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1. Introduction. A Jordan algebra is a non-associative algebra in which
the product satisfies the two conditions xy = yx and (xy)x2 = x(yx2), for all
x, y in the algebra. Such algebras were introduced, in the period 1932–1934, by
P. Jordan, J. von Neumann and E. Wigner in order to improve the quantum
mechanics formalism (see [24]). In the subsequent years they were studied by A.
A. Albert [1, 2] who gave a complete classification of finite-dimensional Jordan
algebras. Since that time Jordan algebras have been intensively investigated by
algebraists and the bibliography on this subject is very huge (see for instance [22,
23, 34]).

Given an associative algebra A we can build a Jordan algebra, denoted by
A+, defining the Jordan product x · y = 1

2 (xy + yx). Any Jordan subalgebra of
A+ is consequently a Jordan algebra. Such algebras are called special algebras.

Another interesting example is built in the following way. Let V be a linear
vector space and let ϕ be a symmetric bilinear form on V . We define a product
on J = C× V by

(α, x) · (β, y) = (αβ + ϕ(x, y), βx+ αy).

Then J is a Jordan algebra for this product and every element u = (α, x) is
algebraic of degree two because it satisfies the equation u2 − 2αu − ϕ(x, x) = 0.
This algebra is in fact a special algebra (see [34], Exercise 1, p. 57). Unfortunately,
there are exceptional algebras, that is to say, non-special algebras and this is what
mainly makes the difficulty of the theory (see for instance Albert’s theorem on
H(C3) in [34], pp. 55–57).
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On a Jordan algebra A we define the important quadratic operator Ua defined
by Ua(x) = 2a(ax)− a2x. It has the following property:

UxUyUx = UUx(y), for x, y ∈ A.
N. Jacobson introduced the notion of invertibility in Jordan algebras, which

of course generalizes the standard notion of invertibility in associative algebras.
Given x in A we say that x is invertible if there exists y in A such that xy = 1
and x2y = x. This element y is unique and is denoted by x−1. This notion is
intimately related with the quadratic operator.

Theorem 1.1. If x ∈ A then x is invertible if and only if Ux is invertible
in L(A), the algebra of linear operators on A, in which case Ux−1 = (Ux)−1. If
x, y ∈ A, then they are both invertible if and only if Ux(y) is invertible in A. In
particular , x is invertible if and only if xn is invertible for every integer n ≥ 1.

This theorem implies that the set of invertible elements in A is invariant under
taking powers but unfortunately, it is not stable for the product.

2. Analytic properties of the spectrum. A Jordan–Banach algebra A
is a Jordan algebra with a complete norm satisfying ‖xy‖ ≤ ‖x‖ ‖y‖, for x, y
in A. Adjoining an identity to A if necessary, we may suppose without loss of
generality that A has an identity, denoted by 1, and that ‖1‖ = 1. Because we
shall be concerned mainly with analytical tools we shall suppose throughout that
A is a complex algebra with identity. Very often the study of real Jordan–Banach
algebras can be reduced to the study of complex ones using complexification and
the identity principle for analytic functions, but in some cases this study may be
very tricky.

As seen before, x is invertible if and only if Ux is invertible and Ux−1 = (Ux)−1.
This implies the following.

Theorem 2.1. The set U of invertible elements of A is open and is invariant
under the differentiable homeomorphism x→ x−1.

For x in A we can define the spectrum of x, denoted by Spx, to be the set
of λ ∈ C such that λ1 − x is not invertible in A. The spectral radius r(x) is
by definition the maximum of |λ| for all λ in the spectrum of x. As for Banach
algebras, it is possible to obtain the following.

Theorem 2.2. Let x be an element of a Jordan–Banach algebra. Then

(i) Spx is compact and non-empty ,
(ii) λ→ (λ1− x)−1 is analytic on the complement of Spx,
(iii) r(x) = limn→∞ ‖xn‖1/n.
The standard holomorphic functional calculus in Banach algebras extends to

Jordan–Banach algebras. This comes from the fact that the closed subalgebra
generated by 1 and x is associative, and consequently is a Banach algebra.
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Theorem 2.3 (Holomorphic Functional Calculus). Let A be a Jordan–Banach
algebra, x in A and U a neighbourhood of the spectrum of x. If h is holomorphic
on U then we can define

h(x) =
1

2πi

∫
Γ

h(λ)(λ1− x)−1 dλ

where Γ is a positively oriented curve included in U and surrounding Spx. Then
we have the following properties:

(i) h(x) is independent of the choice of Γ lying in U and surrounding Spx,
(ii) ϕ : h→ h(x) is an algebraic morphism from H(U) into the smallest closed

strongly associative subalgebra containing 1 and x; moreover , if h(λ) = 1 then
ϕ(h) = 1 and if h(λ) = λ then ϕ(h) = x,

(iii) ϕ is continuous on H(U) for the uniform convergence on every compact
subset of U ,

(iv) Sph(x) = h(Spx).

