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Abstract. With this paper, we intend to provide an overview of some recent work on
a problem on unbounded derivations of Banach algebras that still defies solution, the non-
commutative Singer–Wermer conjecture. In particular, we discuss several global as well as local
properties of derivations entailing quasinilpotency in the image.

1. Where to look for . . . Derivations may serve as the generators of re-
versible evolutions of a physical system, say, if this is modelled by a Banach
algebra. Not only historically, this point of view gave a strong impetus to the
investigation of derivations and of how their properties relate to the structure of
Banach algebras. The easiest examples one encounters are the inner derivations
δa : x 7→ xa − ax, where a is a given element in the Banach algebra A, and
one may be tempted to think that there are no others. Indeed, one is morally
right: a non-vanishing first cohomology group is generally considered rather as
an obstacle than a delight, as well as philosophically: often derivations become
inner in a larger Banach algebra. Here is an example. Let us suppose that A is
unital. (Since every derivation δ vanishes on the identity, this is no restriction of
generality and will therefore be tacitly assumed henceforth.) Identifying A with
a closed subalgebra of the algebra B of all bounded linear operators on A via the
left regular representation a 7→ La, one has

[La, δ](x) = aδ(x)− δ(ax) = −δ(a)x = L−δ(a)(x) (x ∈ A) ,

that is, [La, δ] = L−δ(a) or, under the above identification, δ(a) = δ−δ(a) for all
a ∈ A. Of course, to this end we have to assume that δ is bounded. This already
indicates that the actual problem is with unbounded derivations, but as is well
known, even bounded derivations in general need not be inner in the strict sense
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even on very nice Banach algebras such as the compact operators on a separable
Hilbert space.

Every inner derivation is a commutator: δa=[· , a], and this notion is obviously
vacuous in the commutative case. Still believing that derivations ought to be
inner, they therefore should be rare on commutative Banach algebras. There
was some evidence for this idea in the late 1940’s and early 50’s. Singer proved
that there are no non-zero (bounded or unbounded) derivations on commutative
C∗-algebras, and Singer and Wermer obtained the result that every bounded
derivation on a commutative Banach algebra has its image in the radical [37].
Hence, the hunch was right up to semisimplicity. They also stated what soon
was called the Singer–Wermer conjecture: The image of every derivation on a
commutative Banach algebra lies in the radical. But this conjecture stood open
for more than thirty years [39]. Out of it and other questions as well grew a new
branch of functional analysis—automatic continuity theory, which helped to affirm
the conjecture in the semisimple case, for example; [11], [18]. Nowadays, Thomas’
theorem yields the full picture: Every derivation on a commutative Banach algebra
is inner modulo the radical rad(A). Hence, derivations on Banach algebras (if
everywhere defined) genuinely belong to the non-commutative setting.

There are also purely algebraic pieces of evidence for the assertion that deriva-
tions try to avoid commutativity, some of which only recently came to the atten-
tion of analysts. The most basic of these is the so-called Posner’s second theorem
[28, Theorem 2]: If R is a prime ring and δ : R→R is a non-zero derivation with
the property that δ(a) commutes with a for each a ∈ R, then R has to be commu-
tative. This was used in [25] to obtain the following result in the non-commutative
setting. Call a derivation satisfying the above property commuting. Then every
bounded commuting derivation on a Banach algebra maps into the radical. In
fact, invoking Thomas’ theorem, the boundedness assumption can be dropped as
was shown in [26]. After these results were accomplished a number of mathemati-
cians tried to affirm the non-commutative Singer–Wermer conjecture which we
will state in the following way.

Conjecture 1. Every derivation on a Banach algebra which is commuting
modulo the radical is inner modulo the radical.

This formulation is readily seen to be equivalent to the following one: if δ has
the property that [a, δ(a)] ∈ rad(A) for all a ∈ A, then δA ⊆ rad(A). For, if such
a derivation equals the inner derivation δa modulo rad(A), then δ − δa maps A
into rad(A) whence δ = δ − δa + δa shows that δ leaves rad(A) invariant. By
Johnson’s and Sinclair’s theorem [19], the induced derivation on the semisimple
Banach algebra A/ rad(A) is bounded, and being commuting, vanishes by [25,
Theorem 3.2]. Thus, δA ⊆ rad(A).

