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1. Introduction. This article is a survey of results obtained since 1986 con-
cerning the relationship between spectral properties of semigroups of operators
and their asymptotic behaviour. Amongst the prototypes were results of Sklyar
and Shirman [36], and of Katznelson and Tzafriri [23]. The central result, obtained
independently and simultaneously, by Lyubich and Phóng [28] and by Arendt and
the author [6], is that a bounded one-parameter semigroup of operators converges
to zero in the strong operator topology if the peripheral spectrum is countable
and the peripheral point spectrum of the adjoint is empty. We shall describe this
result in some detail, and various subsequent developments including those of
Arendt and Prüss [8], Phóng [35], [12], [13], Esterle, Strouse and Zouakia [16],
[17], El Mennaoui [15], Nagel, Räbiger and Huang [31], [21], and Greenfield [19],
[11], in less detail.

The term “semigroup of operators” may refer to the family {Tn : n =
0, 1, 2, . . .} of powers of a single bounded linear operator T on a Banach space X
(discrete one-parameter semigroup); to a C0-semigroup {T (t) : t ≥ 0} on X (con-
tinuous one-parameter semigroup); or to a strongly continuous representation T
on X of a suitable locally compact semigroup S (general semigroup), for example
S = Rm+ or S = Zm+ (multi-parameter semigroup). We shall consider these cases
in Sections 2, 3, and 5, respectively. The main result of Section 5 (Theorem 5.6)
includes those of Sections 2 and 3, once certain natural identifications have been
made, but some of the subsidiary results are sharper in the one-parameter case.
Readers who are interested only in (discrete or continuous) one-parameter semi-
groups do not need to trouble themselves with the extra generality of Section 5,
but Theorem 5.3 (a dilation theorem for isometries, due to Greenfield) may be
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of interest. In Section 4, we describe a variety of other extensions of the central
result in the one-parameter setting.

As will become apparent (see Proposition 2.6), the study of semigroups of
isometries is essentially the complement of that of semigroups which converge to
zero. There are certain spectral properties of general isometric semigroups which
are rather elementary in the one-parameter cases, but less so for multi-parameter
and general semigroups. These will be described in Sections 5 and 6.

Throughout, X will be a complex Banach space, and B(X) will be the space
of bounded linear operators on X. Operator-valued integrals will be convergent
in the strong operator topology. For a linear operator A : D(A) → X, with
domain D(A) in X, %(A), σ(A), Pσ(A), and Aσ(A) will denote the resolvent set,
spectrum, point spectrum, and approximate point spectrum of A, respectively;
if D(A) is dense in X, Pσ(A∗) will denote the point spectrum of the adjoint A∗

of A. We shall denote the kernel and range of A by KerA and RanA, respectively.
We shall also use the following notation:

Z+ = {0, 1, 2, . . .}, R+ = [0,∞), C− = {λ ∈ C : Reλ ≤ 0} ,
D = {λ ∈ C : |λ| ≤ 1}, Γ = {λ ∈ C : |λ| = 1} .

2. Discrete one-parameter semigroups. In this section, we consider a
semigroup {Tn : n ∈ Z+}, where T is a bounded linear operator on a complex Ba-
nach space. We shall assume that T is power-bounded, so that supn∈Z+

‖Tn‖<∞.
It follows that σ(T ) is contained in the closed unit disc D. We shall be interested
only in the peripheral (unitary) part of the spectrum σ(T ) ∩ Γ , where Γ is the
unit circle.

The following is the general operator-theoretic result obtained by Katznelson
and Tzafriri.

Theorem 2.1 [23, Theorem 5]. Let T be a power-bounded operator on X, and
(an) be a sequence in `1(Z+), and suppose that the power series g(z) =

∑
anz

n

is of spectral synthesis with respect to σ(T )∩Γ . Then ‖Tng(T )‖ → 0 as n→∞.

The following corollary, obtained by taking g(z) = 1− z, is the case to which
most attention has been given, both in [23] and by subsequent authors.

Corollary 2.2 [23, Theorem 1]. Let T be a power-bounded operator on X
such that σ(T ) ∩ Γ ⊆ {1}. Then ‖Tn − Tn+1‖ → 0 as n→∞ (1).

The proof of Corollary 2.2 in [23] used harmonic analysis to establish a Taube-
rian theorem for power series, from which Corollary 2.2 follows easily. Methods
of this type will not be discussed in this article.

A simple consequence of Corollary 2.2 is the classical result of Gelfand [18]
that an operator T with σ(T ) = {1} and supn∈Z ‖Tn‖ <∞ is the identity. Allan

(1) Editorial note: See also pp. 372–373 in this volume.
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and Ransford [3] have shown that Corollary 2.2 may be deduced from Gelfand’s
Theorem by a suitable construction.

Another corollary of Theorem 2.1 is the following. Here, we write Tn s→ 0 to
indicate that Tn → 0 in the strong operator topology, that is, ‖Tnx‖ → 0 for
each x in X.

Corollary 2.3. Let T be a power-bounded operator on X such that σ(T )∩Γ
is finite and Pσ(T ∗) ∩ Γ is empty. Then Tn

s→ 0 as n→∞.

P r o o f. Let g(z) be the polynomial

g(z) =
∏

λ∈σ(T )∩Γ

(z − λ) .

Since g vanishes on the finite set σ(T )∩Γ , it is automatically of spectral synthesis,
so Theorem 2.1 implies that ‖Tng(T )‖→0. Since Pσ(T ∗)∩Γ is empty, T−λI has
dense range for each λ in σ(T )∩Γ , so g(T ) has dense range. An easy approximation
argument completes the proof.

