I am reporting on joint work with Brian Cole and Keith Lewis.

Let A be a uniform algebra on a compact Hausdorff space X, i.e., let A be an algebra of continuous complex-valued functions on X, closed under uniform convergence on X, separating points and containing the constants. Let \mathcal{M} denote the maximal ideal space of A. Gelfand’s theory gives that X may be embedded in \mathcal{M} as a closed subset and each f in A has a natural extension to \mathcal{M} as a continuous function. Set $\|f\| = \max_X |f|$.

We consider the following interpolation problem: choose n points M_1, \ldots, M_n in \mathcal{M}. Put

$$ I = \{ g \in A \mid g(M_j) = 0, \ 1 \leq j \leq n \}, $$

and form the quotient-algebra A/I. A/I is a commutative Banach algebra which is algebraically isomorphic to \mathbb{C}^n under coordinatewise multiplication. For $f \in A$, $[f]$ denotes the coset of f in A/I and $\|[f]\|$ denotes the quotient norm. We put, for $w = (w_1, \ldots, w_n)$ in \mathbb{C}^n,

$$ \mathcal{D} = \{ w \in \mathbb{C}^n \mid \exists f \in A \text{ such that } f(M_j) = w_j, \ 1 \leq j \leq n, \ \text{and } \|[f]\| \leq 1 \}. $$

Our problem is to describe \mathcal{D}. It is easy to see that \mathcal{D} is a closed subset of the closed unit polydisk Δ^n in \mathbb{C}^n and has non-void interior. It turns out that \mathcal{D} has the following property which we call hyperconvexity. We write $\| \|_{\Delta^k}$ for the supremum norm on Δ^k. Let P be a polynomial in k variables and choose k points $w', w'', \ldots, w^{(k)}$ in \mathbb{C}^n. We apply P to this k-tuple of points, using the algebra structure in \mathbb{C}^n. Then

$$ P(w', w'', \ldots, w^{(k)}) = (P(w'_1, w''_1, \ldots, w^{(k)}_1), P(w'_2, w''_2, \ldots, w^{(k)}_2), \ldots) \in \mathbb{C}^n. $$

1991 Mathematics Subject Classification: 32E30, 46J15.

The paper is in final form and no version of it will be published elsewhere.
Definition. A compact set Y in \mathbb{C}^n with non-void interior is hyperconvex if whenever $w', w'', \ldots, w^{(k)}$ is a set of points in Y, then for every polynomial P in k variables with $\|P\|_{\Delta^n} \leq 1$, $P(w', w'', \ldots, w^{(k)})$ again lies in Y.

Theorem 1. For each uniform algebra A and points M_1, \ldots, M_n, the set D is hyperconvex. Conversely, every hyperconvex set arises in this way from some A, M_1, \ldots, M_n.

Examples of hyperconvex sets occur in the 1916 work of G. Pick [6]. Pick was the first to consider interpolation problems of this type. He fixed an n-tuple of points z_1, \ldots, z_n in the unit disk $|z| < 1$.

Let us denote by D_z the set of all points $w = (w_1, \ldots, w_n)$ in \mathbb{C}^n such that there exists a function f in H^∞ with $\|f\|_{\infty} \leq 1$ and $f(z_j) = w_j$, $1 \leq j \leq n$.

Pick’s Theorem. Let $w \in \mathbb{C}^n$. Then $w \in D_z$ if and only if the matrix

$$
\begin{pmatrix}
1 - w_j z_k \\
1 - z_j w_k
\end{pmatrix}
$$

is positive semi-definite.

We call the set D_z a Pick body. If A is the disk algebra, then M is the closed unit disk and we may take the points M_j to be z_j, $1 \leq j \leq n$. It is easy to show that the associated set D coincides with the Pick body D_z. In particular, D_z is a hyperconvex set in \mathbb{C}^n.

We have not found a geometric condition describing the general hyperconvex set, but we have obtained information in two special cases.

Theorem 2. Each hyperconvex set Y in \mathbb{C}^2 is either the bidisk Δ^2 or is a Pick body D_z for some (z_1, z_2). In either case there exists λ, $0 < \lambda \leq 1$, such that

$$
Y = \left\{(w_1, w_2) \mid |w_1| \leq 1, |w_2| \leq 1, \left| \frac{w_1 - w_2}{1 - w_1 w_2} \right| \leq \lambda \right\}.
$$

Theorem 3. Fix n. A compact set Y with non-void interior in \mathbb{C}^n is a Pick body if and only if Y is hyperconvex and $\exists z = (z_1, \ldots, z_n)$ on the boundary of Y such that the powers z, z^2, \ldots, z^{n-1} taken in the algebra \mathbb{C}^n all lie on the boundary of Y, and $|z_j| < 1$ for each j.

Theorem 2 is proved in [1] and Theorem 3 is proved in [2].

In addition, we have generalized Pick’s theorem to an arbitrary uniform algebra A and points M_1, \ldots, M_n, by giving a necessary and sufficient condition on a point w to belong to D in terms of the positive semi-definiteness of a certain family of $n \times n$ matrices. (In Pick’s case, where the algebra was the disk algebra, a single such condition sufficed.) (See [1], and also Nakazi [5] for related results.)

The interpolation problem we are considering is closely related to the so-called von Neumann inequality for operators on Hilbert space.
The first connection between Pick interpolation and operator theory was made in the pioneering paper of Sarason [7]. Recent work in this area is contained in [1], in Lotto [3], and in Lotto and Steger [4].

References