So far, to our knowledge, Conjecture 1 has resisted all efforts to prove it.
This will not be surprising if one knows that it is closely related to several other
open questions having tantalised the Banach algebraists for some time. In his
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paper [10], Cusack compiled the following properties derivations on a Banach
algebra may enjoy:

(1) Every derivation on a Banach algebra leaves each primitive ideal invariant,

(2) Every derivation on a Banach algebra has a nilpotent separating space,

(3) Every derivation on a semiprime Banach algebra is continuous,

to which we add

(4) Every derivation on a prime Banach algebra is continuous.

Cusack showed that if any of these properties fails, then there exists a topo-
logically simple radical Banach algebra, no example of which is known and, in
fact, is not expected to exist. By [26, Theorem 2], (2), (3), and (4) are equiv-
alent (see also [14]), and the reduction procedure used in [26] shows that if (4)
holds, then Conjecture 1 is valid; compare [33, Corollary 1.9] as well as [31] for
the commutative case. In the same vein, (2) implies (1) [10, Theorem 4.5] which
in turn entails Conjecture 1 by Posner’s theorem. Unpublished work by Thomas
(compare [32, Theorem 4.2.3] and [33, Theorem 1.8]) enables us to add a further
property which is equivalent to (1):

(5) Every derivation on the unitisation of a radical Banach algebra leaves the
radical invariant.

Therefore, if Conjecture 1 is true, then (1) holds. For, [a + λ1, δ(a + λ1)] =
[a, δ(a)] ∈ rad(A) for every derivation δ on the unitisation A of a radical Banach
algebra A0 = rad(A) and a ∈ A0, whence by Conjecture 1, δA ⊆ rad(A). This
shows that our formulation of the non-commutative Singer–Wermer conjecture is
equivalent to the one given in [33] and [40].

What is known about Conjecture 1 in its various formulations? Sinclair proved
in [36, Theorem 2.2] that (1) holds for bounded derivations, and therefore Conjec-
ture 1 holds for all derivations on semisimple Banach algebras (which, of course,
is a special case of [26, Theorem 1]). Hence, the bounded case fits exactly into our
philosophy. Partial results of [26, Theorem 1] had been obtained earlier by Yood
[49, Theorem 3.1], Brešar and Vukman [7, Theorem 2.2], and Brešar [4, Corol-
lary 3.7]. The way out of the dilemma arising when one wants to reduce Conjec-
ture 1 to the semisimple case (and thus already needs to know that (1) holds) is
provided by appealing to prime instead of primitive ideals. It is well-known (to
algebraists, see [12, 3.3.2], [15, Proposition 1.1] or [9], and was reproved in [26,
Lemma]) that minimal prime ideals are invariant under derivations of Banach al-
gebras, which, together with automatic continuity results (e.g. [10, Lemma 2.3])
and Posner’s and Thomas’ theorems, allows one—in principle—to reduce to the
case of a prime Banach algebra. This end, however, requires a slightly stronger
assumption than in Conjecture 1, viz. that δ is commuting modulo the nilradical
nil(A) of A (i.e., the intersection of all prime ideals of A). This result seems, at
present, to be the strongest evidence for the validity of Conjecture 1, and was
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obtained independently in [23, Theorem 2.2] and [32, Theorems 4.2.7 and 4.2.8].

Theorem 1. Conjecture 1 holds for derivations commuting modulo the nil-
radical.

Since nil(A) is invariant under every derivation (which follows from the invari-
ance of minimal prime ideals and can also be proved in other ways, see e.g. [10,
Lemma 4.1]) it is close at hand to reduce to the semiprime situation; however,
nil(A) need not be closed and the separating space may not be nilpotent, cf. (2)
above. If A is a semiprime Banach algebra, then the hypothesis in Conjecture 1 can
be (formally) weakened. A derivation δ is said to be centralising if [a, δ(a)]∈Z(A),
the centre of A, for all a ∈ A. It is not difficult to see that each centralising deriva-
tion is commuting modulo the nilradical (this, in fact, holds for every ring [23,
Proposition 1.1], but in a Banach algebra already [a, δ(a)]2 = 0). In particular,
each centralising derivation on a semiprime Banach algebra is commuting. This
can be strengthened using [5, Corollary 1] which implies that every additive map-
ping F on a prime Banach algebra A such that [a, [a, F (a)]] ∈ Z(A) for all a ∈ A
is already commuting. Hence, each derivation δ on A such that [a, [a, δ(a)]] is
central modulo nil(A) is actually commuting modulo nil(A). This explains that
the weaker assumption [a, [a, δ(a)]] ∈ nil(A) implies that δA ⊆ rad(A) in [32,
Theorem 4.2.7].