For a detailed exposition of this theorem see [26]. Until the beginning of the
1980s, the previous three theorems were the only analytic spectral tools known
in the theory of Jordan–Banach algebras.

The next result is the fundamental tool which gives us the opportunity to
use systematically the deep theory of analytic multifunctions (for more details on
analytic multifunctions see Chapter VII of [6]).

Theorem 2.4 (B. Aupetit and A. Zräıbi [12]). Let λ → f(λ) be an ana-
lytic function defined on an open subset D of the complex plane with values in a
Jordan–Banach algebra. Then the multifunction λ→ Sp f(λ) is analytic.

This result implies in particular that the functions λ → log r(λ), λ →
log δn(f(λ)) and λ→ log c(f(λ)) are subharmonic, where δn and c denote respec-
tively the nth diameter and the capacity of the spectrum of f(λ). This theorem
has a huge number of consequences, some of them elementary, like the analogues
of Newburgh’s theorems on spectral continuity or like Corollaries 2.5 and 3.1
below, and some of them very deep.

Corollary 2.5 ([12]). Let A be a Jordan–Banach algebra having a subadditive
(or uniformly continuous) spectral radius r. Then for every x in A and every
bounded derivation D of A we have r(Dx) = 0.

The proof uses subharmonicity and the fact that eλD is an automorphism of
A. It can be used with D = RaRb −RbRa where Ra(x) = ax.

Other consequences are the following two results.

Theorem 2.6 (B. Aupetit and M. A. Youngson [11]). Let A be a Jordan–
Banach algebra with involution ∗. The following properties are equivalent :

(i) if h = h∗ then Sph ⊂ R,
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(ii) if h = h∗ and k = k∗ have positive spectra then so has h+ k,
(iii) x∗x has positive spectrum for every x in A.

We recall that A is a JB∗-algebra if for every x in A we have ‖Ux(x∗)‖ = ‖x‖3.
It is easy to check that if A is a JB∗-algebra and h = h∗ then ‖exp(ih)‖ = 1 and
the converse is true.

Corollary 2.7 ([11]). A is a JB∗-algebra for an equivalent norm if and only
if there exists a constant C ≥ 1 such that ‖exp(ih)‖ ≤ C for all h satisfying
h = h∗.

JB∗-algebras are an important tool which has been systematically studied
(see [21] for more details).

Theorem 2.4 is also important for philosophical reasons. It says that for
any analytic function f with values in a Jordan–Banach algebra the multifunc-
tion λ→ Sp f(λ) is analytic. But, by a famous representation theorem due to
Z. S lodkowski, every analytic multifunction can be locally represented as SpT (λ)
where T is an analytic function with values in the algebra of bounded operators
on the Hilbert space `2 (see [6], p. 167); so, in some sense, Theorem 2.4 reduces
a non-associative problem to an associative one. It is the reason for the following
creed which has never been contradicted yet: any Banach algebra result which is
proved by a purely spectral argument must be true and proved in a similar way,
modulo some technical modifications, in the situation of Jordan–Banach algebras.

The first revolutionary application will be given in §3. We proved it in 1982
in order to extend B. Johnson’s theorem on equivalence of complete norms.

3. The radical. The notion of Jacobson radical for associative algebras has
been generalized by K. McCrimmon to Jordan algebras (see [27, 28]). In a Jordan
algebra we say that an ideal I is quasi-invertible if for every x ∈ I we have 1− x
invertible. McCrimmon proved that in any Jordan algebra there exists a unique
maximal quasi-invertible ideal. By definition this ideal is the Jacobson radical
of A and is denoted by RadA. McCrimmon proved that if A is a special Jordan
algebra then the radical coincides with the associative Jacobson radical. From this
definition it is easy to see that the radical of A/RadA is zero, in other words,
this quotient algebra is semisimple (some authors say “semiprimitive”).

Using Corollary 2.5 we can easily get the following:

Corollary 3.1 ([12]). Let A be a Jordan–Banach algebra. Then A/RadA
is associative (consequently , a commutative Banach algebra) if and only if r is
subadditive and submultiplicative on A.

