предположения функции \(q_j(x) \) из (14), удовлетворяющие условиям леммы 3, а \(w_j(x,t) \) удовлетворяет уравнению (12), однородному условию (13) и граничным условиям

\[
\frac{\partial^{j+1} w_j(t,0)}{\partial x^{j+1}} = f_j(t) - \frac{\partial^{j+1} w_j(t,0)}{\partial x^{j+1}}, \quad j = 1, \ldots, k+1.
\]

В этом случае имеет место поглощенное в смысле поведения по времени такой результат.

Лемма 8. Пусть функции \(q_j(x) \) и \(f_j(t) \), \(j = 1, \ldots, k \), удовлетворяют условиям леммы 7, \(h_j > \frac{h_1 + i - 1}{2k+1}, \quad i = 2, \ldots, k+1 \), \(f_j^{(h_j)}(t) \in L_1(0, \infty) \), \(f_j^{(h_j)}(t) \in L_1(0, \infty) \). Тогда справедливо предельное равенство

\[
\lim_{t \to 1} (\theta-1) u(t,x) = \frac{f_j^{(h_j-1)}(0) - f_j^{(h_j)}(0)}{(h_j-1)}.
\]

Замечание. Построенные нами выше решения входят в класс единственности решения соответствующих задач.

Литература

Presented to the Semester
Mathematical Models and Numerical Methods
(February 3-June 14, 1975)
prove the convergence of Galerkin's method and of a projection-iteration method, which combines Galerkin's method and the iteration method mentioned before. The projection-iteration method is useful especially if the maximal monotone operator \(A \) is linear, because in this case our problem is reduced to relatively simple linear problems. In Section 3 we consider two examples. We show that the results of Sections 1 and 2 are applicable to certain pseudo-parabolic and evolution equations. Let us remark that an existence result for initial value problems of the form

\[
Au + B \frac{du}{dt} = 0, \quad u(0) = a,
\]

where \(A \) and \(B \) are nonlinear operators was proved already by Barbu [2]. His assumptions on \(A \) and \(B \) are quite different from those used in this paper.

1. Iteration

Let \(X \) be a real Hilbert space with the scalar product \(\langle \cdot, \cdot \rangle_X \) and let \(X^* \) be the dual of \(X \). By \(\langle \cdot, \cdot \rangle \) we denote the pairing between \(X^* \) and \(X \). The norm in the Cartesian product \(X \times X \) we define by

\[
\|[u,v]\|_{X \times X} = \|(u,v)\|_X = \sqrt{\|u\|_X^2 + \|v\|_X^2} \quad \forall [u,v] \in X \times X.
\]

As usual (see e.g. Brezis [3]) we consider every set \(A \subset X \times X \) as a multivalued mapping from \(X \) to \(X \). We use the following notation:

\[
Au = \{v : [u,v] \in A\} \quad \forall u \in X,
\]

\[
D(A) = \{u : u \in X, Au \neq \emptyset\}.
\]

Definition 1. A set \(A \subset X \times X \) is said to be monotone if

\[
\langle u_1 - u_2, v_1 - v_2 \rangle_X \geq 0 \quad \forall [u_1,v_1], [u_2,v_2] \in A.
\]

A monotone set \(A \subset X \times X \) is said to be maximal monotone if it is maximal with respect to inclusion among the monotone subsets of \(X \times X \).

Definition 2. If \(A \in X \to X^* \), we define \(\text{Mon}(A) \) (the so-called monotonicity constant of \(A \)) by

\[
\text{Mon}(A) = \inf_{u,v \in X} \frac{\langle Au-Av, u-v \rangle}{\|u-v\|_X^2}.
\]

\(A \) is said to be (strongly) monotone if \(\text{Mon}(A) \) is (strictly) positive.

Definition 3. Let \(Y \) and \(Z \) be Banach spaces. If \(A \in (Y \to Z) \), we define \(\text{Lip}(A) \) (the Lipschitz constant of \(A \)) by

\[
\text{Lip}(A) = \sup_{u,v \in Y} \frac{\|Au-Av\|_Z}{\|u-v\|_Y}.
\]

If \(\text{Lip}(A) < \infty \), then \(A \) is Lipschitzian.