The same reasoning applies whenever J is a δ-invariant ideal which is con-
tained in rad(A); one may without loss of generality assume that J is semiprime
since its nilradical nil(J) (the intersection of all prime ideals containing J) will be
δ-invariant and contained in rad(A), if J is. That is, [a, [a, δ(a)]] ∈ Z(A) (mod J)
implies that δA ⊆ rad(A); compare [23, Concluding Remark] as well as [32, The-
orem 4.2.8]. However, all these weakenings of the hypothesis in Conjecture 1 are
merely of a formal nature since δA ⊆ rad(A) yields that [a, δ(a)] ∈ rad(A) for all
a ∈ A, and the challenging open question is whether the converse holds.

The results described above use the δ-invariance of minimal prime ideals to
reduce the problem either to the case of a bounded derivation on an arbitrary
Banach algebra or to an arbitrary derivation on a prime Banach algebra, in which
case the hypothesis creates the following dichotomy: either δ = 0, or the algebra
is commutative (so that Thomas’ theorem applies). The latter step is formalised
in [32, Lemmas 4.2.5 and 4.2.6] (see also [33]) to the framework of differential
polynomial identities p(a, δ(a), δ2(a), . . . , δn(a)) = 0 for all a ∈ A, where p is
a complex polynomial in n + 1 non-commuting variables. The algebraic passe-
partout replacing Posner’s theorem then becomes

(6) p(a, δ(a), . . . , δn(a)) = 0 and A prime ⇒ δ = 0 or A commutative ,

whence the assumption in Theorem 1 may be replaced by p(a, δ(a), . . . , δn(a)) ∈
nil(A) for all a ∈ A. We list a number of examples of (6) recently studied:

p(x1, x2) = [x1, x2]2 and p(x1, x2, x3) = [x1, x2 + x3] [8] ,
p(x1, x2) = x2

2 [25], as well as
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p(x1, x2) = [x1, [x1, [x1, x2]]] [33], [44],
p(x1, x2) = [x1, [x1, x2]] [43] and p(x1, x2) = [x1, x2]x2 [45].

All these are refinements of p(x1, x2) = [x1, x2], the case investigated by Posner
[28], and all are restraints on the image of δ by comparing with another derivation.
In fact, Posner’s first theorem [28, Theorem 1] states that the image of a non-zero
derivation δ on a prime algebra A is “large” in the sense that no other non-zero
derivation δ′ can vanish on δA (1), while his second theorem is an immediate con-
sequence [24]. In the case of a general Banach algebra A, this behaviour remains
valid modulo semiprime ideals. The arguments used to prove [23, Proposition 1.2
and Corollary 1.3] yield the following.

Proposition 2. Let J be a semiprime ideal in A. The following conditions
on a derivation δ on A are equivalent.

(a) [a, δ(a)] ∈ J for all a ∈ A;
(b) [b, δ(a)] ∈ J for all a, b ∈ A;
(c) δb(c)Aδ(a) ⊆ J for all a, b, c ∈ A.

Calling a derivation δ satisfying (a) commuting modulo J , we realise that the
image of every such derivation is mapped into J by all inner derivations (condition
(b)). Moreover, if δ is inner modulo J , i.e. (δ − δb)A ⊆ J for some b ∈ A, then
condition (c) becomes

δ(c)Aδ(a) ⊆ J (a, c ∈ A)
whence δA ⊆ J by the semiprimeness of J . This, in particular, shows directly
that “δ inner modulo rad(A)” is equivalent to “δA ⊆ rad(A)” (see above). It also
leads to the question of locating the image of a derivation using other (semiprime)
ideals than rad(A).

Question. For which semiprime ideals J of a Banach algebra A does the fol-
lowing variant of Conjecture 1 hold: Every derivation which is commuting modulo
J is inner modulo J?