The central result of this section, Theorem 2.5, is an improvement of Corollary
2.3. In order to appreciate the sharpness of Theorem 2.5, it is instructive to
consider the example of multipliers.

Example 2.4. (1) Let X = Lp(Ω,µ), where (Ω,µ) is a σ-finite measure space
and 1 ≤ p <∞. Let h : Ω → D be a measurable function, and T be the multiplier
on X defined by Tf = hf , so ‖T‖ ≤ 1. Then σ(T ) is the support of the measure
ν induced on D by µ via h, ν(E) = µ(h−1(E)), and

Pσ(T ) = Pσ(T ∗) = {λ ∈ D : ν{λ} > 0} = {atoms of ν} .

Suppose that ν has an atom λ in Γ . Then there is a measurable subset E of
h−1{λ} such that 0 < µ(E) < ∞. If f is the characteristic function of E, then
Tnf = λnf , so ‖Tnf‖ does not tend to 0.

On the other hand, suppose that ν(Γ ) = 0. Let

Y = {g ∈ X : there exists δ > 0 such that g(ω) = 0 whenever |h(ω)| > 1− δ} .

For g in Y , ‖Tng‖ ≤ (1 − δ)n‖g‖ → 0. The assumption that ν(Γ ) = 0 implies
that Y is dense in X, and it follows that Tn s→ 0.

In particular, if σ(T )∩Γ is countable and Pσ(T ∗)∩Γ is empty, then (supp ν)
∩ Γ is countable and ν has no atoms in Γ , so ν(Γ ) = 0, and Tn

s→ 0.

(2) Let Ω be a closed uncountable subset of Γ . There is a non-atomic prob-
ability measure µ on Ω. Let X = Lp(Ω,µ), where 1 ≤ p < ∞, and T be the
multiplier on X: (Tf)(z) = zf(z). Then σ(T ) ⊆ Ω, Pσ(T ∗) is empty, but T is
isometric.

Suppose that T is an operator such that Tn s→ 0. Then T is power-bounded
(by the Uniform Boundedness Principle), and Pσ(T ) ∩ Γ and Pσ(T ∗) ∩ Γ are
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empty. It is also not difficult to see that, for any power-bounded operator, Pσ(T )∩
Γ ⊆ Pσ(T ∗) ∩ Γ . These observations, together with Example 2.4, show that the
assumptions in the following theorem are natural.

Theorem 2.5 [5, Theorem 5.1]. Let T be a power-bounded operator on X such
that σ(T ) ∩ Γ is countable and Pσ(T ∗) ∩ Γ is empty. Then Tn

s→ 0 as n→∞.

Theorem 2.5 was proved in [5] by a method based on an estimate for power
series due to Allan, O’Farrell and Ransford [2] who were concerned to generalise
the Tauberian theorem of Katznelson and Tzafriri [23, Theorem 2] and to exhibit
analogies with Tauberian theorems arising in modern proofs of the Prime Num-
ber Theorem [33], [24]. In addition, the proof in [5] used a (possibly transfinite)
inductive argument based on the successive derived sets of σ(T ) ∩ Γ .

It is also possible to prove Theorem 2.5 by modifying the functional-analytic
proof given in [28] of the continuous version of Theorem 2.5 (see Theorem 3.1).
That proof was obtained independently of [5], and the discrete version will be
described below.

Subsequently, a third proof of Theorem 2.5 has been given in [16]. There,
harmonic analysis is used to establish, under the conditions of Theorem 2.5, that
the span of

⋃
Ran g(T ) is dense in X, where the union is taken over all power

series g(z), with absolutely summable coefficients, which vanish on the countable
set σ(T ) ∩ Γ . Theorem 2.5 then follows from Theorem 2.1.

The proof in [28] depends on the following construction.

Proposition 2.6. Let T be a power-bounded operator on X. There is a Ba-
nach space E, a bounded linear map Q of X into E with dense range, and an
isometry U on E such that

(1) If x ∈ X and Qx = 0, then ‖Tnx‖ → 0;
(2) QT = UQ;
(3) σ(U) ⊆ σ(T ), Pσ(U∗) ⊆ Pσ(T ∗).

P r o o f. Define a seminorm ` on X by

`(x) = lim sup
n→∞

‖Tnx‖ (x ∈ X) .

Let L = {x ∈ X : `(x) = 0}, ˜̀ be the associated norm on X/L, and E be the
completion of (X/L, ˜̀). Let Q : X→E be the natural quotient map. Then Q has
dense range, (1) holds, and T induces an isometry U on E satisfying (2).

Let λ ∈ %(T ), and Rλ = (λI − T )−1. Since Rλ commutes with T , Rλ induces
an operator Sλ on E such that Sλ(λI −U) = I = (λI −U)Sλ, so λ ∈ %(U). Thus
σ(U) ⊆ σ(T ). If λ ∈ Pσ(U∗), then U∗ψ = λψ for some non-zero ψ in E∗, so
T ∗(Q∗ψ) = λQ∗ψ and Q∗ψ 6= 0. Thus λ ∈ Pσ(T ∗).

P r o o f o f T h e o r e m 2.5 (see [28]). Let E, Q and U be as in Proposition
2.6. Since U is isometric, Aσ(U) ⊆ Γ , so the topological boundary ∂σ(U) of σ(U)
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is contained in Γ . Hence ∂σ(U) ⊆ σ(T )∩Γ 6= Γ . It follows that σ(U) ⊆ Γ , so U
is invertible with countable spectrum.

