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This article is a survey of some Tauberian theorems obtained recently in con-
nection with work on asymptotic behaviour of semigroups of operators on Banach
spaces. The results in operator theory are described in [6], where we made little
attempt to show the Tauberian aspects. At the end of this article, we will give a
sketch of the connections between the results in this article and in [6]; for details,
the reader can turn to the original papers. In this article, we make no attempt to
describe applications of Tauberian theorems in other areas such as number theory
and probability theory, apart from a few historical remarks concerning proofs of
the Prime Number Theorem.

We begin with a summary of some of the classical Tauberian theorems, which
will serve to put the recent results in perspective. Fuller accounts of the classical
theory may be found in standard texts such as [9], [26], and in the historical
account of van de Lune [24]. In Section 2, we introduce some of the tricks of the
trade by applying them to refine the classical theorems. In Section 3, we give
the recent results, due to Allan, Arendt, Katznelson, O’Farrell, Prüss, Ransford,
Tzafriri and the author [1]–[5], [14], [19], all of which can be obtained from contour
integral methods originating in an idea of Newman [17], adapted by Korevaar [15].

Throughout this article, we will state results for the complex-valued case.
However, all the results have Banach space-valued versions, and it is those which
are required for the applications to operator theory.

1. Some classical theorems. The original theorem of Tauber, which dates
from 1897 and from which the subject takes its name, was the following partial
converse of Abel’s Theorem:
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Theorem 1.1 [22]. Let (an)n≥0 be a sequence such that nan → 0 as n → ∞
and

∑∞
n=0 anx

n → b as x ↑ 1. Then
∑∞
n=0 an = b.

Theorem 1.1 was extended to the case when (nan) is bounded by Hardy [10]
and Littlewood [16] in 1910–11.

If we write
sn = a0 + . . .+ an ,

h(x) =
∞∑
n=0

anx
n = (1− x)

∞∑
n=0

snx
n ,

then we see that, for 0 < x < 1, h(x) is a weighted average of the sequence (sn).
Thus Tauber’s Theorem makes an assumption about the asymptotic behaviour
of some averages of (sn), imposes a supplementary condition (nan → 0), and
deduces other information about the asymptotic behaviour of (sn). Any theorem
of this general type is now known as a Tauberian theorem, even when sequences
and their associated power series are replaced by functions f : (0,∞) → C and
their Laplace transforms f̂ . Indeed, one general principle is that a Tauberian
theorem for functions should have two corollaries, one for power series and one
for Dirichlet series. For, one may put

f(t) = an (n ≤ t < n+ 1; n = 0, 1, 2, . . .) .

The Laplace transform of f is

f̂(z) =
∞∫
0

e−ztf(t) dt =
(

1− e−z

z

)
h(e−z) ,

where h(x) is the power series
∑∞
n=0 anx

n. Similarly, one may put

f(t) =
m∑
n=1

an
n

(logm ≤ t < log(m+ 1); m = 1, 2, . . .) ,

and then

f̂(z) =
1
z

∞∑
n=1

an
n1+z

.

We shall draw attention to the versions of some of our results for power series,
but we will leave the reader to derive the formulations for Dirichlet series.

The commonest weighted averages of f are its Cesàro means and Abel means.
Thus, f is Cesàro convergent to b if t−1

∫ t
0
f(s) ds → b as t → ∞; f is Abel

convergent to b if λf̂(λ)→ b as λ ↓ 0. In general, convergence of f(t) (as t→∞)
implies Cesàro convergence, and Cesàro convergence implies Abel convergence [11,
18.2.1]. Any partial converse of these facts is a Tauberian theorem. For example, if
f is bounded, then Abel convergence implies Cesàro convergence [11, 18.3.3]; if f is
non-negative, then Abel convergence implies convergence [26, 8.5.3]. To interpret
Tauber’s Theorem as a theorem about weighted averages, it was necessary to shift
attention from the sequence (an) to its partial sums (sn). Similarly, “Tauberian
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theorems” for functions f may be disguised as results about means of the indefinite
integral F (t) :=

∫ t
0
f(s) ds. Since λF̂ (λ) = f̂(λ), the following theorem says that

Abel convergence of F implies convergence of F , under a supplementary condition
on (the derivative of) F . In the case when f(t)=an (n ≤ t < n+ 1), it reduces to
the extension of Tauber’s Theorem obtained by Hardy and Littlewood, and their
names are commonly attached to the theorem.