In this section we assume that we are given operators \(A, B \) and \(\Lambda \) such that

\[
A \in (X \to X^*), \quad m_A := \text{Mon}(A) > 0, \quad M_A := \text{Lip}(\Lambda < \infty),
\]

\[
B \in (X \to X^*), \quad m_B := \text{Mon}(B) > 0, \quad M_B := \text{Lip}(B) < \infty,
\]

\(\Lambda \subset X \times X \) is maximal monotone.

We consider the problem

\[
Au + Bu = 0, \quad u \in D(A).
\]

This problem can be written as follows:

\[
Au + Bu = 0, \quad [u,v] \in A.
\]

We are going to formulate (4) as a fixed point problem. Let \(L \) be the (linear) duality map from \(X \) onto \(X^* \) characterized by

\[
\langle Lu,v \rangle = \langle u,v \rangle \quad \forall u,v \in X
\]

and let \(p \in X \), \(q \in X \) be given real numbers. It is well known (cf. Brezis [3]) that the problem

\[
L(\langle u,v \rangle) = \langle u,v \rangle, \quad \forall [u,v] \in A
\]

has a unique solution \([u,v] \in X \times X \) for arbitrary \([u,v] \in X \times X \). Therefore, it makes sense to define an operator \(U_{p,q} \) of \((X \times X) \to (X \times X) \) by

\[
U_{p,q}(\langle u,v \rangle) = \langle [u,v] \rangle, \quad \forall [u,v] \in A
\]

and \(\langle u,v \rangle \) is a fixed point of \(U_{p,q} \) if and only if \([u,v] \) is a solution of (4).

Lemma 1. Let (1)-(3) be satisfied. If \(U_{p,q} \) is defined by (6) then

\[
\text{Lip}(U_{p,q}) \leq \text{Lip}(L-pA) + \text{Lip}(L-qB).
\]

Proof. Let \(\langle [u,v] \rangle \in X \times X \) and \(\langle [u,v] \rangle = U_{p,q}(\langle [u,v] \rangle) \), \(i = 1, 2 \). Then

\[
\|U_{p,q}(\langle [u_1,v_1] \rangle) - U_{p,q}(\langle [u_2,v_2] \rangle)\|_{X \times X} = \left\| [\langle u_1-v_1 \rangle, \langle v_1-v_2 \rangle] \right\|_X
\]

\[
\leq \|\langle u_1-u_2 \rangle\|_X + \|\langle v_1-v_2 \rangle\|_X
\]

\[
\leq \text{Lip}(L-pA) \|\langle u_1-u_2 \rangle\|_X + \text{Lip}(L-qB) \|\langle v_1-v_2 \rangle\|_X
\]

\[
\leq [\text{Lip}(L-pA) + \text{Lip}(L-qB)] \|\langle u_1-u_2 \rangle\|_X + \|\langle v_1-v_2 \rangle\|_X
\]

\[
\leq \left[\text{Lip}(L-pA) + \text{Lip}(L-qB) \right] \|\langle [u_1,v_1] \rangle \|_{X \times X}.
\]

This proves the lemma.

Remark 2. Lemma 1 shows that \(U_{p,q} \) is strictly contractive if

\[
k := \text{Lip}(L-pA) + \text{Lip}(L-qB) < 1.
\]

In view of (1) and (2) we have (see e.g. Browder-Petryshyn [4])

\[
\text{Lip}(L-pA) \leq 1 - 2m_A + M_A^2, \quad \text{Lip}(L-qB) \leq 1 - 2m_B + M_B^2.
\]
Using (8) it is easy to see that one can satisfy (7) by a suitable choice of \(p \) and \(q \) if
\[
\left(\frac{m_1}{M_2} \right)^2 + \left(\frac{m_2}{M_2} \right)^2 > 1.
\]
This relation holds e.g. if we have \(A = L/2 \) or \(B = L/2 \).

If \(A \) is a potential operator, i.e., if
\[
\langle Au, v \rangle = \lim_{t \to 0} \frac{1}{t} \left(\langle F(u + tv), F(u) \rangle \right) \quad \forall u, v \in X,
\]
where \(F \in (X \to \mathbb{R}) \), then we have
\[
\text{Lip}(L-pA) = \max(1-m_2p, M_2p-1).
\]
(Lemma 4.14, Kap. III, in [11] shows Lip(L-pA) < \max(1-m_2p, M_2p-1), and the inverse inequality can be shown easily by elementary estimations.) Correspondingly, if \(B \) is a potential operator, we have
\[
\text{Lip}(L-qB) = \max(1-m_1q, M_1q-1).
\]
Therefore, in the case of potential operators \(A \) and \(B \) we can satisfy (7) by a suitable choice of \(p \) and \(q \) if
\[
\frac{m_1M_2}{(m_1+M_2)^2} + \frac{m_2M_2}{(m_2+M_2)^2} > \frac{1}{4}.
\]