If we take a primitive ideal P in Proposition 2 and assume that [a, δ(a)] ∈ P
for all a ∈ A, then δP 6⊆ P will imply that δb(c) ∈ P for all b, c ∈ A by condition
(c) (as P is a prime ideal). Consequently, A/P is commutative and primitive, i.e.,
A/P ∼= C so that P has to be a maximal ideal. This may support the feeling
that there can at most exist a commutative obstruction to the non-commutative
Singer–Wermer conjecture (cf. also [23]).

2. . . . and where to find. Once we aim to learn about the image, i.e., the
global behaviour of a derivation δ, we need to understand local properties of δ,
i.e., those of δ(a) for some a ∈ A. Again, we start with a historical remark. In the
process of developing a mathematical description of quantum mechanics the ques-
tion came up whether bounded observables can fulfil the Heisenberg uncertainty

(1) This was observed in other contexts independently, see e.g. [13] and [47].
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principle. The negative answer given in the framework of Hilbert space operators
by Wintner in 1947 [48] was extended to the setting of the Banach algebra L(E)
of all bounded linear operators on a Banach space E by Wielandt [46] and can
be phrased as follows: No derivation on L(E) attains a non-zero central value.
In order to put this properly into its historical frame, we point out that every
derivation δ on L(E) is bounded (by semisimplicity) and inner, hence δ = δb for
some b ∈ L(E), and also that Z(L(E)) = C1. Therefore, Wielandt’s result is an
immediate consequence of the Kleinecke–Shirokov theorem:

Theorem 3 [21], [35]. Every commutator [a, b] in a Banach algebra satisfying
[a, [a, b]] = 0 is quasinilpotent.

Consequently, δb(a) ∈ Z(L(E)) implies that δb(a) is both scalar and quasinil-
potent, thus δb(a) = 0. Theorem 3 had been conjectured by Kaplansky in the
early 50’s on the base of the Wielandt–Wintner theorem and an older result due
to Jacobson [17] stating that every commutator [a, b] in an algebraic algebra over
a field of characteristic zero satisfying [a, [a, b]] = 0 is nilpotent (that is, The-
orem 3 in the finite-dimensional case). A number of mathematicians struggled
with Kaplansky’s conjecture—we mention here only the partial results obtained
by Halmos [16], Putnam [30], and Vidav [42]—until Kleinecke and Shirokov inde-
pendently corroborated it. It is readily seen (cf. [20, p.20] or [25, Theorem 2.2])
that the inner derivation δb in Theorem 3 can be replaced by an arbitrary bounded
derivation. As a result, we note the following property.

Proposition 4. No derivation on a primitive Banach algebra attains a non-
zero central value.

The variant of Theorem 3 for bounded derivations immediately implies the
Singer–Wermer theorem, which itself had been another conjecture by Kaplansky
based on Shilov’s result from 1947 stating that C∞[0, 1] cannot be normed as
a Banach algebra [34]. Likewise, Proposition 4 together with the δ-invariance of
primitive ideals (condition (1) above) would imply Conjecture 1 without more
ado.

It appears pertinent to state the following unsolved problem.

Conjecture 2. Let δ be a derivation on a Banach algebra A. For each a ∈ A,
[a, δ(a)] = 0 implies that δ(a) is quasinilpotent.

This unbounded Kleinecke–Shirokov theorem (first conjectured in [22]) holds
whenever Conjecture 1 is true. For, if δP ⊆ P for every primitive ideal P of A,
then [a, δ(a)] = 0 implies that [a+P, δP (a+P )] = 0 (where δP (x+P ) = δ(x)+P
denotes the induced derivation on A/P ), and δP being bounded then yields that
δP (a+ P ) is quasinilpotent. Now,

(7) σA(x) =
⋃
P

σA/P (x+ P ) ,
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where σB(·) denotes the spectrum with respect to the unital algebra B and the
union is taken over all primitive ideals of A, shows that δ(a) is quasinilpotent, too.

On the other hand, the validity of Conjecture 2 would imply Thomas’ theorem,
i.e., the commutative Singer–Wermer conjecture immediately and by means of this
provide an alternative proof of Theorem 1.