By Theorem 3.5 below we shall see that the same result is true if r is only
supposed to be subadditive (for the associative situation see Theorem 5.2.2 of [6]).
For a semisimple Banach algebra having a derivation D which satisfies r(Dx) = 0
for all x in A it is known that D = 0. Is the same true for Jordan–Banach algebras
if D is supposed to be at least bounded?
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In 1967, using representation theory, B. E. Johnson proved that for a semisim-
ple Banach algebra all complete algebra norms are equivalent. This result implies
in particular that any involution on such an algebra is continuous. These results
have very important consequences in the associative theory. Johnson’s argument
depends heavily on representation theory and on the fact that for Banach alge-
bras the Jacobson radical is the intersection of the kernels of irreducible repre-
sentations, that is, primitive ideals. Unfortunately, in the case of Jordan–Banach
algebras the similar result is not true (as noticed by J. M. Osborn [29]) so John-
son’s argument cannot be adapted (except in some rather easy situations like
H∗-algebras).

At first sight the extension of Johnson’s result to Jordan–Banach algebras
seemed to be impossible to get at the end of the 1970s as mentioned by J. Mart́ı-
nez Moreno in the introduction of his thesis [26].

Finally, in [4] we proved a beautiful extension of Johnson’s result for Banach
algebras (Theorem 5.5.1 of [6]), and in the case of Jordan–Banach algebras the
following.

Theorem 3.2. A semisimple Jordan–Banach algebra has a unique complete
norm topology and every Jordan epimorphism from a Jordan–Banach algebra onto
a semisimple Jordan–Banach algebra is continuous.

Corollary 3.3. Every involution on a semisimple Jordan–Banach algebra is
continuous.

These two results simplify considerably the results and proofs of [31]. The
argument of the proof is very simple, but based on subharmonicity of log r(f(λ))
which derives from Theorem 2.4 and Liouville’s theorem for subharmonic func-
tions.

At that time we were not able to give Johnson’s extension in full generality
for non-associative algebras, because we had no equivalent of Zemánek’s charac-
terization of the radical (Theorem 5.3.1 in [6]) which was, until 1992, based on
representation theory. But now there is a spectral characterization of the radical
for Jordan–Banach algebras (see Theorem 3.5 below). Consequently, we have

Theorem 3.4. Let A and B be two Jordan–Banach algebras. Suppose that
T is a linear mapping from A into B which is spectrally contractive, that is,
r(Tx) ≤ r(x) for every x in A. Denoting by S(T ) the separating space of T (that
is, the set of y in B for which there exists xn in A converging to 0 such that
Txn converges to y) then y ∈ S(T ) implies r(Tx) ≤ r(y + x), for all x in A.
In particular , if T is onto we have S(T ) ⊂ RadB, so T is continuous if B is
semisimple.

In [7] we gave a purely spectral proof of Zemánek’s characterization of the
radical in the case of Banach algebras. Using Theorem 2.4 and sophisticated
arguments on analytic multifunctions we succeeded in proving the following.
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Theorem 3.5 (Spectral Characterization of the Radical). Let a be an ele-
ment of a Jordan–Banach algebra A. Then a is in the radical of A if and only if
sup{r(x+ ta) : t ∈ C} is finite for every x in A.

Corollary 3.6. Let a be an element of a Jordan–Banach algebra A. Then a
is in the radical of A if and only if r(Ux(a)) = 0 for every x in A.

Corollary 3.7. Let a be an element of a Jordan–Banach algebra A. Then a
is in the radical of A if and only if there exists C ≥ 0 such that r(x) ≤ C‖x− a‖
on a neighbourhood of a.

If A is a semisimple Jordan algebra N. Jacobson has proved that Ua = 0 for
some a ∈ A implies a = 0. In the case of semisimple Jordan–Banach algebras
this result comes immediately from the previous corollary because (Ux(a))2 =
UUx(a)(1) = UxUaUx(1) = UxUa(x2) = 0, so r(Ux(a)) = 0 for every x in A;
consequently, a is in the radical of A, hence it is zero.

For a semisimple Banach algebra it is known that every derivation is bounded.
This beautiful result due to B. E. Johnson and A. Sinclair is proved using repre-
sentation theory. It would be very interesting to give a purely spectral proof of
that result, probably using analytic arguments as we did in the proof of Theorem
3.4, because it would give some hope to solve the same problem for semisimple
Jordan–Banach algebras.

4. Spectrally finite Jordan–Banach algebras. In 1954, I. Kaplansky
proved the following result: if φ is a ring morphism from a semisimple Banach al-
gebra A onto a Banach algebra B, then A admits a decomposition A = I1⊕I2⊕I3
where I1, I2, I3 are closed two-sided ideals of A such that I1 is finite-dimensional,
φ is linear on I2 and φ is antilinear on I3. The proof is based on the result
that a semisimple Banach algebra for which every element has finite spectrum is
finite-dimensional. This result has been generalized in many directions (see [3],
Chapter 3, for applications and historical comments, and also [6], Chapter V, §4,
for a more modern treatment).