Theorem 1. Let (1)–(3) be satisfied. Moreover, let \(A \) and \(B \) satisfy condition (7) for fixed real numbers \(p > 0 \) and \(q > 0 \). Then problem (9) has a unique solution \(\langle u, v \rangle \). If the sequence \((u_t, v_t) \) is determined by
\[
L(u_{t+1}) = L(pA)u_t + p(L-qB)v_t, \quad v_t \in A u_t, \quad t = 1, 2, \ldots,
\]
then \((u_t, v_t) \) is \(X \times X \) arbitrary.

Proof. In view of Remark 1 the theorem is an immediate consequence of Lemma 1 and Banach’s fixed point theorem.

2. Projection and projection-iteration

We assume that we are given \(A, B \) and \(A \) as in Section 1. Let \((X_n) \) be a sequence of subspaces of \(X \) such that
\[
X_n \subset X_{n+1}, \quad n = 1, 2, \ldots, \quad \bigcup X_n \text{ is dense in } X.
\]

We denote by \(X^*_n \) the dual space of \(X_n \) and by \(\langle \cdot, \cdot \rangle_n \) the pairing between \(X^*_n \) and \(X_n \).

We define operators \(A_n \in (X_n \to X^*_n) \) and \(B_n \in (X_n \to X^*_n) \) by
\[
\langle A_n u, v \rangle_n = \langle Au, v \rangle, \quad \langle B_n u, v \rangle_n = \langle Bu, v \rangle \quad \forall u, v \in X_n.
\]

Furthermore, we assume that \((A_n) \) is a sequence such that
\[
\text{Lip}(L-pA_n) = \max(1-m_2p, M_2p-1), \quad \text{and}
\]
\[
\text{Lip}(L-qB_n) = \max(1-m_1q, M_1q-1).
\]
The condition (18) means that \(A \) is approximated in a certain sense by the operators \(A_n \). Besides (4) we consider the corresponding “Galerkin problems”
\[
A_n u_n + B_n v_n = 0, \quad [u_n, v_n] \in A_n.
\]

Theorem 2. Let (1)–(3), (7) and (18) be satisfied. Then, for every \(n \) the problem (19) has a unique solution \(\langle u_n, v_n \rangle \) and we have
\[
[u_n, v_n] \to [u, v] \quad \text{in } X \times X,
\]
where \([u, v] \) denotes the solution of (12).

Proof. Let \(L_n \) be the duality map from \(X_n \) onto \(X_n^* \) characterized by
\[
\langle L_n u, v \rangle_n = \langle u, v \rangle \quad \forall u, v \in X_n.
\]
Because \(\text{Lip}(L-pA_n) \leq \text{Lip}(L-pA) \) and \(\text{Lip}(L-qB_n) \leq \text{Lip}(L-qB) \) the existence and uniqueness of a pair \([u_n, v_n] \) satisfying (19) follows from Theorem 1. In view of (19) there exists a sequence \((u, v) \) such that
\[
[u_n, v_n] \to [u, v] \quad \text{in } X \times X.
\]

Using (4), (19) and (21), we obtain
\[
\langle q(u_n - u) + p(v_n - v) \rangle_n \to \langle q(u - u) + p(v - v) \rangle.
\]

Hence
\[
\langle q(u_n - u) + p(v_n - v) \rangle \to \langle q(u - u) + p(v - v) \rangle.
\]
and
\[\left(\| q(u_r-u) \| + \| p(v_r-v) \| \right)^{1/2} \leq \left(\frac{(pM_k^2 + qM_k)^2}{1-k} + 1 \right) \left(\| q(u-u_0) \| + \| p(v-v_0) \| \right)^{1/2}. \]

From (21) and (22) follows assertion (20).

Remark 3. Relation (22) shows that
\[\| u-u, v-v \|_{X \times X} \leq \text{const} \inf_{\tilde{u}, \tilde{v}} \| u-u_0, v-v_0 \|_{X \times X}. \]

Therefore, the Galerkin sequence \((u_n, v_n)\) gives a "quasi-optimal" approximation of \([u, v]\) by elements of \(A_n\).