Theorem 1.2 (Hardy–Littlewood) [26, 8.4.3]. Suppose that f : [0,∞) → C
is locally integrable, and that tf(t) is bounded. If f̂(λ) → b as λ ↓ 0, then∫ t
0
f(s) ds→ b as t→∞.

Although Wiener’s Tauberian Theorem is often quoted in a functional analytic
form—that certain translation-invariant subspaces, or ideals, of L1(R) are dense—
it can be formulated in a way which exhibits the Tauberian aspects. If k ∈ L1(R),
k ≥ 0 and

∫∞
−∞ k(t) dt = 1, then (k∗f)(t) =

∫∞
−∞ k(t−s)f(s) ds may be thought of

as a weighted average of f . Thus the following formulation of Wiener’s Theorem,
published in 1932, assumes convergence of these averages and deduces convergence
of other averages of f .

Theorem 1.3 (Wiener) [27], [28, Theorem 4, p. 73], [21, 9.7], [11, 4.21.2]. Let
f ∈ L∞(R), k ∈ L1(R), and suppose that the Fourier transform of k vanishes
nowhere in R, and that (k ∗ f)(t)→ b

∫∞
−∞ k(s) ds as t→∞. Then (g ∗ f)(t)→

b
∫∞
−∞ g(s) ds as t→∞, for any g in L1(R).

Wiener wrote in his autobiography [29, p. 115] that the Tauberian aspects of
his work were pointed out to him by Ingham, who spent some time in Göttingen in
1926. Wiener’s work, and its developments by Ingham and Ikehara, provided new
proofs of the Prime Number Theorem (see, for example, [21, 9.12], [27, p. 233], [28,
Chapter III]). Compared with the original methods of Hadamard and de la Vallée
Poussin, these proofs avoided the need to estimate the Riemann zeta function at
infinity, but they depended on rather difficult results about the Fourier transform.

Apart from writing a monograph [12] on the zeta function, which was based on
notes of Littlewood and Bohr, and which became a classic text, Ingham analysed
Wiener’s work and produced a variety of Tauberian theorems in 1935 [13]. The
result which we quote below is a special case of one of them.

If f ∈ L∞(0,∞), then f̂(z) is defined and holomorphic for Re z > 0. We shall
be interested in the regular points iy of f̂ in iR, those points in iR near which f̂

has a holomorphic extension (also denoted by f̂). The singular set iE of f̂ in iR
is the set of all points in iR which are not regular points of f̂ .

Theorem 1.4 (Ingham) [13, Theorem I]. Let f ∈ L∞(0,∞), R > 0, and
suppose that all points of i[−R,R] are regular points of f̂ . Then

lim sup
t→∞

∣∣∣ t∫
0

f(s) ds− f̂(0)
∣∣∣ ≤ 6‖f‖∞

R
.
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R e m a r k 1.5. The assumption in Theorem 1.4 that f̂ has a holomorphic
extension near i[−R,R] can be weakened to assuming that (f̂(z)−f̂(0))/z extends
continuously to i[−R,R], for some value of f̂(0). The results which we give in
Section 3 which make assumptions about regular points can also be improved in
a similar way, but we will not give the details explicitly.

Ingham’s proof of Theorem 1.4 used Fourier analysis, and will not be discussed
here. Instead, we shall give in Section 3 a simple proof of Theorem 1.4 due to
Korevaar [15].

Although Erdős and Selberg provided an “elementary” proof of the Prime
Number Theorem in 1949 (avoiding the use of the zeta function and complex
analysis), their argument was lengthy, and the theorem remained rather difficult
until 1980 when Newman [17] gave a simple analytical proof, based on a Tauberian
theorem for Dirichlet series which could easily be established by estimating a finite
contour integral. Korevaar modified Newman’s argument to provide a simple proof
of Theorem 1.4, and hence of the Prime Number Theorem.

Finally in this section, we want to give one more classical result, due to M.
Riesz in 1911 and based on work of Fatou. In Section 2, we shall show how this
result can be derived from Theorem 1.4, and we shall obtain an analogous result
for the Laplace transform.

Theorem 1.6 (Fatou–Riesz) [20], [23, 7.31]. Let h(z) be holomorphic in the
open unit disc with Taylor series

∑∞
n=0 anz

n. If an → 0 as n → ∞, then∑∞
n=0 anζ

n = h(ζ) for all regular points ζ of h in the unit circle.

