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1. Entropy conditions and identity of corresponding entropy solu-
tions. Many problems in applications are mathematically modeled by systems of
conservation laws (e.g. in gas dynamics: conservation of energy, of momentum, of
mass).

As a test problem, let us restrict ourselves to only scalar dynamical problems
with one space variable (e.g. as a model of certain one-dimensional flows):

(1)
ut +

∂

∂x
q(u) = 0, x ∈ R, t ≥ 0 ,

u(x, 0) = u0(x) .

The flux q : R → R is assumed to be strictly convex, smooth (i.e. C1) and —
without loss of generality —

min
u∈R

q(u) = q(0) = 0 .

Solutions — if they exist — are constant along the characteristics which are
straight lines:

x− x0 = q′(u0(x0)) · t .
But because characteristics can intersect, discontinuities can occur such that the
differential equations must be formulated in a weak form.

Lax [7] and Olĕınik [11] used the formulation

(2) −
∫
Ω

∫
[u · Φt + q(u) · Φx] dx dt−

∫
R

u0(x) · Φ(x, 0) dx = 0, ∀Φ ∈ C1
0 (Ω) ,
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which arises from the differential equation (1) by formal multiplication with test
functions Φ and integration by parts.

Here, C1
0 (Ω) is the set of C1 functions in the upper (x, t) half-plane Ω having

compact support.
We assume that there are solutions of this problem in Lloc

1 , called weak solu-
tions of the original problem, provided that

u0 ∈ BV (R) ∩ L∞(R) or u0 ∈ C(R) ∩ L∞(R) .

It can easily be shown by simple examples that weak solutions are not necessarily
unique, but let us assume that u0 is such that the solutions u(x, t), arising from
this u0, are piecewise smooth functions of x for every fixed t > 0 and that dis-
continuities — as far as they occur — form smooth curves in the half-plane Ω.
These curves are called shocks.

If, on a time level t, x tends to a point of a shock from the left, u tends to a
value called ul. If ur is the value from the right, and if

[u] = ul − ur, [q] = q(ul)− q(ur)
are the jumps, it can be shown just by means of the divergence theorem that

(3) [u] · s = [q] (Rankine–Hugoniot)

where s = dx/dt is the velocity of the moving discontinuity.
Moreover, the validity of the Rankine–Hugoniot condition along the shocks,

together with the validity of the conservation law in its differential form (1) outside
the shocks, is even equivalent to the weak formulation (2) of the problem.

Because weak solutions are not necessarily unique, one is interested in appli-
cations like gas dynamics, traffic flow models etc., in a criterion that allows to
pick out of the set of solutions the physically true solution.

Lax [8] recommended to complete the weakly formulated conservation laws by
an additional condition of the following type:

Find the particular weak solution uE which additionally satisfies the following
condition:

There is a strictly convex smooth functional V (u) and a smooth functional
F (u) such that automatically

(4) Vt(u) +
∂

∂x
F (u) = 0

for every weak solution u in regions where this solution is smooth, and that the
inequality

(5) Vt(uE) +
∂

∂x
F (uE) ≤ 0

holds weakly along every shock curve of uE.

Some remarks should be made concerning this definition of uniqueness condi-
tion:
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• Weakly means that the last inequality reads

(6) −
∫
Ω

∫
[V (u)Φt + F (u)Φx] dx dt−

∫
R

V (u0(x))Φ(x, 0) dx ≤ 0,

∀Φ ∈ C1
0 (Ω), Φ ≥ 0 .

• Because Lax was led to this definition by the 2nd main theorem of thermo-
dynamics if applied to gas flows, the last condition is called the entropy condition,
V is called the entropy functional , and F is the entropy flux .

• Condition (4) models the fact that the physical entropy satisfies automatic-
ally a conservation law, too, provided that the conservation of mass, of energy,
and of momentum is respected and that shocks do not occur in the area under
consideration.

Condition (4) establishes a connection between F and V , namely

(7) F (u) =
u∫

0

V ′(α)q′(α) dα+ γ (γ = const) .

An example is

(8) V (u) =
1
2
· u2 ⇒ F (u) = uq(u)−

u∫
0

q(α) dα+ γ .