The next theorem shows that under the assumptions of Theorem 2 it is possible to approximate the solution \([u, v]\) of (4) by means of a so-called projection-iteration method.

Theorem 3. Let (1)–(3), (7) and (15)–(18) be satisfied. If the sequence \((\tilde{u}_n, \tilde{v}_n)\) is determined by
\[\begin{align*}
L_n(q\tilde{u}_n + p\tilde{v}_n) &= q(L_n - pA_n)\tilde{u}_{n-1} + p(L_n - qB_n)\tilde{v}_{n-1}, & \tilde{u}_n &\in A_n u_n, \\
n &= 1, 2, ..., \quad \tilde{u}_0, \tilde{v}_0 \in X_1 \times X_1 \text{ arbitrary},
\end{align*} \]
then we have
\[\tilde{u}_n, \tilde{v}_n \rightharpoonup [u, v] \text{ in } X \times X, \]
where \([u, v]\) denotes the solution of (4).

Proof. We define \(U_{n+1} : X \rightarrow X_1\) by
\[U_{n+1} \equiv \left((u, v) \right) \quad U_{n+1}(qf + pf) = q(L_n - pA_n)u_{n-1} + p(L_n - qB_n)v_{n-1}, \quad u \in A_n u_n. \]

Then \(U_{n+1}\) is strictly contractive with the contraction constant \(k\) (cf. (7)). The fixed point of \(U_{n+1}\) is \((u_n, v_n)\), where \([u_n, v_n]\) denotes the solution of (19). We can write (23) as follows:
\[\begin{align*}
q(u_n + p_n) &= q(L_n - pA_n)u_{n-1} + p(L_n - qB_n)v_{n-1}, \quad u_n \in A_n u_n.
\end{align*} \]

Therefore, Theorem 3 follows immediately from Theorem 2 and Lemma 3.2, Kap. III, in [11].

3. Applications

In this section we show that it is possible to find periodic solutions of certain pseudo-parabolic equations or evolution equations using the methods of the previous sections.

Let \(S = [0, T]\) be a finite interval of the real axis. If \(E\) is a Hilbert space, we denote by \(L^2(S; E)\) the Hilbert space of all square integrable functions defined on \(S\) with values in \(E\) (provided with the usual scalar product) and by \(C(S; E)\) the space of all continuous mappings from \(S\) into \(E\) with the supremum norm.

Let \(Y\) be a real Hilbert space. By \(Y^\ast\) we denote the dual of \(Y\) and by \((\cdot, \cdot)_Y\) the pairing between \(Y^\ast\) and \(Y\). We assume that \((Y_n)\) is a sequence of subspaces of \(Y\) such that
\[\begin{align*}
Y_n &\subseteq Y_{n+1}, \\
n &= 1, 2, ..., \\
\bigcup_n Y_n &\text{ is dense in } Y.
\end{align*} \]

By \(Y_n^\ast\) we denote the dual of \(Y_n\) and by \((\cdot, \cdot)_n\) the pairing between \(Y_n^\ast\) and \(Y_n\). For the sake of brevity we introduce the following notations:
\[\begin{align*}
X &= L^2(S; Y), \\
X_n &= L^2(S; Y_n), \\
X_n^\ast &= L^2(S; Y_n^\ast), \\
(f, u) &= \int_0^T (f(t), u(t)) dt, \quad \forall f \in X^\ast, \forall u \in X, \\
(f, u)_n &= \int_0^T (f(t), u(t)) dt, \quad \forall f \in X_n^\ast, \forall u \in X_n.
\end{align*} \]

As in the previous section we denote by \(L\) and \(L_n\) the duality maps of \(X\) and \(X_n\), respectively.

3.1. Pseudo-parabolic equations

If \(u \in X\) we denote by \(u'\) the derivative of \(u\) in the sense of distributions on \([0, T]\) with values in \(Y\). Let
\[\begin{align*}
W &= \{ u \in X, u' \in X \}, \\
W_n &= \{ u \in X_n, u_0 = u(T) \}, \\
W_n^\ast &= \{ u \in X_n^\ast, u_0 = u(T) \},
\end{align*} \]
and
\[\begin{align*}
W_n &= \{ u \in X_n, u_0 = u(T) \}.
\end{align*} \]

We assume that \(A \in (X \times X^\ast)\) and \(B \in (X \times X^\ast)\) are operators satisfying (1) and (2). We are interested in problems of the type
\[\begin{align*}
A u + B u' &= 0, \quad u \in W, \\
A u + B u' &= 0, \quad u \in W_n.
\end{align*} \]

Such problems occur for instance in the theory of viscoelasticity, where \(A\) and \(B\) are given by elliptic differential operators.