2. Some refinements. In this section, we describe some ways of refining the
classical results. The first of these is the notion of slowly oscillating functions,
which was used by Pitt to refine Wiener’s Theorem.

A function f : (0,∞) → C (or f : R → C) is said to be slowly oscillating
(at ∞) if

lim
δ↓0

lim sup
t→∞

sup
t≤s≤t+δ

|f(t)− f(s)| = 0 ,

that is, if for all ε > 0 there exist δ > 0 and K such that

(2.1) |f(t)− f(s)| < ε whenever K ≤ t ≤ s ≤ t+ δ .

Any uniformly continuous function is slowly oscillating, but slowly oscillating
functions may be discontinuous. (The reader should be warned that there is not
universal agreement about terminology in this area; our terminology follows [11]
and [21].)

Corollary 2.1 (Pitt) [18], [21, 9.7]. Suppose that , in addition to the assump-
tions of Theorem 1.3, f is slowly oscillating. Then f(t)→ b as t→∞.

P r o o f. Let h = δ−1χ(0,δ). By (2.1), |(h ∗ f)(t)− f(t)| < ε whenever t ≥ K,
so the result follows from Theorem 1.3.
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We can also apply this concept to obtain the following corollary of the Hardy–
Littlewood Theorem.

Corollary 2.2 [4, Theorem 2.10]. Let f : [0,∞) → C be locally integrable,
and suppose that

(2.2) lim sup
t→∞

sup
t≤s≤t+1

t|f(t)− f(s)| <∞ ,

and that λf̂(λ)→ b as λ ↓ 0. Then f(t)→ b as t→∞.

P r o o f. For 0 < δ < 1, let

fδ(t) =
1
δ

(f(t+ δ)− f(t)) .

Then

f̂δ(λ) =
(
eδλ − 1

δ

)
f̂(λ)− 1

δ

δ∫
0

e−(t−δ)λf(t) dt

→ b− 1
δ

δ∫
0

f(t) dt as λ ↓ 0 .

By (2.2), tfδ(t) is bounded (at least for t sufficiently large, which is adequate for
the Hardy–Littlewood Theorem). By Theorem 1.2,

t∫
0

fδ(s) ds→ b− 1
δ

δ∫
0

f(s) ds as t→∞ .

It follows that
1
δ

t+δ∫
t

f(s) ds→ b as t→∞ .

It follows from (2.2) that f is slowly oscillating, so

lim
δ↓0

lim sup
t→∞

∣∣∣∣1δ
t+δ∫
t

f(s) ds− f(t)
∣∣∣∣ = 0 .

Hence, f(t)→ b as t→∞.

R e m a r k 2.3. Although Corollary 2.2 is derived from the Hardy–Littlewood
Theorem, it is an “improvement” of that theorem in the sense that the theo-
rem can be recovered from the corollary, by applying the corollary to F (t) :=∫ t
0
f(s) ds.

Now we turn to some consequences of Theorem 1.4.
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Corollary 2.4. Let f ∈ L∞(0,∞), and suppose that one of the following
conditions holds:

(1) the singular set of f̂ on iR is empty ,
(2) f(t)→ 0 as t→∞.

Then
∫ t
0
e−iysf(s) ds→ f̂(iy) as t→∞, for all regular points iy of f̂ in iR.

P r o o f. First, suppose that y = 0. In case (1), Corollary 2.4 follows from
Theorem 1.4 by letting R→∞. In case (2), it follows by replacing f by fχ(a,∞)

and letting a→∞.
For general y, the result is derived from the case y = 0, by replacing f(t) by

e−iytf(t).

Compared with the Hardy–Littlewood Theorem, Corollary 2.4 has replaced
the assumption that tf(t) is bounded by the weaker assumption that f is bounded
(or f(t)→0). On the other hand, even for y = 0, Corollary 2.4 makes assumptions
about f̂(z) for complex z (in the assumptions of regularity), whereas the Hardy–
Littlewood Theorem makes assumptions on f̂(λ) only for real λ.

Corollary 2.4(2) is a partial analogue of the Fatou–Riesz result (Theorem 1.6)
for power series, and we can use it to give a proof of Theorem 1.6 and of another
partial analogue for the Laplace transform (Corollary 2.5 below). Corollary 2.4(1)
provides no information about power series. If h is holomorphic in an open set
containing the closed unit disc, then h(ζ) is given by the Taylor series whenever
|ζ| = 1, by elementary complex variable theory.