This result suggested to us the study of the same problem in the situation
of Jordan–Banach algebras. The same result cannot be true in general because
if we take an infinite-dimensional Banach space V with Jordan product defined
on C×V using a symmetric bilinear form, as explained in the introduction, then
A = C× V is a Jordan–Banach algebra for which every element has a spectrum
with at most two points. The first attempt in this direction is the following result.

Theorem 4.1 ([12]). Let U be a non-empty open subset of a Jordan–Banach
algebra A. Suppose that for every x in U the spectrum of x has one point. Then
A/RadA = C.

We suggested to A. Käıdi the study of this question and it was solved by his
student M. Benslimane. The final result is the following.
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Theorem 4.2 (M. Benslimane and A. Käıdi [15, 13]). Let U be a non-empty
open subset of a semisimple Jordan–Banach algebra A. Suppose that for every
x in U the spectrum of x is finite. Then we have a finite decomposition A =
I1⊕ . . .⊕In where the Ik are simple closed ideals of A having one of the following
two properties:

(i) Ik is finite-dimensional ,
(ii) Ik is infinite-dimensional and the Jordan product on C1 ⊕ Ik is defined

by a symmetric bilinear form.

With this last result is it possible to extend Kaplansky’s theorem to ring
morphisms of Jordan–Banach algebras?

5. The socle. If A is a complex Banach algebra the socle, denoted by SocA,
is by definition the sum of all minimal left (resp. right) ideals of A. Equivalently,
the socle is the sum of all left ideals (resp. right ideals) of the form Ap (resp.
pA) where p is a minimal idempotent , that is, p2 = p and pAp = Cp. If A is
finite-dimensional then A coincides with its socle. If A = B(X), the algebra of
bounded operators on a Banach space X, the socle of A consists of finite-rank
operators. For more details about socle see [3], pp. 78–87 and [6], pp. 110–113.

For Jordan–Banach algebras the definition of the socle is slightly more difficult.
To simplify we shall suppose that the Jordan–Banach algebra A is semisimple.

We say that an idempotent p is minimal if Up(A) = Cp, in which case Up(A) is
a minimal quadratic ideal. But there is another type of minimal quadratic ideals
Q, those which have the properties Q = Uq(A) for every q ∈ Q and Q2 = 0 (this
derives from a more general result of N. Jacobson showing that in any Jordan
algebra there are only three types of minimal quadratic ideals).

By definition the socle of A, denoted by SocA, is the sum of all minimal
quadratic ideals of A.

Theorem 5.1 (J. M. Osborn and M. L. Racine [30]). The socle of A is an
ideal and it is the sum of all ideals generated by minimal projections.

It is not clear at all for which algebras the socle is non-zero. In the case of
Banach algebras, B. A. Barnes proved that the socle is non-zero if every element
of the algebra has a finite or countable spectrum. His argument is very technical,
in particular it uses Shilov’s idempotent theorem, a rather difficult theorem using
several complex variables. In [6], Theorem 5.7.8, we gave a purely subharmonic
proof which can be adapted to the situation of Jordan–Banach algebras.

Theorem 5.2 (B. Aupetit and L. Baribeau [9]). Let A be a semisimple
Jordan–Banach algebra. Suppose that every element of A has a finite or countable
spectrum. Then A has non-zero socle.

It is even enough to suppose that the spectrum is finite or countable on an
absorbing subset of A.
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Extending the corresponding associative concept which was mainly studied by
B. A. Barnes we can define a modular annihilator Jordan–Banach algebra A as a
semisimple Jordan–Banach algebra such that A/ SocA is radical. M. Benslimane
and A. Rodŕıguez Palacios, using the ideas contained in [5] or in [6], Chapter V,
§7, extended former results of B. A. Barnes. A. Fernández López obtained similar
results but his arguments are very technical.

Theorem 5.3 (M. Benslimane and A. Rodŕıguez Palacios [16], A. Fernández
López [17]). Let A be a semisimple Jordan–Banach algebra such that the spectrum
of every element has at most zero as a limit point. Then A is modular annihilator.

From Theorems 4.2 and 5.3 we get the next structure theorem.

Theorem 5.4 (B. Aupetit and L. Baribeau [9]). Let A be a separable Jordan–
Banach algebra. Suppose that every element of A has a finite or countable spec-
trum. Then there exists an ordinal number α0 of the first or second class and a
composition sequence (Iα)α≤α0 of closed ideals such that I0 = RadA, Iα0+1 = A
and Iα+1/Iα is modular annihilator for α ≤ α0.