Theorem 4. Let (1), (2), (9) and (16) be satisfied. Then the problem (25) has a unique solution \(u\). If we put \(p = m_1 M_1^2\) and \(q = m_2 M_2^2\) and determine the sequence \((u_n)\) by
\[\begin{align*}
L_n(qu_n + p_n u_n) &= q(L_n - pA_n)u_{n-1} + p(L_n - qB_n)u_{n-1}, \quad u_n \in W_n, \\
u_n(0) &= u_n(T), \quad n = 1, 2, ..., \\
u_0 \in W_1 \text{ arbitrary},
\end{align*} \]
then we have \(u_n \rightharpoonup u\) in \(W\).

Proof. We define \(A = X \times X^\ast\) by
\[A = \{ (u, u') \in W, u(0) = u(T) \}. \]

This set \(A\) is maximal monotone (see e.g. [11], Lemma 1.7, Kap. VI). Evidently, problem (25) can be written as
\[A u + B u' = 0, \quad (u, u') \in A. \]
Therefore, the first part of Theorem 4 follows from Theorem 1. Let \(A_n \subset X_n \times X_n \) be defined by
\[
A_n \coloneqq \{ [u, u'] \mid u \in W_n, u(0) = u(T) \}.
\]
By \(P_n \), we denote the orthogonal projection of \(X \) onto \(X_n \). If \([u, u'] \in A \) then
\[
[P_n u, (P_n u')^T] = [P_n u, P_n u'] \in A_n
\]
and
\[
[P_n u, (P_n u')^T] \rightarrow [u, u'] \quad \text{in } X \times X.
\]
Hence, the sequence \((A_n) \) satisfies condition (8). Therefore, (26) is a formulation of method (23) in the special case considered here. Consequently, the second part of Theorem 4 follows from Theorem 3.

Remark 4. Let \(V_n \) be of finite dimension \(d_n \), and let \(h_1, ..., h_n \), be a basis of \(V_n \).
Then we can represent \(u_n \) in the form
\[
u_n = \sum_{i=1}^{d_n} c_i h_i, \quad c_i \in L^2(S),
\]
and we may regard (26) (with \(n \) fixed) as a system of linear ordinary differential equations with respect to the unknown functions \(c_i \). The coefficients of this system are the elements of Gram's matrix of the basis \(h_1, ..., h_n \), which are independent of \(t \in S \).

Remark 5. In the same way as (25) we could treat initial value problems of the type
\[
Au + Bu' = 0, \quad u \in W, \quad u(0) = a,
\]
where \(a \) is a known element of \(V \) and \(A, B \) satisfy the conditions (1), (2), (7). A somewhat different projection-iteration method for problems of the type (27) was formulated already in [11] (Kap. V). This method does not need the strong monotonicity of \(A \) and the assumption (7). On the other hand the operator that corresponds to the operator \(U_{p_n} \) used here is contractive on \(X = L^2(S; V) \) only, if one provides this space with the norm
\[
[u]_{V, k} = \left(\int_S e^{-k u(t)} dt \right)^{1/2},
\]
where \(k \) is a sufficiently great positive number. Moreover, the method requires \(A \) and \(B \) to be so-called Volterra operators.