Suppose, by way of contradiction, that E 6= {0}. Then σ(U) is non-empty and
countable, and therefore has an isolated point λ, which must be an eigenvalue
of U . Moreover, there is a bounded projection P of E onto the λ-eigenspace
Eλ of U . Choose a non-zero functional ψ in (Eλ)∗. Then U∗(P ∗ψ) = λP ∗ψ, so
λ ∈ Pσ(U∗)∩Γ ⊆ Pσ(T ∗)∩Γ . This contradicts the assumption. Hence E = {0},
so Tn s→ 0, by Proposition 2.6(1).

R e m a r k 2.7. 1. Note that the first part of the proof above shows that if U
is an isometry, then either σ(U) = D or U is invertible and σ(U) ⊆ Γ .

2. Phóng [35] has shown how Theorem 2.1 may be deduced from Proposition
2.6. In the context of Theorem 2.1, we may assume that Γ is not contained in
σ(T ) and therefore not in σ(U). It follows from the previous remark that U is
invertible. If g is of spectral synthesis for σ(T ) ∩ Γ and hence for σ(U), then
g(U) = 0. Hence Qg(T )x = g(U)Qx = 0 for all x in X, so Tng(T ) s→ 0. Now,
one applies this result with X replaced by B(X), and T replaced by T̃ , where
T̃ (V ) = TV , to deduce that ‖Tng(T )V ‖ → 0 for all V in B(X). Taking V = I
gives the result.

3. There is a result for operators on a Hilbert space, due to Sz.-Nagy and
Foiaş [32], which is related to Theorem 2.5. They showed that if T is a completely
non-unitary contraction on a Hilbert space X and σ(T ) ∩ Γ is null (for Haar
measure on Γ ), then Tn

s→ 0. Example 2.4(2) shows that it is not possible to
replace the assumption of complete non-unitarity by the weaker condition that
Pσ(T ∗) ∩ Γ is empty, even when X is a Hilbert space.

4. There are operators T on the Hilbert space `2 such that ‖Tn‖ = O(n) as
n → ∞, σ(T ) ∩ Γ = {1}, 1 6∈ Pσ(T ) ∪ Pσ(T ∗), but Tn does not converge to 0
strongly. Such an operator may be defined by

(Tx)2m−1 =
(
m− 1
m

)
(x2m−1 + x2m) , (Tx)2m =

(
m− 1
m

)
x2m

(see [4, Example 2.5], [12, Example 6]) (2).

3. Continuous one-parameter semigroups. In this section, we consider
a C0-semigroup T = {T (t) : t ∈ R+} of bounded linear operators on a complex
Banach space X. We shall denote the generator of T by A. We shall assume that
T is bounded, so that supt∈R+

‖T (t)‖ <∞ and σ(A) ⊆ C−.
The following result is the analogue of Theorem 2.5, and was proved in exactly

this form in [5] and [28], simultaneously and independently. The norm-continuous
case, which can be deduced from Theorem 2.5, had earlier been proved in [36].

(2) Editorial note: See also p. 373 in this volume.
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In the strongly continuous case, the result does not follow from Theorem 2.5
because of the failure of the Spectral Mapping Theorem—in general, σ(T (t)) 6=
{eλt : λ ∈ σ(A)}. Indeed, it is not difficult to construct examples of semigroups
(even multiplier semigroups on Lp-spaces) satisfying the conditions of Theorem
3.1, where σ(T (t)) = D for all t > 0 (see [5, Example 5.5]).

Theorem 3.1 [5, Theorem 2.4], [28]. Let {T (t) : t ∈ R+} be a bounded C0-
semigroup on X with generator A, and suppose that σ(A) ∩ iR is countable and
Pσ(A∗) ∩ iR is empty. Then T (t) s→ 0 as t→∞.

The proof of Theorem 3.1 given in [5] is analogous to the proof of Theorem 2.5
in the same paper. In the case when σ(A)∩iR is empty, the result can be deduced
from a Tauberian theorem of Ingham [22], but we will describe here the much
simpler method, devised by Korevaar [24], which uses an estimate of a contour
integral which can be modified to provide the basis of the proof of the general
case of the theorem. Although the operator-valued integrals are to be taken in
the strong-operator topology, the estimates hold in the operator norm.

Suppose then that σ(A) ∩ iR is empty. Let R > 0, γ+ and γ− be the left and
right halves of the circle |z| = R, and γ′ be a path in {z ∈ %(A) : Re z < 0} from
iR to −iR. Let gt(z) =

∫ t
0
e−szT (s) ds, so gt is holomorphic on C and

etzgt(z) = (zI −A)−1(etzI − T (t)) (z ∈ %(A)) .

By Cauchy’s Theorem,

T (t)A−1 = − 1
2πi

∫
γ+∪γ′

(
1 +

z2

R2

)
(zI −A)−1T (t)

dz

z

= − 1
2πi

∫
γ+

(
1 +

z2

R2

)
(zI −A)−1T (t)

dz

z
(∗)

− 1
2πi

∫
γ′

(
1 +

z2

R2

)
(zI −A)−1etz

dz

z

+
1

2πi

∫
γ−

(
1 +

z2

R2

)
gt(z)etz

dz

z
.

As t→∞, the second integral in (∗) tends to zero, by the Dominated Convergence
Theorem. On γ±, ∣∣∣∣1 +

z2

R2

∣∣∣∣ =
2|Re z|
R

.

On γ+,

‖(zI −A)−1T (t)‖ =
∥∥∥ ∞∫

0

e−szT (s+ t) dt
∥∥∥ ≤ M

Re z
,
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where M = supt∈R+
‖T (t)‖. On γ−,

‖etzgt(z)‖ =
∥∥∥ t∫

0

e(t−s)zT (s) ds
∥∥∥ ≤ M

|Re z|
.