For the definition of first and second class ordinal numbers, see the book of
W. Sierpiński [33]. The Iα are in fact the transfinite hypersocles obtained from
the successive α-Calkin algebras.

A. Fernández López and A. Rodŕıguez Palacios [19] proved that for a semisim-
ple Jordan–Banach algebra A the socle coincides with the largest von Neumann
regular ideal. Given a semisimple Jordan–Banach algebra A. Fernández López
[18] proved that its socle is an algebraic ideal and conversely if I is any algebraic
ideal then every element of I can be written as the sum of an element of the socle
and a nilpotent element. This result was improved by M. Benslimane, O. Jaa and
A. Käıdi [14] who proved that every element of a spectrally finite ideal can be
written as the sum of an element of the socle and an element whose square is
zero. Using recent results of O. Loos [25] it is even possible to prove much more.

Theorem 5.5 (M. Benslimane, O. Jaa, A. Käıdi and O. Loos). Let A be a
semisimple Jordan–Banach algebra and let I be a spectrum finite ideal of A. Then
I is included in the socle of A.

For more comments on this question see [32], p. 40 and pp. 100–101, and [25].
In [10], B. Aupetit and H. du T. Mouton gave a purely spectral character-

ization of the socle in the case of Banach algebras which has very interesting
consequences. Using sophisticated results on analytic multifunctions it is possible
to prove the following four results.

Theorem 5.6. Let A be a semisimple Jordan–Banach algebra, let a ∈ A and
let n be a non-negative integer. The following conditions are equivalent :

(i) Sp(Ux(a)\{0}) has at most n points for every x in A,
(ii)

⋃
t∈F Sp(y+ta) ⊂ Sp y for every y in A and F a finite subset of C having

at most n+ 1 non-zero points.
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We denote by Fn the set of a ∈ A having the above two properties. By
Corollary 3.6, F0 is the radical of A, hence {0}. We shall say that Fn is the set of
elements of A with rank less than or equal to n. The main result (Theorem 5.10)
says that

⋃
n≥0 Fn coincides with the socle of A.

Theorem 5.7. If a ∈ Fn then Ux(a) ∈ Fn for every x ∈ A.

The proof of Theorem 5.9 needs a beautiful geometrical characterization of
algebraic varieties of C2 we have recently proved and which was apparently un-
known before. The symbol # denotes cardinality.

Lemma 5.8. Let V 6= C2 be a closed subset of C2 above C which has the
following properties:

(a) C2\V is a pseudoconvex open set ,
(b) for every λ ∈ C we have either #(({λ} × C) ∩ V ) ≤ m or {λ} × C ⊂ V ,
(c) for every µ ∈ C we have either #((C× {µ}) ∩ V ) ≤ n or C× {µ} ⊂ V .

Then V is a complex algebraic subvariety of C2 of degree at most m+ n.

From that we get the following

Theorem 5.9. If a ∈ Fm and b ∈ Fn then a+ b ∈ Fm+n.

Using Theorems 5.5, 5.7 and 5.9 we immediately get the next result.

Theorem 5.10.
⋃
n≥0 Fn coincides with the socle of A.

All these theorems, which will appear in [8], imply the existence of an additive
trace on the socle whose restriction to Fn is continuous. They also imply that
every element of the socle of A is a finite sum of elements of F1. Another conse-
quence is that a linear mapping from a semisimple Jordan–Banach algebra onto
itself which preverves the spectrum leaves the Fn invariant and consequently the
socle.

To finish this paper we would say that there remains the fascinating task to try
to understand more clearly the intimate correlation of Jordan–Banach algebras,
homogeneous symmetric spaces and analytic multifunctions.

The reader intending to know more about the recent developments of the
algebraic theory of Jordan algebras has to read the recent big survey of A. Rodŕı-
guez Palacios [32].

References

[1] A. A. Albert, On Jordan algebras of linear transformations, Trans. Amer. Math. Soc. 59
(1946), 524–555.

[2] —, A structure theory for Jordan algebras, Ann. of Math. 48 (1947), 446–467.
[3] B. Aupet i t, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735,
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[33] W. Sierp i ń sk i, Cardinal and Ordinal Numbers, PWN, Warszawa, 1958.
[34] K. A. Zhevlakov, M. Sl in’ko, J. P. Shestakov and A. I. Sh i r shov, Rings That

Are Nearly Associative, Academic Press, New York, 1982.

Editorial note: See also the paper of A. R. Sourour in this volume.