Proof of Theorem 1.6. Define f(t) = an (n ≤ t < n + 1; n = 0, 1, 2, . . .).
Then f(t)→ 0 as t→∞, and

f̂(z) =
(

1− e−z

z

)
h(e−z) (Re z > 0) .

If ζ = e−iy (−π < y ≤ π) is regular for h, then iy is regular for f̂ , so
N∫
0

e−iysf(s) ds→
(

1− e−iy

iy

)
h(ζ) as N →∞

by Corollary 2.4 (where (1− e−iy)/(iy) is to be interpreted as 1 if y = 0). But

N∫
0

e−iysf(s) ds =
1− e−iy

iy

N−1∑
n=0

anζ
n ,

so the result follows.

Corollary 2.5 [5, Corollary 2.5]. Let f : [0,∞) → C be locally integrable,
and suppose that f̂(z) exists for Re z > 0 and that limt→∞

∫ t
0
e−iηsf(s) ds exists

for some real η. Then
∫ t
0
e−iysf(s) ds→ f̂(iy) for all regular points iy of f̂ in iR.
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P r o o f. We may assume that y 6= η. Replacing f(t) by e−iηtf(t), we may
assume that η = 0. Define F (t) =

∫ t
0
f(s) ds − c, where c = limt→∞

∫ t
0
f(s) ds.

Then F (t)→ 0 as t→∞, and zF̂ (z) = f̂(z)− c. Applying Corollary 2.4(2) to F ,
we find that

iy
t∫

0

e−iysF (s) ds→ iyF̂ (iy) = f̂(iy)− c .

But

iy
t∫

0

e−iysF (s) ds =
t∫

0

e−iysf(s) ds− e−iyt
( t∫

0

f(s) ds− c
)
− c ,

so the result follows.

3. The recent results. We begin this section by giving Korevaar’s proof of
Theorem 1.4. In fact, we will set out the proof in a way which justifies Remark 1.5.

Proof of Theorem 1.4 [15]. Firstly, replacing f(t) by f(t)−f̂(0)e−t, we may
assume that f̂(0) = 0. Thus the function f̂(z)/z, defined for Re z > 0, extends
continuously to i[−R,R].

Let γ+ and γ− be the right and left halves of the circle |z| = R, and let γ′ be

the line-segment from iR to −iR. Let ft = fχ(0,t), so that f̂t is holomorphic in
the entire complex plane. By Cauchy’s Theorem,

t∫
0

f(s) ds =
1

2πi

∫
γ+∪γ−

(
1 +

z2

R2

)
f̂t(z)etz

dz

z

− 1
2πi

∫
γ+∪γ′

(
1 +

z2

R2

)
f̂(z)
z

dz

=
1

2πi

∫
γ+

(
1 +

z2

R2

)
(f̂t(z)− f̂(z))etz

dz

z
(3.1)

− 1
2πi

∫
γ′

(
1 +

z2

R2

)
f̂(z)etz

dz

z

+
1

2πi

∫
γ−

(
1 +

z2

R2

)
f̂t(z)etz

dz

z
.

As t → ∞, the second integral in (3.1) tends to 0, by the Riemann–Lebesgue
Lemma. On γ±, ∣∣∣∣1 +

z2

R2

∣∣∣∣ =
2|Re z|
R

.
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On γ+,

|(f̂t(z)− f̂(z))etz| =
∣∣∣ ∞∫
t

e−(s−t)zf(s) ds
∣∣∣ ≤ ‖f‖∞

Re z
.

On γ−,

|f̂t(z)etz| =
∣∣∣ t∫

0

e−(s−t)zf(s) ds
∣∣∣ ≤ ‖f‖∞|Re z|

.

Thus the first and third integrals in (3.1) are both bounded by ‖f‖∞/R, and it
follows that

lim sup
t→∞

∣∣∣ t∫
0

f(s) ds
∣∣∣ ≤ 2‖f‖∞

R
.

The proof above obtains an estimate for lim supt→∞ |
∫ t
0
f(s) ds− f̂(0)| which

differs from Ingham’s estimate by a constant factor. Other estimates were given
in [5, Theorem 2.1, Proposition 4.1], using a method based on that of Ransford
who obtained analogous estimates for power series [19, Theorems 1.1, 2.1]. Similar
estimates may be found in Ingham’s paper [13].

