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Coorrnomenye (2.14) B Hamem cirygae, KaK He TPYJHO BHIETh, €CTh

(.7) © Yiy= —DPy+d, i=N(-DI.

CpaBHeHHe ¢ COOTHOLIEHIAMY MaTpHUHON Hporouky B [3], ypaBuenus (3.4)-(3.7)

€CTh HE UTO HHHOE, KaK 3Ta IPOTOHKA, IIPK OIpefeeHuy x; = — D2,
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1. Introduction

In this paper the notion of an F-matrix is introduced and two new algorithms to
calculate its inverse are suggested.

The first calculates the inverse of an F-matrix with the aid of the inverse of
a triangular matrix arising by an adequate adjustment of the original matrix. The
second settles the same problem with the aid of recurrent relations.

Both algorithms are appraised from the viewpoint of the number of their arith-
metical operations, being thereby compared with the Gauss method of inverse of
that type of matrices.

In conclusion it is shown that the algorithms suggested may be usefully utilized
to calculate the inverse of an F-matrix if this is of large dimension and sparse.

The notion of an F-matrix is introduced by the following

DEerFNITION 1. A real square regular matrix of nth order 4 = (ay;) is called an
F-matrix if

(@) a; =0 for j—i>w,

(b) a;; # 0 for j—i =w,
i=1,2,...,n,j=i+w,i+w+l,...,n, where 1< w<n—1isa given natural
number. ) \ !

Remark. The presuppositions of Definition 1 being satisfied, an upper Hessen-
berg matrix is an F-matrix withw = 1, A diagonal (2w 4 1)-matrix is also an F-matrix. .

2. The algorithm M1
Let 4 be an F-matrix. Border it successively from above with n-dimensional vectors
ej, where ¢ = (0,0, ...,1,...,0) and from right with (1+w)-dimensional basic
vectors f;, £ = (0,0, ..., 1, ..., 0) in which there is 1 at the jth or sth point, respec-
tively. We get thereby a lower triangular matrix of (4 w)th order, denoted 7.
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The calculation of the inverse of matrix A4 is derived under the assumption that
the lower triangular matrix 7'-* is known by suitably shattering the T-! and T ma-
trices in the relation

" T—1T=[C‘ cz] [A1 4,

C GCifl4 Aa] = Lo,
where I, is the unit matrix of (n+w)th order, C, and C, 4, are square matrices
of nth order and wth order, respectively.

We have

LEMMA 1. Ler T-* and T be the above-mentioned matrices shattered into blocks
according to (1). Then C is regular.

Proof. 1t follows from (1) that

(2) C1A1+C2A =In,
©) CA,+Cyd =0,
@ Csds =1,

where O, is the zero (w X n)-matrix.
Since A is regular, we get from (3)

Cy = —CA 471,
By substituting this relation into (4) and by arrangement we get
C(—A;A7'45) =1,
and hence C is regular.
TaEOREM 1. Let A be an F-matrix and T~* and T known matrices shattered

into blocks according to (1). Then :
[®) A7 =C,-C,C'C;5.
Proof. From (3) it follows that
Ay = —C Gy A.

By substituting into (2) we get

(C,—C,C'C4 =1,
and hence (5) holds.

The calculation of the inverse of a matrix 4 of nth order has been reduced to
calcnlating a matrix T-* of (n+w)th order, a full matrix C~* of wth order and to
carrying out relation (5). The inverse of an F-matrix thus calculated is denoted as
algorithm M1.

From the viewpoint of the number of arithmetical operations it is more advan-
tageous to calculate the matrix 7* in the following way: Shatter the matrices T’
and T-* in the relation TT-! = I,,,, as follows:

E. O,|[F, O,
T = =
© [Gw IWHJW Iw] b,

e © :
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where E,, F, are lower triangular matrices of nth order and O, is the zero (n x w)-ma-
trix. According to [2] we have

THEOREM 2. Let T and T~ be matrices broken up into blocks according to (6).
Then the individual blocks of the matrix T=* satisfy:

F,=EY, J,=-G,F,.
The algorithm M1 thus modified is now denoted as M1*,

Remark. The idea of bordering a matrix 4 according to (1) is applied in [1] to
calculate the inverse of isoclinal matrices.