• The same arguments which led to the Rankine–Hugoniot condition (3) show
that (6) is equivalent to the validity of the original differential equation problem
(1) in regions where u is a smooth solution, together with the validity of

(9) [V ] · s ≤ [F ] ,

hence with
[V ][u]

[q]
≤ [F ] =

ul∫
ur

V ′(α)q′(α) dα ,

and this — as can easily be shown — is equivalent to

(10) ur ≤ ul
independently of the pair V , F .

Because of the strict convexity of q, (10) together with (3) implies in case of
ur < ul the relation

(ul − ur) · s = q(ul)− q(ur) = q′(û)(ul − ur) ,

i.e.

(11) q′(ur) < s < q′(ul) .

In 1973, Lax [9] showed that there is at most one weak solution that satisfies
(2) and (11).
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Hence, the solution uE , which we will call the Lax entropy solution (or shorter:
Lax solution) is unique in the scalar case.

Taking the ascent [q′(u0(x0))]−1 of the characteristics into account, (11) means
geometrically that the entropy solution is characterized by the fact that the char-
acteristic lines run into the shock for increasing time instead of leaving it.

R e m a r k. It is (11) that was generalized by Lax in order to establish an
entropy condition for arbitrary hyperbolic conservation law systems.

The problem of uniqueness was also treated by Olĕınik [11]. She added —
instead of (4), (5) — the following condition:

Find the particular weak solution which additionally satisfies

(12)
u(x+ a, t)− u(x, t)

a
≤ E

t
, ∀a > 0, ∀t > 0

with a certain constant E > 0.
Obviously, (12) implies (10) such that an Olĕınik solution is at the same time

a Lax solution and — hence — unique.
It should be mentioned that Olĕınik had given a uniqueness proof, too, based

upon (12), independently of Lax.
Instead of an entropy condition (6) with a smooth and strictly convex func-

tional V (u) (and a corresponding functional F from (7)), one can find in the
literature also functionals which are only continuous and piecewise linear but
depend on an additional parameter c, e.g.

(13) V = |u− c|

or

(14) V =
{u− c, u > c,

0, u ≤ c.

The validity of (6) is now not required to be satisfied for a strictly convex func-
tional but only for one of these convex functionals; this is compensated by the
condition that (6) is required to hold for all c ∈ R.

Again, it can be shown that each of the conditions is then equivalent to the
jump relation (10) provided that F is chosen by (7), and upon the agreement that
V ′ = Vu must be understood piecewise, and where γ is allowed to depend on c.

Thus, if a weak solution of (1) additionally satisfies (13) or (14), this solution
is the Lax–Olĕınik solution and satisfies each of the entropy conditions mentioned
before, for every γ (or γ(c)) in (7).

We call (13) and (14) Kruzhkov entropy conditions.
The reason is that Kruzhkov [6] introduced in 1969 another transition from

the original formulation of problem (1) to a weak formulation:
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A function u ∈ Lloc
1 (Ω) is called a weak solution of (1) if

(15)
∫
Ω

∫
{|u(x, t)− c|Φt + Φx · sgn(u(x, t)− c) · [q(u(x, t))− q(c)]} dx dt ≥ 0 ,

∀c ∈ R, ∀Φ ∈ C1
0 with Φ ≥ 0 and with Φ(x, 0) = 0 ,

and if there is a set Υ ⊂ [0, T ] of measure zero such that u(x, t) is defined on Ω
a.e. and for t ∈ [0, T ] \ Υ, and with

(16) lim
t→0

t∈[0,T ]\Υ

R∫
−R

|u(x, t)− u0(x)| dx = 0, ∀R ∈ R+ .

It follows easily that the Lax–Olĕınik solution satisfies (15): Indeed, it is an
element of Lloc

1 , and if V is chosen by (13), if γ(c) is chosen as

γ(c) = q(c) · sgn c ,

and if Φ(x, 0) = 0 is taken into account, (15) is nothing but the entropy condi-
tion (6).

It is not as easy to show that the Lax–Olĕınik solution satisfies (16), too.
But it can be shown that a numerical finite difference procedure which is

consistent with the given problem (1) and which satisfies the assumptions of the
Lax–Wendroff theorem, generates numerical approximations which converge for
decreasing step sizes to a weak solution of (1) in the Lloc

1 -topology. Moreover, if
it can be ensured that this limit is the Lax–Olĕınik solution and that it satisfies
relation (16) at the same time, the Lax–Olĕınik solution is a Kruzhkov solution,
too.