Hence both the first and third integrals in (∗) are bounded in norm by M/R, so

lim sup
t→∞

‖T (t)A−1‖ ≤ 2M
R

.

Letting R → ∞, it follows that ‖T (t)A−1‖ → 0 as t → ∞. Since A−1 has dense
range in X and T is bounded, it follows that T (t) s→ 0.

The proof of Theorem 3.1 given in [28] is an adaptation of the proof of Theorem
2.5 described in Section 2. One performs a construction analogous to Proposition
2.6 (the proof of the spectral inclusion is a little more difficult now). One also
needs the fact that the generator of a C0-semigroup of isometries on a non-zero
Banach space has non-empty spectrum. This follows directly from the special
case of Theorem 3.1 which we have proved above by contour integral methods.
However, it may also be established by the following argument.

Proposition 3.2 [28]. Let A be the generator of a C0-semigroup {T (t) : t ∈
R+} of isometries on X. Either σ(A) = C−, or T (t) is invertible for each t > 0
and σ(A) ⊆ iR. In particular , if X 6= {0}, then σ(A) is non-empty.

P r o o f. For Reλ < 0 and x in D(A),

e−(Reλ)t‖x‖ = ‖e−λtT (t)x‖ =
∥∥∥x+

t∫
0

e−λsT (s)(A− λI)x ds
∥∥∥

≤ ‖x‖+
e−(Reλ)t − 1
−Reλ

‖(A− λI)x‖ .

Hence
‖(A− λI)x‖ ≥ (−Reλ)‖x‖ .

This shows that −A is dissipative, and that λ is not an approximate eigenvalue
of A. Thus ∂σ(A) ⊆ iR, so σ(A) = C− or σ(A) ⊆ iR. In the latter case, the
Hille–Yosida Theorem shows that −A is a generator, so each T (t) is invertible.

The final statement follows from the theory of spectral subspaces for isometric
(one-parameter) groups (see, for example, [27], [34, 8.1]).

A third proof of Theorem 3.1 has been given by Esterle, Strouse and Zouakia
[17]. They used harmonic analysis to prove the following analogue of Theorem
2.1, which was also proved independently by Phóng [35]. Here and subsequently,
we adopt the convention that the Fourier transform of a function f in L1(R+) is
defined by

f̂(ξ) =
∞∫
0

f(t)eitξ dt ,



42 C. J. K. BATTY

and we write

f̂(T ) =
∞∫
0

f(t)T (t) dt .

Theorem 3.3 [17, Théorème III.4], [35, Theorem 3.2]. Let T be a bounded
C0-semigroup on X with generator A, let f ∈ L1(R+), and suppose that f is of
spectral synthesis for −iσ(A) ∩ R. Then ‖T (t)f̂(T )‖ → 0 as t→∞.

R e m a r k 3.4. 1. It was also shown in [17] that if σ(A) ∩ iR is countable and
Pσ(A∗) ∩ iR is empty, then the linear span of the union of the ranges of all
operators f̂(T ), for those f in L1(R) with f̂ = 0 on −iσ(A) ∩ R, is dense in X.
Theorem 3.1 then follows from Theorem 3.3.

2. Phóng [35] showed how Theorem 3.3 may be deduced from the analogue of
Proposition 2.6. The argument is similar to that outlined in Remark 2.7.2, but, in
order to ensure strong continuity, it is necessary to work on a subspace of B(X).

3. In the case when σ(A)∩iR is empty, it was shown above, by contour integral
methods, that ‖T (t)A−1‖ → 0. It is then easy to deduce that ‖T (t)f̂(T )‖ → 0
for all f in L1(R+).

4. Some extensions. In this section, we describe some extensions of Theo-
rems 2.5 and 3.1 to other situations involving one-parameter (discrete or contin-
uous) families of operators.

4.1. Ergodic theorems [6]. Let T = {T (t) : t ∈ R+} be a (not necessarily
bounded) C0-semigroup with generator A. Then T is said to be mean-ergodic
(or Cesàro ergodic) if P := limt→∞

1
t

∫ t
0
T (s) ds exists in the strong operator

topology; T is said to be Abel ergodic if (0,∞) ⊆ %(A) and P := limλ↓0 λ(λI−A)−1

exists in the strong operator topology. Mean-ergodicity implies Abel ergodicity
(and the two limits are equal) [20, Theorem 18.4.3]. For bounded semigroups,
the converse holds [14, Theorem 5.1].

It is well-known [20, Theorem 18.7.3] that T is Abel ergodic if and only if:

(i) (0,∞) ⊆ %(A),
(ii) sup0<λ≤1 ‖λ(λI −A)−1‖ <∞,
(iii) KerA separates KerA∗.

Then P is a projection of X onto KerA with KerP = RanA. Condition (iii) is
equivalent to the condition that KerA+ RanA is dense in X, and it is automat-
ically satisfied if X is reflexive.

Suppose that T is bounded and mean-ergodic, and that σ(A)∩ iR is countable
and Pσ(A∗) ∩ iR ⊆ {0}. Then Theorem 3.1 can be applied to the restriction of
T to the subspace RanA to show that T (t) s→ P .

The method of [5] can be applied to certain unbounded C0-semigroups to
establish mean-ergodicity [6]. The results are less elegant than Theorem 3.1; the
two which follow are typical of those which have been obtained.
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Theorem 4.1 [6, Theorem 0.2]. Let T be a C0-semigroup on X with generator
A, and suppose that ‖T (t)‖ = O(t) as t→∞, 0 ∈ %(A), and σ(A) ∩ iR consists
only of poles of order 1 of the resolvent of A. Then T is uniformly mean-ergodic,
that is, (1/t)

∫ t
0
T (s) ds converges in norm as t→∞.