What is known about Conjecture 2? By [40, Proposition 1.10], the set of
primitive ideals which are not invariant under a given derivation δ is finite and
each of these exceptional primitive ideals is of finite codimension. Thus, by (7),
σA(δ(a)) is finite for each a ∈ A such that [a, δ(a)] = 0. This is also observed in
[33, Lemma 3.1]. In the same paper, Runde proves that if Conjecture 2 fails, then
there is a quasinilpotent element a such that [a, δ(a)] = 0 and δ(a) is invertible. He
also affirms Conjecture 2 under various stronger hypotheses, e.g. [33, Theorem 3.5]
reads as follows.

Theorem 5. Conjecture 2 holds for all a ∈ A such that [a, δn(a)] = 0 for all
n ∈ N.

Let us have a look at a proof of Conjecture 2 in the bounded case. Using the
reduction to inner derivations as in the first paragraph of Section 1, it suffices
to prove Theorem 3. Now, the assumption [a, [a, b]] = 0 can also be written as
δ2a(b) = 0 and the conclusion as δa(b) is quasinilpotent. In fact, this remains true
for arbitrary bounded derivations in place of δa (see [25, Theorem 2.1] or [27,
Theorem 2.1]). As a result, by (7), σA(δ(a)) is finite for all a ∈ A such that
δ2(a) = 0 whenever δ is any derivation on A. This was considerably strengthened
in [40, Theorem 2.9]:

Theorem 6. For all a ∈ A, δ2(a) = 0 implies that δ(a) is quasinilpotent.

Theorem 6 implies Conjecture 1 in the commutative case (that is, Thomas’
theorem) and appears to give some more evidence for the validity of Conjecture 2.
Note that the “globalisation” of Theorem 6 is easy to obtain: whenever δ2A ⊆
rad(A), then δA ⊆ rad(A). This merely uses the semiprimeness of rad(A) (and
hence is true for an arbitrary semiprime ideal J of A) as well as the identity

(8) 2δ(a)bδ(a) = δ2(aba)− aδ2(ba)− δ2(ab)a+ aδ2(b)a (a, b ∈ A) .

From this and Thomas’ theorem, we can deduce the following extension of
Proposition 4.

Theorem 7. Every derivation which maps into the centre maps into the rad-
ical.

For, if δA ⊆ Z(A), then δ|Z(A) maps Z(A) into rad(Z(A)) = Z(A) ∩ rad(A)
and therefore δ2A⊆rad(A). By the above, δA ⊆ rad(A) follows. This observation
is the global generalisation of Wielandt’s result to arbitrary Banach algebras.

In each case, the local information one obtains is that δ(a) ∈ Q(A), the set
of quasinilpotent elements, for certain a ∈ A. If, however, δ(a) ∈ Q(A) for all
a ∈ A, then δA ⊆ rad(A). This result is due to Turovskĭı and Shul’man [41] and
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was observed earlier by Pták [29] for inner derivations. There is an independent
proof for the case of bounded derivations in [25] from which the general case
can be derived as was pointed out to us by Runde (private communication). In
fact, if δA ⊆ Q(A) for an arbitrary derivation δ on A, then δP ⊆ Q(A) for each
primitive ideal P of A. Thus, (δP + P )/P is an ideal contained in Q(A/P ), and
since rad(A/P ) = 0, it follows that (δP + P )/P = 0, i.e., δP ⊆ P . The bounded
derivation δP on A/P maps into Q(A/P ), and hence into rad(A/P ). As a result,
δP = 0 for all primitive ideals, whence δA ⊆ rad(A). This sequence of arguments
yields a somewhat simpler proof than in [41].

Summarising the picture we tried to draw, we can now tell a reason why the
image of a derivation could lie in the radical. A derivation on a Banach algebra
tries to miss central elements (Proposition 4), and if it cannot, it is inner modulo
the radical (Theorem 7). The reason for this is the Kleinecke–Shirokov theorem
(Theorem 3) stating—at least in the bounded case, and if Conjecture 2 is true,
then also in general—that a derivation δ maps the set {a ∈ A | [a, δ(a)] = 0} into
Q(A). If this set is large enough (if A is commutative, this is Thomas’ theorem, if
A is arbitrary, this is Theorem 1), then δA ⊆ rad(A). It is close at hand to believe
that the only obstruction can come from the radical itself (Conjecture 1), and that
therefore in this more general sense, derivations come as inner derivations. Yet,
this is based on the conviction that an everywhere defined derivation on a Banach
algebra is not too discontinuous, that is, its separating space lies in the radical.

