n‖ <∞.
3) E is a strong AA+-set , and PM0

ω(E) = {0}.
Moreover , if E is ω-rigid and if T satisfies 2) then supn≥1 ‖T−n‖ ≤ K where

K is the strong AA+-constant of E.
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The class of sets E satisfying PM0
ω(E) = {0} is stable under closed countable

unions [9], and the class of strong AA+-sets is not. So it would certainly be
possible, using the method of [16] for constructing sets E for which ‖e−int‖A+(E)

grows fast as n→∞, to exhibit sets satisfying PM0
ω(E) = {0} which are not ω-

rigid. We will not do it here (notice that countable, not necessarily closed, unions
of compact sets of uniqueness are sets of uniqueness by a theorem of N. Bari;
see [7] for extensions of this result).

Using Theorems 6.2, 3.5 and 4.2, we obtain for example the following conse-
quence of Theorem 6.2 (countable sets are sets of synthesis and AA+-sets of con-
stant 1, and E1/p is a set of synthesis [12] and an AA+-set [15], since it is anH-set).

Theorem 6.3. Let T be a linear invertible contraction on a Banach space X.

1) [34] If SpT is countable, and if limn→∞(log ‖T−n‖)/
√
n = 0, then T is an

isometry.
2) [9] If SpT ⊂ E1/p, and if

log ‖T−n‖ = O(nα) with α <
log p− log 2

2 log p− log 2
,

then supn≥1 ‖T−n‖ ≤ Kp, where Kp is the AA+-constant of E1/p.

In the other direction, it follows from Theorem 6.2 that if E is a set of mul-
tiplicity there exists, for any weight ω such that limn→∞ ω(n) = ∞, a Banach
space Xω and an invertible contraction Tω on Xω such that limn→∞ ‖T−nω ‖ =∞,
SpTω ⊂ E and supn≥1 ‖T−nω ‖/ω(n) < ∞. Since some sets of multiplicity satisfy
the Carleson condition

π∫
−π

log+

(
1

dist(eit, E)

)
dt <∞

(for example Eζ when 1/ζ is not a Pisot number) the following result, implic-
itly contained in [9], shows that the situation is very different when we restrict
attention to the Hilbert space.

Theorem 6.4. Let T be an invertible contraction on a Hilbert space H. If
‖T−n‖ = O(nk) for some k ≥ 0, and if SpT satisfies the Carleson condition,
then T is unitary.

P r o o f. Let x, y∈H. Let F (z) = 〈(T−z)−1x, y〉 (z 6∈ SpT ). Then F ∈ D(Γ ),
and SuppF ⊂ SpT . For f ∈C∞(Γ ) set f(T ) =

∑
n∈Z f̂(n)Tn. Since F̂ (n) = T−n

(n ∈ Z) we obtain

〈f, F 〉 =
∑
n∈Z

f̂(n)F̂ (−n) = 〈f(T )x, y〉 (f ∈ C∞(Γ )) .

It follows from [29] that there exists f ∈ A∞(D), f outer, such that f (n)|SpT = 0
for every n ≥ 1 and such that f vanishes exactly on SpT . Since SuppF ⊂ SpT
we have 〈f(T )x, y〉 = 〈f, F 〉 = 0. Hence f(T ) = 0.
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Since T is a contraction on H, it follows from the classical von Neumann
inequality that there exists a norm decreasing homomorphism θ : ϕ→ ϕ(T ) from
the disc algebra A(D) into L(H) such that α(T ) = T , where we denote by α
the position function z → z (see for example [24] for details). Clearly, the two
definitions of ϕ(T ) agree for ϕ ∈ A∞(D), and so f ∈ Ker θ.