Theorem 4.2 [6, Theorem 2.1]. Let T be a C0-semigroup on X with generator
A, and suppose that

(1) ‖T (t)‖ = O(t) as t→∞,
(2) supReλ>0,|λ|<δ ‖λ(λI −A)−1‖ <∞ for some δ > 0,
(3) KerA separates KerA∗,
(4) σ(A) ∩ iR \ {0} consists only of poles of order 1 of the resolvent of A.

Then T is mean-ergodic.

Applications to triangular matrix operators, and the Cauchy problem with
periodic inhomogeneity, are given in [6].

4.2. Almost periodicity [29], [11], [30]. Let T be a power-bounded operator
on X, and λ ∈ Γ . We say that λ belongs to the (peripheral) ergodic spectrum
Eσ(T ) ∩ Γ of T if Ker(λI − T ) does not separate Ker(λI − T ∗); equivalently, if
λT is not (Cesàro) mean-ergodic (see [25, Section 2.1]). If X is reflexive, then
Eσ(T ) ∩ Γ is empty.

The operator T is almost periodic if, for each x in X, {Tnx : n ∈ Z+} is
relatively compact in X. The splitting theorem of Jacobs, de Leeuw and Glicks-
berg (see [25, Theorem 4.4, p. 105]) shows that T is almost periodic if and only
if X = X0 ⊕X1, where

X0 = {x ∈ X : ‖Tnx‖ → 0} ,
X1 = span{x ∈ X : Tx = λx for some λ in Γ} .

Moreover, T |X1 is invertible (and is isometric if T is contractive). It is easy to
deduce from this that if T is almost periodic, then Eσ(T ) ∩ Γ is empty.

Theorem 4.3 (cf. [29], [12], [30]). Suppose that T is a power-bounded operator
on S and that σ(T )∩Γ is countable and Eσ(T )∩Γ is empty. Then T is almost
periodic. In particular , if X is reflexive and σ(T ) ∩ Γ is countable, then T is
almost periodic.

There is an analogous theorem for C0-semigroups [29], [12].

4.3. Individual theorems [12]. It was noted in [5] that if T is an unbounded
C0-semigroup with generator A such that σ(A) ⊆ {λ ∈ C : Reλ < 0}, x ∈ D(A),
and supt∈R+

‖T (t)Ax‖ < ∞, then ‖T (t)x‖ → 0 as t → ∞. The argument for
this is a minor adaptation of the contour integral argument given in Section 3.
By refining the argument, the following result is obtained, in which there is no
assumption of boundedness, and σ(A) may not be contained in C−.
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Theorem 4.4 [12, Theorem 1]. Let T be a C0-semigroup on X with generator
A, and suppose that Aσ(A)∩iR is empty. Let x ∈ X, and suppose that t 7→ T (t)x
is uniformly continuous. Then ‖T (t)x‖ → 0 as t→∞.

If X is reflexive, σ(A) ∩ iR is countable, Pσ(A) ∩ iR is empty, and
supt∈R+

‖T (t)x‖ < ∞, then T (t)x → 0 weakly as t → ∞ [10, Proposition 7.3],
[12, Corollary 3].

On the other hand, an example was given in [12, Example 6] where X = `2, T
is norm-continuous (so A is bounded), ‖T (t)‖ = O(t) as t→∞, σ(A)∩ iR = {0},
0 6∈ Pσ(A) ∪ Pσ(A∗), supt∈R+

‖T (t)x‖ <∞, but ‖T (t)x‖ 6→ 0.

4.4. Volterra equations [8]. Let A be a closed linear operator in X with dense
domain D(A), and let a ∈ L1

loc(R+). Let {T (t) : t ∈ R+} be a bounded solution
of the associated Volterra equation, so that T (t) is a bounded linear operator on
X commuting with A, and

T (t)x = x+A
t∫

0

a(t− s)T (s)x ds (x ∈ D(A), t > 0) .

Arendt and Prüss [8, Theorem 5.1] have shown, under certain spectral conditions
on a and A, that T (t) s→ P as t → ∞, where P = limλ↓0 λ

∫∞
0
e−λtT (t) dt. For

a precise formulation of this result, the reader is referred to [8]. The method of
proof is similar in structure to [5], but the details are more complicated.

In the case when a(t) = 1 for all t, then {T (t) : t ∈ R+} is a bounded C0-
semigroup with generator A, and the result reduces to the fact that if σ(A) ∩ iR
is countable, Pσ(A∗) ∩ iR ⊆ {0} and KerA separates KerA∗, then T (t) s→ P as
t→∞ (see Section 4.1). Other examples and applications to viscoelasticity may
be found in [8].

4.5. Integrated semigroups [15]. Let A be a closed linear operator in X with
domain D(A) (not necessarily dense in X). A (once) integrated semigroup with
generator A is a strongly continuous family S = {S(t) : t ∈ R+} of bounded
linear operators on X such that, for some ω > 0, (ω,∞) ⊆ %(A) and

(λI −A)−1 = λ
∞∫
0

e−λtS(t) dt (λ > ω) .

Because of their relevance to the Cauchy problem, integrated semigroups have
been much studied and generalised, since their introduction by Arendt [4].