But because Kruzhkov showed that his weak solution is unique, we end up
with

(17) uEOlĕınik = uELax = uEKruzhkov

provided that there is such a numerical method.
We are going to show that such procedures exist, and it is at this point that

we need our assumption

u0 ∈ BV (R) ∩ L∞(R) or u0 ∈ C(R) ∩ L∞(R) .

2. Discretized entropy conditions. We consider explicit finite difference
methods of conservation form, i.e. methods which imitate the conservation form
of the original problem (1):

(18)
uν+1
i − uνi
∆t

+
gνi+1/2 − g

ν
i−1/2

∆x
= 0 ,

where
gνi+1/2 = g(uνi+k, u

ν
i+k−1, . . . , u

ν
i−p)

depends on p+ k + 1 variables.
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Here uνi is expected to be an approximation of u(xi, tν), xi = i·∆x, tν = ν ·∆t,
and the method will start from the discretized initial values

(19) u0
i =

1
∆x

xi+1/2∫
xi−1/2

u0(ξ) dξ .

The method is called a (p+k+2)-point method ; e.g. for p = 0, k = 1 (three point
method):

(20) uν+1
i = uνi − λ · {g(uνi+1, u

ν
i )− g(uνi , u

ν
i−1)}

with λ = ∆t/∆x = const.
The method is called consistent with problem (1) if

(21) g(u, u, . . . , u) = q(u), ∀u ∈ R .
g is called the numerical flux and is assumed to satisfy a Lipschitz condition.

Just for theoretical purposes, we extend the discrete approximate function to
a Lloc

1 -step function by

(22) un(x, t) = uνi for
{
xi−1/2 ≤ x < xi+1/2,
tν ≤ t < tν+1

where ∆x = O( 1
n ); ν = 0, 1, . . . , i = 0,±1,±2 . . .

Already these assumptions ensure that limits u of Lloc
1 -convergent sequences

{un} of approximate solutions are weak solutions of (1) (Lax–Wendroff).
Whether or not the sequence {un} is compact in Lloc

1 , depends on g.
Examples are

gi+1/2 = − 1
λ

ui+1 − ui
2

+
q(ui+1) + q(ui)

2
(Lax–Friedrich; also used by Olĕınik for her uniqueness proof [11]) or

(23) gi+1/2 = q+(ui+1) + q−(ui)

(Engquist–Osher [3]) with

q−(u) =
{

0, u ≥ 0,
q(u), u < 0, q+(u) =

{
q(u), u ≥ 0,
0, u < 0.

Here, the flux q is split in two parts according to the sign of the ascent of the
characteristic lines; this is an old idea due to Courant, Isaacson, Rees [2]. Hence,
the Engquist–Osher method is at the same time an example of the so-called flux
splitting methods.

Weak solutions of (1) show the property of monotonicity , namely

u0 monotone ⇒ u(·, t) monotone for every fixed t > 0 .

Hence, also the numerical method should show this behavior, i.e.

u0
i monotone with respect to i ⇒ uni monotone with respect to i

for every fixed n > 0 .
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Such methods, in particular, avoid oscillations near shocks and are called mono-
tonicity preserving .

R e m a r k. E.g., this is not respected by the Lax–Wendroff scheme [10], where

(24) gi+1/2 = q(ui+1) + q(ui)/2− λ/2ai+1/2[q(ui+1)− q(ui)]

with

ai+1/2 =
{

(q(ui+1)− q(ui))/(ui+1 − ui), ui 6= ui+1,
q′(ui), ui = ui+1.

Moreover, any weak solution of (1) satisfies

(25) ‖u(·, t2)‖L1 ≤ ‖u(·, t1)‖L1 for t2 ≥ t1 ,

in particular,

(26) ‖u(·, t)‖L1 ≤ ‖u0‖L1 , ∀t ≥ 0 .

Entropy solutions even show the property of L1-contraction, i.e.

(27) ‖uE(·, t2)− vE(·, t2)‖L1 ≤ ‖uE(·, t1)− vE(·, t1)‖L1 for t2 ≥ t1
if uE , vE belong to u0, v0, respectively.