3. The algorithm M2

Let A be an F-matrix. Note how in relation 44~! = I, the relation da;! =¢,
looks, where respectively, a;7* = (ai;') and e, are the first columns of the matrices
A~ and 1., ie.,

w1 )
-1 _
Z ajai =1,
=1
w#.
M > @yt =0,
=1

n

-1 _
Za,,_w,iajl =0.

Jj=1

It can be seen that if in @7' the first w elements are known, the remaining n—w
elements can be calculated from (7) recurrently.

In general, it holds that if the first w rows of the matrix A~ are known, all col-
urmns 4~ can be independently recurrently calculated by the algorithmic formulae
.

The task hence reads: find the first w rows of 471.

The solution renders relation (3), from which we get

® A A" = —C1C5.
Since A4, is the first w rows of the unit matrix I, it follows from (8) that the first w
rows ‘of the matrix A~! constitute the matrix —C~*C;. The matrices C and Cj
can be calculated recurrently from (1) without having to calculate other elements
of T—. . .

The algorithm M2 then consist in the recurrent calculation of elements of the
matrices C, C5 from (1), in the transformation of the matrix [C] Ci] into
[-I,} —C~'Cs] by elementary row adjustments and in the recurrent calculation
of the other elements of the matrix 4~* by the algorithmic formulae (7).
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Remark. Analogously to relation (8), it can be shown that the last w columns of
the matrix 4~ form the matrix —C; C~!, where C;, C are the matrices occurring
in (1). : )

4, Appraisal of algorithms from the viewpoint of the number
of arithmetic operations

The following table indicates the number of multiplications needed to calculate the
inverse of a given F-matrix by the Gauss method (MG) and by the M1, M1* and
M2 methods. The number of additions is almost in accordance with the number of
multiplications in the individual methods. The number of divisions is equal to n
in all these methods.

Number of multiplications
MG %n’+n2w——w“+n2+nw w —%n—;w
M1 %rf-k—-::n’w-}-;—nwz-i-%ws‘{—%nz%—nw—%w’—%n-l—%w——l
Mi* %n“+;n’w+nw2+%w3+%n’+-;nw—%wz—§n+%w—l
M2 —;—nz—k%nfw+%nw’—%w3+%n;—nw+§wz»w

5. Some special applications

In conclusion, let us indicate some special applications of the algorithms suggested.

Firstly, the calculation of the inverse.of 2 given F-matrix if this is of a large
dimension and sparse. Subsequently we shall point out the feasibility of implement-
ing these algorithms on parallel computers.

Let .4 be an F-matrix of a.large dimension and sparse. The calculation of A%
is generally carried out by the Gauss or Gauss—Jordan method.

At the individual steps of these methods there always occurs the so-called fill-in,
the change of certain zero elements of the matrix 4 into non-zero ones, enlarging
the claims for the internal memory of the computer. There have been set up methods
{3] which reduce the growth of fill-in. Their application always incurs the enlarge-

- ment of the number of respectively arithmetic or logical operations. On these grounds
it is of advantage to have an algorithm for solving the tasks with large and sparse
matrices of a recurrent form in which the matrix components constitute the coeffi-
cients of these recurrent relations and their resulting values directly yield the solution
of the problem (e.g. they are the elements. of A~"). In such a case no fill-in occurs.
M2 is such type of an algorithm. ‘After carrying out the calculation of the first w
rows of the matrix 4%, which is partly: also recurrent, the relations of type (7) di-
rectly renderthce]ements of 474, . : o R
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In the methods M1 and M1* the calculation of 7-! and E;! is also calculated
recurrently, although the calculation of 4! requires a completion of relation (5).
In algorithms M1, M1* and M2 the same type of recurrent relations shows up:

Y1 = Co,

i—1

® ;
bi—1,iy: = Zbi—l.jyj+ci—1’ i=

2,3, ...,m.
The calculation of y;, i = 1,2, ..., m, according to (9) is strictly serial and requires
O(m?) multiplications and additions.

In paper [4] the implementation (9) was suggested to be carried out on an m-pro-
cessor parallel computer, on which this process would be implemented on O(m)
multiplications and additions. .

In paper [5] relations (9) are made parallel for a k-processor computer where
k < m. In that case this process is implemented by m?/k+ O(m) multiplications or
additions.

The numerical stability of recurrent relations (9) is investigated in [6].
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