Let {T (t) : t∈R+} be a C0-semigroup on X with generator A, and put S(t)=∫ t
0
T (s) ds. Then S is an integrated semigroup with generator A. If 0∈%(A), then

S(t) = (T (t)−I)A−1. Thus, the following result of El Mennaoui [15] is formally a
generalisation of Theorem 3.1. However, the proof given in [15] uses Theorem 3.1
and an interpolation result for integrated semigroups, due to Arendt, Neubrander
and Schlotterbeck [7]. We write Rσ(A) for the set of all λ ∈ C such that the range
of λI −A is not dense in X, so Rσ(A) = Pσ(A∗) if A is densely defined.
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Theorem 4.5 [15, Corollaire 5.4]. Let {S(t) : t ∈ R+} be an integrated semi-
group with generator A, satisfying a Lipschitz condition: ‖S(t)−S(s)‖ ≤ K|t−s|
(s, t ∈ R+). Suppose that σ(A) ∩ iR is countable, Rσ(A) ∩ iR is empty , and
0 ∈ %(A). Then S(t) s→ −A−1 as t→∞.

4.6. A converse result [31], [21]. Let T be a power-bounded linear operator
on a superreflexive space X. For each free ultrafilter U on Z+, let XU be the
associated ultrapower, and TU be the operator on XU induced by T . Then XU is
reflexive, TU is power-bounded, and σ(TU ) = σ(T ). Thus if σ(T )∩Γ is countable,
then TU is almost periodic by Theorem 4.3. Nagel and Räbiger [31] have proved
the following converse result.

Theorem 4.6 [31, Theorem 3.7]. Let T be a power-bounded operator on a
superreflexive space X, and suppose that TU is almost periodic for every ultrafilter
U on Z+. Then σ(T ) ∩ Γ is countable.

The argument in [31] uses the elementary fact that σ(T ) ∩ Γ ⊆ Pσ(TU ).
Assuming that σ(T ) ∩ Γ is uncountable enables one to construct a non-atomic
probability measure µ on σ(T )∩Γ , a TU -invariant subspace Y of XU for some U ,
and an isomorphism of Y onto a Banach function lattice W with L∞(µ) ⊆W ⊆
L1(µ) carrying TU |Y onto the standard multiplier on W (see Example 2.4 (2)).
Since the multiplier is not almost periodic, this provides a contradiction. The
construction in [31] uses a variety of results from the theory of Banach spaces
and Banach lattices.

There is an analogous result for C0-semigroups [21].

5. General semigroups. Let S be a σ-compact subsemigroup of a locally
compact abelian group G, with non-empty interior S◦ and with S−S = G. Let S∗

(respectively, S∗u) be the space of non-zero continuous bounded homomorphisms
of S into C (respectively, into Γ ). Every character in the dual group Ĝ restricts
to a member of S∗u, and this enables us to identify S∗u with Ĝ.

We consider S with the restriction of Haar measure on G. For f in L1(S) and
χ in S∗, let

f̂(χ) =
∫
S

f(t)χ(t) dt .

We assume that the functions f̂ (f ∈ L1(S)) separate the points of S∗ from each
other and from 0. For example, this is satisfied if S◦ is dense in S.

We consider also a bounded representation T of S on X, so that T is a strongly
continuous map of S into B(X) such that T (s+ t) = T (s)T (t) and supt∈S ‖T (t)‖
<∞. For f in L1(S), let

f̂(T ) =
∫
S

f(t)T (t) dt .
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The spectrum Sp(T ) of T is the set of all χ in S∗ such that |f̂(χ)| ≤ ‖f̂(T )‖ for
all f in L1(S). The unitary spectrum Spu(T ) is Sp(T ) ∩ S∗u. The spectrum can
naturally be identified with the Gelfand spectrum of the commutative Banach
algebra AT = {f̂(T ) : f ∈ L1(S)}−− [13, Proposition 2.4].

The most natural examples are the multi-parameter semigroups, when S =
Zm+ (G = Zm) or S = Rm+ (G = Rm). When S = Zm+ , points χ in S∗ may be
identified with points z = (z1, . . . , zm) in Dm, and bounded representations T
with m-tuples (T1, . . . , Tm) of commuting power-bounded operators:

χ(t) = zn1
1 . . . znm

m

T (t) = Tn1
1 . . . Tnm

m

(t = (n1, . . . , nm) ∈ Zm+ ) .

It is easy to see that Sp(T ) is polynomially convex, in the sense of several complex
variables.

When S = Rm+ , points χ in S∗ may be identified with points z in Cm− , and
bounded representations T with m-tuples (T1, . . . , Tm) of commuting bounded
C0-semigroups:

χ(t) = exp(t1z1 + . . .+ tmzm)
T (t) = T1(t1) . . . Tm(tm)

(t = (t1, . . . , tm) ∈ Rm+ ) .

Consider the case when S = Z+. The definition of Sp(T ) as above is only
partially consistent with the operator-theoretic definition of σ(T ). In fact, Sp(T )
is the polynomially convex hull of σ(T ), so C\Sp(T ) is the unbounded component
of %(T ). Similarly, when S = R+, Sp(T ) is an appropriate hull of σ(A), where A is
the generator. Nevertheless, our definition does not create an unreasonably large
spectrum, because we are essentially interested only in the unitary spectrum,
which the following proposition shows to be as small as possible.

Proposition 5.1 [13, Proposition 2.2]. Let T be a bounded representation of
S on X, and χ ∈ S∗u. Then χ ∈ Spu(T ) if and only if χ is an approximate
eigenvalue of T , that is, there is a sequence (xn) in X with ‖xn‖ = 1 such that
‖T (t)xn − χ(t)xn‖ → 0 as n→∞ (uniformly for t in compact subsets of S).

We have seen in Proposition 2.6 and the proof of Theorem 3.1 that the question
of convergence to zero of a bounded one-parameter semigroup of operators is
closely related to spectral properties of isometric semigroups. We shall use this
approach to general semigroups later in this section, so we establish first some
facts about the isometric case. In the first proposition, we identify Sp(T ) with
the Gelfand spectrum of AT . If AT is non-unital, we further identify Sp(T ) with
a subset of the Gelfand spectrum of AT + CI, and we take the Shilov boundary
of AT to be the part of the Shilov boundary of AT + CI which lies in Sp(T ).