Example 3.1. Let f(t) = eiat for some non-zero real number a. Then f̂(z) =
(z − ia)−1, and E = {a}. On letting R→ a, the estimate above gives:

lim sup
t→∞

∣∣∣ t∫
0

f(s) ds− f̂(0)
∣∣∣ ≤ 2
|a|

.

In fact,
∫ t
0
f(s) ds = (eiat − 1)/(ia), and

lim sup
t→∞

∣∣∣ t∫
0

f(s) ds− f̂(0)
∣∣∣ =

1
|a|

.

As observed in Section 2, Corollary 2.4(2) is of no interest for power series.
The first non-trivial case for power series is when there is exactly one singular
point in the unit circle. This case was resolved by Katznelson and Tzafriri.

Theorem 3.2 [14]. Let (an) be a bounded sequence, let h(z) =
∑∞
n=0 anz

n,
and suppose that h has singular set {1} in the unit circle. Then an − an+1 → 0
as n→∞.

Corollary 3.3. Let (bn) be a sequence such that supN |
∑N
n=0 bn| < ∞, let

g(z) =
∑∞
n=0 bnz

n, and suppose that g has singular set {1} in the unit circle.
Then bn → 0 as n→∞, and g(ζ) =

∑∞
n=0 bnζ

n, whenever |ζ| = 1, ζ 6= 1.

The proof of Theorem 3.2 in [14] used Fourier analysis. Corollary 3.3 follows
by putting an = b1 + . . .+ bn, h(z) = g(z)(1− z)−1.

The step from the case of one singular point to null sets of singular points was
taken by Allan, O’Farrell, and Ransford [1], by adapting the contour integrals of
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Newman and Korevaar. The argument was carried through in the case of Laplace
transforms in [2].

Theorem 3.4 [2, Theorem 4.1]. Let f ∈ L∞(0,∞), and suppose that the sin-
gular set iE of f̂ on iR is null (for one-dimensional Lebesgue measure). Suppose
also that , for all R > 0,

M(R) := sup
η∈E
|η|≤R

sup
t≥0

∣∣∣ t∫
0

f(s)e−iηs ds
∣∣∣ <∞ .

Then
∫ t
0
e−iysf(s) ds→ f̂(iy) as t→∞, for all regular points iy.

Corollary 3.5 [1]. Suppose that h(z) =
∑∞
n=0 anz

n is holomorphic in the
open unit disc with singular set E in the unit circle Γ , suppose that E is null
(for Haar measure on the circle), and that

sup
ζ∈E

sup
N

∣∣∣ N∑
n=0

anζ
n
∣∣∣ <∞ .

Then
∑∞
n=0 anz

n = h(z) for all regular points z in Γ .

Corollary 3.5 is deduced from Theorem 3.4 by the standard method of putting
f(t) = an (n ≤ t < n + 1; n ≥ 0). Note that the assumptions of the corollary
imply that (an) is bounded.

In the circumstances of Theorem 3.4 (or Corollary 3.5), convergence may fail
at singular points [1, p. 539].

It is not known whether the condition that E is null can be omitted from
Theorem 3.4 and Corollary 3.5. In the latter case, it is sufficient to establish
that an → 0 (Theorem 1.6). When E = Γ , the other assumptions imply that
h ∈ H∞(Γ ), so convergence takes place almost everywhere on Γ , by Carleson’s
Theorem [8]. In particular, an → 0.

A variant of Theorem 3.4 was given in [2, Theorem 4.4] in which the assump-
tion that M(R) is finite is replaced by the assumption that for each η ∈ E, there
exists δη > 0 such that

sup{|f̂(z)| : Re z > 0, |z − iη| < δη} <∞ .

This was proved in [2] by contour integral methods, but it can also be deduced
from Ingham’s proof of Theorem 1.4 [13].

Theorem 3.4 is derived from the following proposition, in which Φk denotes
an explicit function of 3k + 2 real variables, the formula for which may be found
in [2]. This proposition plays an important role in the applications to operator
theory (see Section 4).