3. Spectrally bounded operators. The hypotheses in the results and con-
jectures presented in the previous two sections were all designed for the ultimate
conclusion that the image of a derivation is contained in the radical. We observed
that some of the arguments work for other ideals as well, hence the question arises
what can be said about the general range inclusion problem δA ⊆ J , where J
is a prescribed (closed) ideal of A? Wondering what turns the Jacobson radical
into a distinguished ideal in this question, one notes that it combines both alge-
braic information (in terms of the representation theory) and analytic information
(in terms of the spectral radius, i.e., generalised nilpotency) about the underly-
ing Banach algebra, thus being very close to the kelson of this algebraic-analytic
structure. It therefore does not come as a surprise that the Singer–Wermer conjec-
ture is intimately tied to other deep structural questions about Banach algebras
(see Section 1 above).

But still—why should δA be contained in the radical? The purpose of this
last section is to shed additional light onto this question from another view-
point, opening up an alternative approach in the quest for a proof of the non-
commutative Singer–Wermer conjecture. Recall that it suffices to prove that each
image δ(a) is quasinilpotent, in particular not invertible. The reason for this is
to be the Kleinecke–Shirokov theorem, or Conjecture 2, eventually. Starting from
Wielandt’s theorem, [a, b] 6= 1, we stressed the point that a derivation avoids
non-zero central values; but this is not the whole truth.
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Theorem 8. No derivation on a unital Banach algebra attains an invertible
central value.

Theorem 8 holds in the bounded case by the Kaplansky–Kleinecke–Shirokov
theorem and thus for semisimple Banach algebras, while Thomas’ theorem settles
the commutative case. If z= δ(a)∈Z(A) is invertible for some a ∈ A, then δ′=
Lz−1 δ is a derivation satisfying δ′(a) = 1. But by Theorem 6, this is impossible
and therefore Theorem 8 holds in general.

The following consequence of Theorem 8 is the actual local generalisation of
Wielandt’s theorem and, in the commutative case, was the key to Thomas’ proof
of the Singer–Wermer conjecture [39].

Corollary 9. No derivation on a unital Banach algebra attains the value 1.

We like to point out that Conjecture 1 (in the formulation (1)) together with
Proposition 4 would yield a “natural” argument for Theorem 8. If δA ⊆ Q(A),
then the image of δ in fact keeps away from 1, that is, the distance d(1, δA) is
at least 1. To our knowledge, not much is known about the closure δA of the
image of a derivation δ on a general Banach algebra; the special case A = L(H),
H a Hilbert space for example is treated in [1], [2], [38]. On the other hand,
there of course have been purely algebraic investigations on derivations attaining
invertible values, e.g. [3].

Let us assume commutativity for a moment because this case is the most clear.
For each a ∈ A there then is a maximal ideal I of A such that δ(a) ∈ I. The
Singer–Wermer conjecture, however, states much more: δ(a) is contained in all
maximal ideals. Thus, a derivation destroys invertibility in a very strong sense.
We use this as a motivation for the following concept.

Definition. Let A, B be Banach algebras. A linear mapping T : A → B is
called spectrally bounded if there is M > 0 such that r(T (a)) ≤ M r(a) for all
a ∈ A. If M = 1, we say that T is a spectral contraction, and T is a spectral
isometry if r(T (a)) = r(a) for all a ∈ A. Finally, T is spectrally infinitesimal if
r(T (a)) = 0 for all a ∈ A. (Herein, of course, r(x) denotes the spectral radius of
the element x.)

As the spectral radius is an algebra norm only in the commutative and semi-
simple case, the philosophy behind the notion of a spectrally bounded operator is
to try using a “non-commutative seminorm” to measure some kind of boundedness
with respect to invertibility rather than to continuity. There does not seem to be
a thorough study of this class of operators, so we start with a few basic remarks.

There are of course unbounded spectrally bounded operators. For instance,
each isomorphism between unital algebras is a spectral isometry and more gener-
ally every unital homomorphism is spectrally contractive. Likewise the left regular
representation is a spectral isometry from a unital Banach algebra A into L(A) (a
fundamental fact), and so is the canonical epimorphism π : A → A/ rad(A) (an-
other fundamental fact). Nagasawa’s theorem states that each surjective spectral
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isometry between commutative semisimple unital Banach algebras is an isomor-
phism (2).