Proposition 5.2 [13], [11]. Let T be a representation of S by isometries
on X. Then Spu(T ) is the Shilov boundary of the commutative Banach algebra
AT . Hence, any isolated point of Spu(T ) is an eigenvalue of T .
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The proof of Proposition 5.2 depends on two facts from the theory of commu-
tative Banach algebras. Firstly, a theorem of Żelazko [40] shows that any point
in the Shilov boundary of AT is an approximate eigenvalue for T ; secondly, any
isolated point of the Shilov boundary is isolated in the Gelfand spectrum [39,
p. 55].

The following dilation theorem of Greenfield reduces many aspects of the
study of isometric semigroups to that of isometric groups. The point spectrum
Pσ(T ∗) of T ∗ is the set of all χ in S∗ for which there exist non-zero φ in X∗

such that T (t)∗φ = χ(t)φ for all t, and the unitary point spectrum of T ∗ is
Pσu(T ∗) = Pσ(T ∗) ∩ S∗u.

Theorem 5.3 [19]. Let T be a representation of S by isometries on X. There
is a Banach space Z containing X (isometrically) and a representation U of G
by (invertible) isometries on Z, such that

(1) for each t in S, X is U(t)-invariant and T (t) = U(t)|X,
(2) Z = {U(t)x : t ∈ G, x ∈ X}−,
(3) Sp(U) = Spu(T ), Pσ(U∗) = Pσu(T ∗).

P r o o f. A complete bounded trajectory for T ∗ is a bounded family φ = {φt :
t ∈ G} in X∗ such that T (s)∗φt = φs+t (s ∈ S, t ∈ G). Let Y be the Banach
space of all complete bounded trajectories for T ∗, with ‖φ‖ = supt∈G ‖φt‖. For t
in G, define an isometry L(t) on Y by (L(t)φ)s = φs+t.

For x in X, define x̂ in Y ∗ by

x̂(φ) = φ0(x) .

Let ψ ∈ X∗. Since T is isometric, it is straightforward to construct a complete
bounded trajectory φ for T ∗ with ‖φ‖= ‖ψ‖ and φ0 = ψ. It follows that ‖x̂‖ =
‖x‖. Define

Z = {L(t)∗x̂ : t ∈ G, x ∈ X}− , U(t) = L(t)∗|Z .
If we identify X with {x̂ : x ∈ X}, then all the required properties may be
verified.

Both parts of the following corollary are easily deduced from Theorem 5.3
and the corresponding results for isometric representations of groups [34, 8.1].
For norm-continuous representations, the first part can be proved by ultrapower
techniques [27]. For strongly continuous representations, it was originally proved
in [13] by means of a Banach algebra construction of Arens [9].

Corollary 5.4 [13, Corollary 3.3], [11], [19]. Let T be a representation of S
by isometries on X.

(1) If X 6= {0}, then Spu(T ) is non-empty.
(2) If Spu(T ) is compact , then T is norm-continuous.

We also saw in Remark 2.7.1 and Proposition 3.2 that if the spectrum of
a one-parameter isometric representation is not as large as possible, then the
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operators are invertible. The following is a general result in this direction. More
detailed results for multi-parameter semigroups will be given in Section 6.

Theorem 5.5 [11], [19]. Let T be a representation of S by isometries on X,
and suppose that Spu(T ) is countable. Then each T (t) is invertible.

P r o o f. Let Y =
⋂
t∈S RanT (t), X̃ = X/Y , and T̃ be the representation of

S by isometries on X̃ induced by T . It can be verified that Spu(T̃ )⊆Spu(T ). If
X̃ 6= {0}, then, by Corollary 5.4(1) and the countability assumption, Spu(T̃ ) has
an isolated point χ. By Proposition 5.2, χ is an eigenvalue of T̃ . However, the
definition of X̃ ensures that T̃ has no eigenvalues. This contradiction implies that
Y = X, so each T (t) is invertible.

The proof of Theorem 5.5 in [19] replaces the use of Banach algebra tech-
niques (within Proposition 5.2) by a precise analysis of the constructions used in
Theorem 5.3.

In the light of Proposition 5.1, parts (1) and (2) of Theorem 5.6 below are
generalisations of Theorems 2.5 and 3.1, and of Theorems 2.1 and 3.3. For T
norm-continuous, part (1) was first proved by Lyubich and Phóng [30] and part
(2) by Phóng [35] (for S = Zm+ , part (2) had already been proved in [23]). For T
strongly continuous, both parts were first proved in [13], and a simpler proof has
been obtained by Greenfield [19].

For multi-parameter semigroups, it is sometimes possible to reach the con-
clusions of Theorem 5.6 by applying Theorem 2.1, 2.5, 3.1, or 3.3 to a suitably
chosen one-parameter subsemigroup. However, an example was given in [13] where
S = R2

+ and the conditions of Theorem 5.6(1) are satisfied, but the spectrum of
every one-parameter subsemigroup is C−, so Theorem 3.1 is not applicable.

The semigroup S is a directed set in the ordering defined by: t � s⇔ t−s ∈ S.
A function f in L1(S) is of spectral synthesis for a closed subset E of Ĝ if there
is a sequence (gn) in L1(G) such that ĝn = 0 in a neighbourhood of E and
‖f − gn‖1 → 0 as n→∞.

Theorem 5.6 [23, Theorem 8], [30], [35, Theorem 4.2], [13, Theorem 4.2],
[11]. Let T be a bounded representation of S.