Thus, also this property should be imitated by the numerical method:

(28) ‖uν+1 − vν+1‖L1 ≤ ‖uν − vν‖L1 .

Another behavior of a weak solution is the fact that this solution is variation
diminishing in time. Numerical procedures which imitate this property are called
TVD schemes (Total Variation Diminishing).

It can easily be shown by means of the Lax–Wendroff theorem that TVD
schemes of conservation form are convergent to a weak solution and, moreover,
they are monotonicity preserving. Here, we assume that the Courant–Friedrichs–
Lewy condition (CFL condition; [1])

(29) λ ≤ 1
|q′|∗∞

is satisfied, where

|q′|∗∞ := max{|q′(u)| : |u| ≤ ‖u0‖L∞} .

Sufficient for TVD is the L1-contractivity of the method.
Nevertheless, all these properties of a finite difference method are not yet

sufficient to ensure that the limit of the approximate solutions is not some weak
solution but the Lax–Olĕınik entropy solution of problem (1).

But, fortunately, there is another characteristic property of this solution,
namely its monotonicity with respect to the initial function:

(30) u0(x) ≥ v0(x), ∀x ∈ R, implies
u(x, t) ≥ v(x, t), ∀x ∈ R, ∀t > 0 .
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The numerical method is called monotone if the analogous property

(31) uνi ≥ vνi , ∀i, implies uν+1
i ≥ vν+1

i , ∀i
is satisfied. Then really the following theorem holds (Harten, Hyman, Lax [5]):

Theorem. Method monotone ⇒ un → uELax–Olĕınik .

The disadvantage of monotone methods is their order which cannot exceed 1.
By the way, linear monotonicity preserving methods have to be monotone.
So, e.g., the Engquist–Osher scheme is monotone (also TVD etc.) but, hence,

only of first order. The Lax–Wendroff scheme, on the other hand, is of order 2,
thus not a monotone method.

Therefore, particularly for higher order methods, we need another discretized
version of an entropy characterizing property.

In order to construct such a discrete analogue, we start directly from the
Lax–Olĕınik entropy condition (5) of the original problem:

By a slight modification of the proof of the Lax–Wendroff theorem, it can
easily be shown that the limit of the approximate solution sequence {un} — if it
exists — is the Lax–Olĕınik solution provided that the un (n = 1, 2, . . .) satisfy a
discretized version of (5), namely

(32)
V ν+1
i − V νi
∆t

+
Gνi+1/2 −G

ν
i−1/2

∆x
≤ 0

with one of the entropy functionals V occurring in (4) or taken from (13), (14),
and with a suitable Lipschitz continuous numerical entropy flux G. Here,

V νi = V (uνi ), Gνi+1/2 = G(uνi+k, u
ν
i+k−1, . . . , u

ν
i−p) .

The connection with (5) is required to be realized by another consistency condi-
tion, namely

(33) G(u, . . . , u) = F (u)

with F from (7).
But though this modification of the Lax–Wendroff theorem is often referred to

in the literature, this concept is seldom concretely realized. Instead, alternative
arguments are used or heuristic arguments or experimental experiences are often
quoted if higher order methods are concerned.

Strack [13] really used (8) together with a numerical entropy flux obtained
from a certain entropy flux splitting for three point schemes, namely

(34) G(α, β) = F+(α) + F−(β)

with

F+(α) =
{
F (α), α ≥ 0,
0, α < 0.

F−(β) =
{

0, β ≥ 0,
F (β), β < 0,

and he could show, at least for the Engquist–Osher scheme (23), that (32) holds
locally, i.e. if a suitable step size control is observed.

Obviously, the splitting (34) satisfies the consistency condition (33).
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On the other hand, we already know by the monotonicity argument that the
Engquist–Osher scheme approximates the Lax–Olĕınik entropy solution. Hence,
Strack’s result seems to be useless.

Nevertheless, let us show a particular way to prove the corresponding (and
well known) global result using other arguments than Strack’s, and this just as an
example for a more complicated application of these considerations to higher order
methods, such that also in such cases the convergence to the entropy solution can
be completely shown.

Instead of V (u) = 1
2u

2, used by Strack, we use the equivalent Kruzhkov type
entropy functional (14), i.e.