Thomas’ theorem states that every derivation on a commutative Banach al-
gebra is spectrally infinitesimal, while it is clear that each spectrally bounded
operator on a commutative Banach algebra leaves the radical invariant.

Proposition 10. Each spectrally bounded derivation fixes the radical.

For, if r(δ(a)) ≤Mr(a) for some M > 0 and all a ∈ A, then

r(xδ(a)) = r(δ(xa)− δ(x)a) = r(δ(xa)) ≤Mr(xa) = 0

whenever a ∈ rad(A) and x ∈ A, whence δ rad(A) ⊆ rad(A). Hence, such a
derivation δ induces a bounded derivation δ′ on the semisimple Banach algebra
A/ rad(A), and

r(δ′(π(a))) = r(π(δ(a))) = r(δ(a)) ≤Mr(a) = Mr(π(a)) (a ∈ A)

shows that δ′ is spectrally bounded with the same constant. Clearly, δ is com-
muting modulo the radical if and only if δ′ is commuting, and δA ⊆ rad(A) if
and only if δ′ = 0. Thus, Conjecture 1 is equivalent to

Conjecture 1′. Every derivation commuting modulo the radical is spectrally
bounded.

Challenge: Prove Conjecture 1′ in the commutative case not using Thomas’
theorem. This would yield a new proof of the commutative Singer–Wermer con-
jecture. Moreover, one would arrive at the following commutativity-free charac-
terisation:

(9) δA ⊆ rad(A) ⇔ δ is spectrally bounded

provided that the following is true.

Conjecture 3. Each spectrally bounded derivation is spectrally infinitesimal.

This conjecture was recently affirmed for inner derivations in [6] building on
work by Pták [29]. Note that by the above, it suffices to ascertain Conjecture 3
for bounded derivations.

We conclude by recapitulating what is known about the following three con-
ditions on a derivation δ defined on a Banach algebra A.

(a) [a, δ(a)] ∈ rad(A) for all a ∈ A;
(b) δ is spectrally bounded;
(c) δA ⊆ rad(A).

We have (a)+(b)⇒(c)⇒(a)+(b), the latter implication being trivial. The implica-
tion (a)⇒(c) is Conjecture 1 while (b)⇒(c) is Conjecture 3. None of these seem to
imply the other, in fact (a)⇒(b), i.e. Conjecture 1′, is the same as Conjecture 1.

(2) It is an open problem whether every spectrum-preserving linear surjection on a semisimple
Banach algebra is a Jordan isomorphism. Such a map is known to be continuous and injective.
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Added in proof. 1. Combining the techniques used in [26] with a recent paper by C. Lanski

(Proc. Amer. Math. Soc. 118 (1993), 731–734) it follows that the hypothesis in Theorem 1 can
be replaced by the assumption that some higher commutator [. . . [x, [x, δ(x)]] . . .] is contained in
the nilradical for all x.

2. A recent preprint by R. E. Curto and the present author contains an alternative argument
for the result in [6] (i.e., Conjecture 3 for inner derivations) not relying on the subharmonicity
of the spectral radius.
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18, Tübingen, 1990, 137–143.

[23] —, On the range of centralising derivations, preprint, 1991.
[24] —, Posner’s second theorem deduced from the first , Proc. Amer. Math. Soc. 114 (1992),

601–602.
[25] M. Mathieu and G. J. Murphy, Derivations mapping into the radical , Arch. Math.

(Basel) 57 (1991), 469–474.
[26] M. Mathieu and V. Runde, Derivations mapping into the radical, II, Bull. London

Math. Soc. 24 (1992), 485–487.
[27] G. J. Murphy, Aspects of the theory of derivations, this volume, 267–275.
[28] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
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Editorial note: See also the paper of V. S. Shul’man in this volume. The editor has been
informed by Matej Brešar that Conjecture 3 was recently verified. Concerning the problem men-
tioned in footnote (2), some progress has recently been made by B. Aupetit and H. du T. Mouton
in their paper Spectrum-preserving linear mappings in Banach algebras, Studia Math. 109 (1994),
91–100; see also the papers of B. Aupetit and A. R. Sourour in this volume.