(1) If Spu(T ) is countable and Pσu(T ∗) is empty , then T (t) s→ 0 as t → ∞
(through S).

(2) If f in L1(S) is of spectral synthesis for Spu(T ), then ‖T (t)f̂(T )‖ → 0 as
t→∞ (through S ).

P r o o f. By a construction analogous to Proposition 2.6, there is a Banach
space E, a bounded linear map Q : X → E with dense range, and a representation
U of S by isometries on E such that Sp(U) ⊆ Sp(T ), Pσ(U∗) ⊆ Pσ(T ∗), QT (t) =
U(t)Q, and ‖T (t)x‖ → 0 for all x in KerQ. By Theorem 5.3, there is a Banach
space Z containing E, and a representation V of G by isometries on Z such that
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U(t) = V (t)|E (t ∈ S), Sp(V ) = Spu(U) ⊆ Spu(T ), and Pσ(V ∗) = Pσu(U∗) ⊆
Pσu(T ∗).

(1) Suppose that T (t) does not converge strongly to 0. Then E 6= {0}, so
Z 6= {0} (in fact, Z = E by Theorem 5.5). Since Sp(V ) is countable, it has an
isolated point χ. Now χ is an eigenvalue of V , so χ ∈ Pσ(V ∗) ⊆ Pσu(T ∗), a
contradiction.

(2) If f is of spectral synthesis for Spu(T ) and hence for Sp(V ), then f̂(V ) = 0,
by the theory of isometric representations of groups. It follows routinely that
T (t)f̂(T ) s→ 0. To establish norm-convergence, one uses the devices outlined in
Remark 2.7.2 and Remark 3.4.2.

There is a version of Theorem 5.6 for almost periodic semigroups, analogous
to Theorem 4.3 [13, Theorem 5.1].

6. Multi-parameter semigroups of isometries. We have seen in Theorem
5.5 that if T is an isometric representation of a general semigroup S and Spu(T )
is countable, then each T (t) is invertible. If T is an isometric representation of
Rm+ and Spu(T ) is compact, then it follows from Corollary 5.4 that each T (t)
is invertible. Here, we give some further results of this type for multi-parameter
semigroups of isometries.

We saw in Remark 2.7.1 and Proposition 3.2 that for one-parameter semi-
groups of isometries, the assumption that Sp(T ) 6= S∗ is sufficient to ensure in-
vertibility. However, for multi-parameter semigroups, this assumption is much too
weak. Let T0 : X → X be a non-invertible isometry, and define a representation
T of Z2

+ by T (m,n) = Tm+n. Then Sp(T ) = {(z, z) : z ∈ D}.

Example 6.1. Let E be a closed subset of Ĝ = S∗u, and let JE be the ideal
of all functions in L1(G) which are of spectral synthesis with respect to E. Let
XE be the closure of (L1(S) + JE)/JE in L1(G)/JE , and TE be the isometric
representation of S on XE induced by translations:

TE(s)(f + JE) = fs + JE ,

where fs(t) = f(t − s). Then Spu(TE) = E [11]. Moreover, the dilation of TE
given by Theorem 5.3 is (up to isometric isomorphism) the representation of G
on L1(G)/JE induced by translations. In particular, TE is invertible if and only
if L1(S) + JE is dense in L1(G).

Proposition 6.2 [11]. Let E be a closed subset of Ĝ, and TE be as in Example
6.1. The following are equivalent :

(1) Every representation T of S by isometries with Spu(T ) = E is invertible;
(2) TE is invertible;
(3) L1(S) + JE is dense in L1(G).

If S is discrete, these conditions are equivalent to:
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(4) Sp(T ) ⊆ Ĝ for some (or all) representation T of S by isometries with
Spu(T ) = E.

For discrete multi-parameter semigroups of isometries, the question of auto-
matic invertibility reduces to the question of polynomial convexity (in the sense
of several complex variables) of the compact subset Spu(T ) of the m-torus Γm.
This question has been studied by Stolzenberg [37] and Alexander [1]. For a com-
pact subset E of Cm, Ê will denote the polynomially convex hull of E; E is said
to be simply-coconnected if every continuous function f : E → C \ {0} has a
continuous logarithm, or equivalently if the cohomology group H1(E,Z) vanishes
[38, Theorem 10.1]. Any contractible set is simply-coconnected.

Theorem 6.3 [11]. Let T = (T1, . . . , Tm) be a representation of Zm+ by isome-
tries on X.

(1) Sp(T ) = Spu(T )∧.
(2) If Spu(T ) is polynomially convex , then each Tj is invertible.
(3) If Spu(T ) is contained in a simply coconnected subset of Γm, or if Spu(T )

is contained in a Jordan arc, or if Spu(T ) is totally disconnected , then each Tj
is invertible.

For continuous multi-parameter semigroups, the question of automatic in-
vertibility is also related to polynomial convexity, but in an indirect fashion.
Let θ : C− → D be the Möbius transform defined by θ(z) = z+1

z−1 , and let
θm : Cm− → Dm be the m-fold copy of θ. Let K = {z ∈ Dm : zj = 1 for
some j}, so θm maps iRm onto Γm \K.

Theorem 6.4 [11]. Let T be a representation of Rm+ by isometries on X, and
let E = θm(Spu(T )).

(1) Sp(T ) = θ−1
m (Ê \K).

(2) If Ê ⊆ E ∪K, then Spu(T ) = Sp(T ).
(3) If Spu(T ) is the union of its relatively open compact subsets, then each

T (t) is invertible.
(4) If E ∩K is polynomially convex and Spu(T ) is totally disconnected , then

each T (t) is invertible.
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