3.2. Evolution equations. We use all notations introduced at the beginning of this section. Moreover, we assume that \(H \) and \(H_n, n = 1, 2, ..., \) are Hilbert spaces such that
\[
V \text{ is continuously and densely imbedded into } H,
\]
\[
H_n \subset H_{n+1} \subset ... \subset H,
\]
\[
V_n \text{ is continuously and densely imbedded into } H_n.
\]
Identifying the space \(H \) and its dual we obtain
\[
V \subset H \subset V^*.
\]
Similarly, we find
\[
V_n \subset H_n \subset V^*_n \quad (n = 1, 2, ...).
\]
We denote now by \(u' \) the derivative of \(u \in X \) or \(u \in X_n \) in the sense of distributions on \(0, T \) with values in \(V^* \) or \(V^*_n \), respectively. Let
\[
\tilde{\nu} = [u' \in X, u' \in X^*], \quad [u]_{\tilde{\nu}} = [u]_{V^*} + [u']_{V^*}, \quad \forall u \in \tilde{\nu}
\]
and
\[
\tilde{\nu} = [u \in X_n, u' \in X^*_n], \quad [u]_{\tilde{\nu}} = [u]_{V^*_n} + [u']_{V^*_n}, \quad \forall u \in \tilde{\nu}.
\]
We assume that we are given operators \(A \in (X \to X^*) \) and \(C \in (X^* \to X^*) \) such that \(A \) satisfies (1) and \(C \) is strongly monotone and Lipschitzian, which means that \(B := CL \in (X \to X^*) \) satisfies (2). We are now interested in problems of the type
\[
Au + Cu' = 0, \quad u \in \tilde{\nu}, \quad u(0) = u(T).
\]
Defining \(A \in X \times X \) by
\[
A = \{ [u, L^{-1} u'] \mid u \in \tilde{\nu}, u(0) = u(T) \}
\]
we can write (29) as
\[
Au + Bu = 0, \quad [u, v] \in A.
\]
Let
\[
A_n \coloneqq \{ [u, L^{-1} u'] \mid u \in \tilde{\nu}_n, u(0) = u(T) \}.
\]
It is easily proved that (18) is satisfied also in this case. Therefore, it is possible to apply the results of Sections 1 and 2 to problem (29). We do not want to go into details here.

Remark 6. Gajewski and Gröger [5] have considered already two important special cases of problem (29). The first case is
\[
u' + Au = 0, \quad u \in \tilde{\nu}, \quad u(0) = u(T),
\]
and the second
\[
u' + Lu = 0, \quad u \in \tilde{\nu}, \quad u(0) = u(T).
\]
Gajewski and Gröger treated these cases with the aid of two different maximal monotone operators \(A \) whereas we use the same \(A \) in both cases.

Remark 7. We could apply our results also to initial value problems of the form
\[
Au + Cu' = 0, \quad u \in \tilde{\nu}, \quad u(0) = a \in H.
\]

Remark 8. In the case of the problems (29) and (30) we can prove stronger results on the convergence of the methods considered in this paper, provided the operators \(A \) and \(C \) satisfy some further conditions. We shall deal with this question elsewhere (cf. Gajewski-Gröger [6]–[9], where such stronger results were proved in the two special cases mentioned in Remark 6).
References

Presented to the Semester
Mathematical Models and Numerical Methods
(February 3–June 14, 1975)

NUMERICAL METHODS FOR SOLVING VARIATIONAL INEQUALITIES

ANDRZEJ WAKULICZ
Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

1. Variational inequalities

Let \(X \) be a reflexive Banach space and let \(K \) be a convex, closed, non-empty subset of \(X \). We denote by \(X^* \) the dual space of \(X \) and by \(\langle \cdot, \cdot \rangle \) the duality pairing between \(X^* \) and \(X \). For a given map \(A \) which maps \(X \) into \(X^* \) we consider the following problem:

PROBLEM 1. Find \(u \in K \) such that for every \(v \in K \)

\[\langle A(u), v - u \rangle \geq 0. \]

Problems of this type often arise in practice (see [1], [2]) and there is a natural need of numerical methods for solving them. Since Problem 1 is a generalization of a problem involving variational equations (for \(K = X \) Problem 1 has the form of a variational equation), therefore a study of approximate methods for solving it is important for numerical methods theory.

A very detailed survey of approximate methods for solving variational inequalities is given in [1]. Here we complement the results of Mosco's paper with an estimation of the rate of convergence.

2. An approximation of a Banach space and its dual

Let \(\Theta \) be a subset of the interval \((0, 1] \) such that \(\inf \Theta = 0 \) and let \(n \) be a function mapping \(\Theta \) into the set of natural numbers \(\{1, 2, 3, \ldots\} \).

A family \(\{X_h, p_h, \tau_h\}_{h \in \Theta} \) will be called an approximation of a Banach space \(X \) iff for every \(h \in \Theta \)

(i) \(X_h = \mathbb{R}^{n(h)} \), the \(n(h) \)-dimensional Euclidean space,

(ii) \(p_h \): \(X_h \to X, p_h \) (prolongation) is an isomorphism from \(X_h \) onto a closed subspace \(P_h \) of \(X \) (the space of approximants),

(iii) \(\tau_h \) is a linear map from \(X \) into \(X_h \) which is a left inverse of \(p_h \), i.e., for every \(u_h \in X_h \) we have \(\tau_h p_h u_h = u_h \).

[119]