Proposition 3.6 [2, Lemma 3.1]. Let f ∈ L∞(0,∞), let iE be the set of all
singular points of f̂ in iR, and suppose that 0 6∈ E. Let R > 0 and let Ij (j =
1, . . . , k) be disjoint open intervals in (−R,R) such that E ∩ [−R,R] ⊆

⋃k
j=1 Ij.
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Let εj be half the length of Ij , ξj be the midpoint of Ij , ηj be any point in Ij ,
and suppose that

Mj := sup
∣∣∣ t∫

0

e−iηjsf(s) ds
∣∣∣ <∞ .

Then

lim sup
t→∞

∣∣∣ t∫
0

f(s) ds− f̂(0)
∣∣∣ ≤ Φk(‖f‖∞, R,Mj , εj , ξj) .

Proposition 3.6 is proved by making the following two modifications to the
contour integral in the proof of Theorem 1.4 given at the start of this section:

(a) In the contour γ′, each interval iIj is replaced by a semicircular indentation
into the right half-plane;

(b) The integrand is adjusted by including, for each j = 1, . . . , k, a suitable
factor which vanishes at the two endpoints of iIj (analogous to the factor 1+z2/R2

which vanishes at the two endpoints of i[−R,R]).
Now suppose that E is null. For any ε > 0, it is possible to choose k and the

intervals Ij in such a way that εj = θ for all j, where kθ < ε. Then the estimate
in Proposition 3.6 leads to

lim sup
t→∞

∣∣∣ t∫
0

f(s) ds− f̂(0)
∣∣∣ ≤ 2e‖f‖∞

R
+ κ(R)M(R)ε ,

where κ(R) depends on R (and on the set E), but not on ε. Letting ε ↓ 0 and
then R→∞ gives Theorem 3.4.

Similar methods to Section 2 give a corollary of Theorem 3.4 in which the
assumption of boundedness is replaced by slow oscillation. This was first carried
out in [5], where attention was focussed on Laplace–Stieltjes transforms. The
following formulation, due to Arendt and Prüss [4], differs slightly from [5] (see
Remark 3.8.5).

Corollary 3.7 [5, Corollary 2.6], [4, Theorem 3.5]. Let f : [0,∞) → C be
locally integrable and slowly oscillating , and let iE be the singular set of f̂(z) on
iR. Suppose that E is null , and that , for all R > 0,

(3.2) sup
η∈E
|η|≤R
η 6=0

sup
t≥0

∣∣∣ t∫
0

e−iηsf(s) ds
∣∣∣ <∞.

If 0 is either a regular point of f̂ , or a pole of order 1, then f(t)→ b as t→∞,
where b is the residue of f̂ at 0.

R e m a r k 3.8. 1. If f is slowly oscillating, it does not follow that e−iytf(t)
is slowly oscillating. However, if f is (eventually) bounded and slowly oscillating,
then e−iytf(t) is slowly oscillating.
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2. If f is slowly oscillating, E is null, and, for all R > 0,

(3.3) sup
η∈E
|η|≤R

sup
t≥0

∣∣∣ t∫
0

e−iηsf(s) ds
∣∣∣ <∞,

then f(t) → 0 as t → ∞. If 0 6∈ E, this follows from Corollary 3.7. If 0 ∈ E,
then (3.3) implies that supt≥0 |

∫ t
0
f(s) ds| <∞. It follows directly from this and

the slow oscillation of f that f is bounded. For any y in R\E, e−iytf(t) is slowly
oscillating and Corollary 3.7 implies that e−iytf(t)→ 0, so f(t)→ 0.

3. Suppose that f is slowly oscillating, the singular set E of f̂ is null, f̂ has a
finite set iE1 of poles of order 1 in iR and, for all R > 0,

sup
η∈E
|η|≤R
η 6∈E1

sup
t≥0

∣∣∣ t∫
0

e−iηsf(s) ds
∣∣∣ <∞ .

Then f(t) −
∑
y∈E1

bye
iyt → 0 as t → ∞, where by is the residue of f̂ at iy.

This follows from applying Corollary 3.7 to the slowly oscillating function f(t)−∑
y∈E1

bye
iyt.

4. To apply Corollary 3.7 to a power series h(z) =
∑∞
n=0 anz

n, we should put
f(t) =

∑m
n=0 an (m ≤ t < m + 1; m ≥ 0). Then f is slowly oscillating only if

an → 0 as n→∞, in which case the Fatou–Riesz Theorem (Theorem 1.6) shows
that

∑∞
n=0 anζ

n = h(ζ) for all regular points ζ in Γ .