V (u; c) =
{u− c, u > c,

0, u ≤ c,
hence, by (7),

(35) F (u; c) =


q(u)− q(c), u > c ≥ 0,
0, u ≤ c, c ≥ 0,
q(u), u > c, c < 0,
q(c), u ≤ c < 0.

(if we choose γ = 0).

R e m a r k. It should be mentioned that Harten, Hyman, Lax showed their
theorem mentioned above by proving that a monotone scheme satisfies (32), where
they also used the same Kruzhkov entropy functional V , and with

Gi+1/2 =
i+k∑

j=i−k+1

V ′(uj)(uj − c)
1∫

0

guj (ũi−k+1(Θ), . . . , ũi+k(Θ)) dΘ

where ũ(Θ) := c+Θ(u− c), 0 ≤ Θ ≤ 1.

But because we intend to consider also non-monotone methods of higher order,
we ask for another realization of the numerical entropy flux.

If — as another example — Strack’s numerical entropy flux splitting (34) is
applied to (35), this leads to

(36) G(α, β; c) =



q(α)− q(c), α > c > 0,
0, α ≤ c, c > 0,
0, α ≤ 0, β > 0,
q(β), α ≤ 0, c < β ≤ 0,
q(α), α > 0, β > 0, c ≤ 0,
q(c), α ≤ 0, β ≤ c < 0,
q(α) + q(β), α > 0, c < β ≤ 0,
q(α) + q(c), α > 0, β ≤ c ≤ 0.

(35), (36) are still independent of the particular three point scheme under con-
sideration.
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In order to check whether or not (32) is satisfied, a lot of cases must be taken
into account for arbitrary fixed i, e.g. (we omit the superscript ν of uνi ):

ui−1, ui, ui+1 ≤ 0, c ≥ 0,
0 < ui−1 ≤ c, ui ≤ 0, ui+1 ≤ 0,
0 < ui−1, ui ≤ c, ui+1 ≤ 0,
...
c < ui ≤ 0, ui−1 > 0, ui+1 > 0,
...
etc. (36 cases).

Also these necessary distinctions are independent of the three point scheme one
is going to work with, but, evidently, the number of distinctions to be made
increases with the number of points occurring in the multipoint scheme, also if G
is not constructed by flux splitting.

Let us now treat — as an example — the Engquist–Osher scheme.
Because of (19) and because this scheme is monotone, hence an L1-contraction,

we get

(37) |uνi | ≤ ‖u0‖L∞ .

Thus, the Lipschitz continuity of G(α, β; c) with respect to α, β must only be
ensured for

α, β ∈ P := {u : |u| ≤ ‖u0‖L∞} .
But because q is in C1(P), this is obviously satisfied.

Of course, we cannot treat here all the 36 cases mentioned above, but this
is no loss of probative force of our demonstration because this treatment is very
similar in all these cases; it is really sufficient to study one of them in order to
believe in the proposition for each of them:

Let
uνi+1 ≤ c < uνi ≤ 0, uνi−1 ≤ 0 .

In this case, the scheme gives

uν+1
i = uνi − λ{q(uνi+1)− q(uνi )}(38)
≤ uνi − λ{q(c)− q(uνi )} = uνi − λ(c− uνi )q′(ũνi ) .

Hence,

(39) uν+1
i − c ≤ (uνi − c)[1 + λq′(ũνi )] = (uνi − c)[1− λ|q′(ũνi )|] .

But
1− λ|q′(ũνi )| ≥ 1− λ|q′|∗∞ ≥ 0

(cf. (29), (37)), and uνi − c > 0.
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Thus, the right hand side of (39), and therefore of (38), is non-negative. But
the right hand side of (38) equals

V νi + λ{Gνi+1/2 −G
ν
i−1/2};

indeed:
V νi = uνi − c

and (cf. (36))

Gνi+1/2 = G(uνi+1, u
ν
i ; c) = q(c), Gνi−1/2 = G(uνi , u

ν
i−1; c) = q(uνi ) .

Therefore, (32) is satisfied independently of the sign of uν+1
i − c.

All the other cases can be treated similarly so that (32) is really globally
satisfied by the Engquist–Osher scheme for all c ∈ R. Thus, this scheme satisfies
(32) globally also if one of the other entropy functionals V is used.