Since f is outer and vanishes exactly on SpT it follows from the Beurling–
Rudin characterization of closed ideals of A(D) [27] that M ⊂ Ker θ where
M = {ϕ ∈ A(D) | ϕ|SpT = 0}. It follows from classical results [13] that
the restriction map r : f → f |SpT from A(D) into C(SpT ) is onto and that
the map r̃ : A(D)/M → C(SpT ) satisfying r̃ ◦ π = r is an isometry (we de-
note by π : A(D) → A(D)/M the canonical map). Hence ‖π(α)−1‖ = 1. Let
θ̃ : A(D)/M → L(H) be the map satisfying θ̃ ◦ π = θ. Then T−1 = θ̃(π(α)−1)
and so ‖T−1‖ = 1 and T is unitary.

The proof of Theorem 6.4 does not extend to the case where SpT is not
a Carleson set (in this case no nonzero analytic function satisfying a Lipschitz
condition can vanish on SpT , see [6]), but of course Theorem 6.4 remains valid
for some non-Carleson sets (consider a suitable convergent sequence). The subject
clearly deserves further investigation.

7. Closed ideals of A+. The investigations about strong forms of uniqueness
and “ω-rigidity” were originally motivated by problems concerning closed ideals
of A+ (or, equivalently, closed invariant subspaces for the shift on `1(Z+)). Let
I 6= {0} be a closed ideal of A+, let IA be the set of elements of A+ which belong
to the closed ideal generated by I in A(Γ ), and let SI be the G.C.D. of the inner
factors of all nonzero elements of I. Bennett and Gilbert [3] conjectured that we
always have I = IA ∩ SIH∞ (the conjecture was also quoted by Kahane [14]),
and a similar conjecture has been verified for A∞(D) (Taylor–Williams [29]),
Ap(D) (Korenblyum [21]), Λα(D), the algebra of analytic functions on D sat-
isfying a Lipschitz condition (Matheson [23]) and of course for the disc algebra
A(D) (Beurling–Rudin, [27]). We refer to [9], [10] for a general discussion of the
Bennett–Gilbert conjecture; for example, Theorem 3.5 can be used to show that
the conjecture holds when h(I) is countable, where h(I) = {z ∈ D | f(z) = 0
(f ∈ I)}, which was proved by Bennett–Gilbert by using transfinite induction [3]
(transfinite induction was discovered and used by Cantor [5] to establish the fact
that reducible countable sets are sets of uniqueness); also it is possible to de-
duce from Theorem 4.1 the fact that the Bennett–Gilbert conjecture holds when
h(I) ∩ Γ ⊂ E1/p [10]. To conclude the paper, we will indicate how Theorem 5.5
can be used to disprove the conjecture. Let ζ ∈ (0, 1/2) such that 1/ζ is not a
Pisot number. Then Eζ is a Carleson set.

It follows from Theorem 5.5 that there exists a Dirichlet set F ⊂ Eζ such that
D0(F ) 6= {0}. Let J+

0 (F ) be the closed ideal of A+ generated by the functions
f ∈ A∞(D) vanishing on F with all their derivatives. It follows from [29] that
J+

0 (F ) contains an outer function vanishing exactly on F . Since smooth functions
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satisfy synthesis, J(F ) is the closed ideal of A(Γ ) generated by J+
0 (F ). So for

I = J+
0 (F ) we obtain

IA = J+(F ), SI = 1, IA ∩ SIH∞ = J+(F ) .

But D0(F ) 6= {0}, and J+(F ) is w∗-sequentially dense in A+, since Dirichlet sets
are strong AA+-sets. Hence J+

0 (F ) ( J+(F ), which disproves the conjecture.
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[20] A. Kechr i s and A. Louveau, Descriptive Set Theory and the Structure of Sets of Unique-

ness, London Math. Soc. Lecture Notes Ser. 128, Cambridge University Press, 1986.
[21] B. Korenblyum, Closed ideals in the ring An, Functional Anal. Appl. 6 (1972), 203–214.
[22] T. Körner, A pseudofunction on a Helson set. I , II , Astérisque 5 (1973), 3–224 and
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