5. If f is of locally bounded variation, then Corollary 3.7 may be considered
to be a result about the Laplace–Stieltjes transform f̃ of f :

f̃(z) =
∞∫
0

e−zt df(s) = zf̂(z)− f(0) .

In this interpretation, (3.2) is less natural than the variant

(3.4) sup
η∈E
|η|≤R
η 6=0

sup
t≥0

∣∣∣ t∫
0

e−iηs df(s)
∣∣∣ <∞ .

Since
t∫

0

e−iηs df(s) = e−iηtf(t) + iη
t∫

0

e−iηsf(s) ds− f(0) ,

and since we are not assuming that f is bounded, (3.2) and (3.4) are not equivalent
in general. The variant of Corollary 3.7 in which (3.2) is replaced by (3.4) was
proved in [5, Corollary 2.6]. It then follows that (3.2) and (3.4) are equivalent
under our additional assumptions that f is slowly oscillating, E is null, and 0
is either regular or a simple pole. Although this variant is itself a corollary of
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Theorem 3.4, the theorem can easily be recovered from this variant by replacing
f(t) by

∫ t
0
f(s) ds.

So far, all our results have involved boundedness of f , either by assump-
tion or by conclusion. We end by giving two results which are applicable to un-
bounded functions, where the conclusions concern the Cesàro means. Both results
are proved by contour integral methods akin to the proof of Theorem 1.4.

Theorem 3.9 [3, Corollary 1.3]. Let f : [0,∞)→ C be locally integrable, and
suppose that f(t) = O(t) as t→∞, and that every singular point of f̂ in iR is a
pole of order 1. Then f(t) is Cesàro convergent to the residue of f̂(z) at z = 0,
as t→∞.

Theorem 3.10 [3, Proposition 1.9]. Let f : [0,∞) → C be locally integrable,
and suppose that f(t) = O(t) as t → ∞, and that there exist δ > 0, ε > 0, and
c <∞ such that

|f̂(reiθ)| ≤ c

r(cos θ)1−ε
whenever 0 < r < δ,−π/2 < θ < π/2 .

Then

lim sup
t→∞

∣∣∣∣1t
t∫

0

f(s) ds
∣∣∣∣ <∞ .

Example 3.11. 1. Let f(t) = teiat, where a is a non-zero real number. Then
f̂(z) = (z − ia)−2, so 0 is regular. Moreover,

t∫
0

f(s) ds =
teiat

ia
+
eiat

a2
− 1
a2
,

so

lim sup
t→∞

∣∣∣∣1t
t∫

0

f(s) ds
∣∣∣∣ =

1
|a|

.

2. Let

f(t) =
∞∑
n=1

{
1 + (1 + t)

(
in− 1

n2

)}
eint−t/n

2

n3
.

Then f(t) = O(t) as t→∞, and the singular set of f̂ on iR is empty. By Theorem
3.9, f(t) is Cesàro convergent to 0. However, it is shown in [7, Example 6] that

lim sup
t→∞

∣∣∣ t∫
0

f(s) ds− f̂(0)
∣∣∣ ≥ 1

2
.

4. Applications to operator theory. We note here that the results which
have direct applications to operator theory are Corollary 2.4, Theorem 3.2, Propo-
sition 3.6, Corollary 3.7, Theorem 3.9 and Theorem 3.10.
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Corollary 2.4(2) shows that if {T (t) : t ≥ 0} is a bounded C0-semigroup with
generator A, and the spectrum of A is contained in {z ∈ C : Re z < 0}, then
‖T (t)A−1‖ → 0 as t→∞ [2], [6, Remark 3.4(3)].

Theorem 3.2 shows that if T is a power-bounded operator and σ(T )∩Γ = {1},
then ‖Tn − Tn+1‖ → 0 as n→∞ [14, Theorem 1], [6, Corollary 2.2].

Proposition 3.6 is a major step towards the proof in [14] of the central theorem
about stability of C0-semigroups [14, Theorem 2.4], [6, Theorem 3.1], and also of
its extension to Volterra equations [4, Theorem 5.1], [6, Section 4.4].

Corollary 3.7 (in the case when E is empty) produces a stability theorem for
individual elements under C0-semigroups [7, Theorem 1], [6, Theorem 4.4].

Theorems 3.9 and 3.10 lead to ergodic theorems for certain C0-semigroups [3,
Theorems 0.2, 2.1], [6, Theorems 4.1, 4.2].
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