By the way, every entropy preserving numerical method whose solutions are
compact in L1 for increasing n, obviously converges to the Lax–Olĕınik solution
and satisfies — as already mentioned — (15), too. Provided that u0 ∈ BV (R) ∩
L∞(R), also (16) can be shown to be satisfied. This also holds by means of
Lebesgue point arguments if u0 ∈ C(R)∩L∞(R). Hence, the existence of methods
that satisfy all the conditions we need (e.g. the Engquist–Osher scheme) finally
now also establishes (17).

We are going to treat similarly the highly non-linear 2nd order Harten 5-point
scheme [4] he obtained by applying a non-oscillatory first order accurate method
to an appropriately modified flux function.

This method is characterized by

gi+1/2 = g(ui+2, ui+1, ui, ui−1)(40)

=
1
2

(q∗(ui+1) + q∗(ui))−
1

2λ
Q(λa∗i+1/2, δ)(ui+1 − ui) .

Here,

q∗i = q(ui) +
1
λ
hi

is a modified flux where hi = h(ui+1, ui, ui−1) is a suitable function to be chosen
(see below),

a∗i+1/2 :=
q∗i+1 − q∗i
ui+1 − ui

, Q(α, δ) :=
{
|α|, |α| > δ,
δ, |α| ≤ δ

with δ ∈ (0, 1) sufficiently small. This method is TVD if the modified CFL con-
dition λ|a∗i+1/2| ≤ 1 is satisfied.

The function h is chosen as follows:

hi := si ·max{0,min[σi+1/2 · |ui+1 − ui|, si · σi−1/2(ui+1 − ui)]} ,
where

si = sgn(ui+1 − ui), σi+1/2 =
1
2
Q(λai+1/2, δ)−

1
2

(λai+1/2)2 ,
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ai+1/2 =
q(ui+1)− q(ui)
ui+1 − ui

.

Having the Engquist–Osher example treated above in mind, Reuter recently
[12] really proved the entropy preserving character of this 2nd order Harten
scheme:

He used the same Kruzhkov entropy functional V we used for the Engquist–
Osher method with the corresponding entropy flux F from (35). The only addi-
tional requirement is the restriction to only non-negative values of the parameter
c and therefore to non-negative initial functions u0. Because Harten’s method
also guarantees uνi ≥ 0 provided that u0 ≥ 0 and that the step sizes are suffi-
ciently small etc., and because u0 represents a state variable as far as physical
applications are concerned, this is no restriction from the point of view of these
applications.

Reuter’s numerical entropy flux is

Gi+1/2 = G(Vi+2, Vi+1, Vi, Vi−1)(41)

=
1
2
· (F ∗i+1 + F ∗i )− 1

2λ
·Q(λA∗i+1/2, δ) · (Vi+1 − Vi)

with

Vi = V (ui; c), F ∗i = F ∗(ui; c) = F (ui; c) +
1
λ
·Hi,

Hi = H(Vi+1, Vi, Vi−1)

= Si ·max{0,min[Σi+1/2 · |Vi+1 − Vi|, Si ·Σi−1/2 · (Vi − Vi−1)]} ,

where

Σi+1/2 =
1
2
·Q(λAi+ 1

2
, δ)− 1

2
· (λAi+1/2)2, Si = sgn(Vi+1 − Vi)

Ai+1/2 =
Fi+1 − Fi
Vi+1 − Vi

, A∗i+1/2 =
F ∗i+1 − F ∗i
Vi+1 − Vi

.

Hence, this construction of the numerical entropy flux consists in replacing g by
G, ui by Vi, qi by Fi etc.

Again a lot of different cases, namely sign combinations, have to be considered.
As a matter of fact, there are more than 100 cases, but again all these cases can be
treated very simply and very similarly just by means of the mean value theorem.

And the result really is that Harten’s higher order scheme leads to the entropy
solution, and this now without any doubts.

Thus, the Kruzhkov entropy functionals, though they are not strictly convex,
are (in the scalar situation) of particular power if numerical analogs of the entropy
condition, i.e. corresponding effective numerical entropy fluxes, are seeked in order
to prove consistency of non-monotone numerical procedures with respect to the
entropy condition of the original problem.
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