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1. Introduction. Nonlinear boundary value problems as a rule require
numerical methods for finding an approximate solution. In some applications not
only a numerical solution is wanted, but also a uniform enclosure of the solution
of the original problem. The monotone discretization technique developed and in-
vestigated in the last years (compare e.g. [9], [23], [27], [28]) forms a powerful tool
for the generation of two-sided enclosures of two-point boundary value problems.
This method rests on:

• a simplification of the occurring operators,
• a piecewise analytic solution of the generated auxiliary problems,
• monotonicity properties of certain linear parts of the differential operator.

Moreover, the principle of piecewise simplification of the operators occurring in
the given boundary value problems is an efficient discretization technique which
takes into account the specific behaviour of the boundary value problem to a
greater extent than a standard discretization which bases on Taylor expansions
only. This makes the proposed technique more adapted to weakly singular or to
singularly perturbed problems (see e.g. [31], [42]). Additionally, if the semianalytic
discretization is used to generate two-sided enclosures the bounds obtained can
be applied to establish a local grid refinement strategy (see [10], [28]).

The aim of the present paper consists in giving a survey of monotone dis-
cretization techniques and their application to different types of problems. Be-
cause the main principles of monotone discretization have been summarized in [43]
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here we concentrate our attention on more recent developments. As special ap-
plications of monotone discretization we report on the results of the papers [25]
and [31] in Section 5.

Let V , W denote some semi-ordered Banach spaces. For operators L,F : V →
W we consider the equation

(1) Ly = Fy

as an abstract reference problem. The weakly nonlinear two-point boundary value
problem

(2)
−y′′(x) = f(x, y(x)), x ∈ Ω := (0, 1) ,

y(0) = y(1) = 0

with some smooth function f(·, ·) can be considered as a simple model problem
for (1). In this case we choose the Sobolev spaces

V = H1
0 (Ω), W = H−1(Ω)

as V and W , respectively. Furthermore, the operators L,F : H1
0 (Ω) → H−1(Ω)

are defined by

(3) 〈Lu, v〉 =
∫
Ω

u′(x)v′(x) dx, 〈Fu, v〉 =
∫
Ω

f(x, u(x))v(x) dx

for any u, v ∈ V . Then (1) is just the usual weak formulation of the boundary
value problem (2).

2.A semi-analytic discretization technique. First, we sketch the method
proposed in [21] for linear problems. Later, the described idea will be applied to
nonlinear problems by means of Picard iterations or by successive linearizations.
Let us investigate the operator equation

(4) Ly = f

with some linear continuous mapping L : V → W and some given f ∈ W . We
assume a constant γ > 0 to exist such that the following stability condition holds:

(5) ‖Lu‖ ≥ γ‖u‖ for any u ∈ V .
Here and in the sequel ‖ ·‖ denotes the norm in V as well as in W . Let Lh and fh
denote some approximations of L and f , respectively, converging in the following
sense:

(6) lim
h→+0

‖Lh − L‖ = 0 , lim
h→+0

‖fh − f‖ = 0 .

Now, we replace the original problem (4) by auxiliary problems

(7) Lhyh = fh .

The stability and convergence of the solutions yh of the problems (7) to the
solution y of (4) are stated in
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Lemma 1. There exists some h0 > 0 such that the equations (7) have a unique
solution yh for any h ∈ (0, h0]. Furthermore, the estimate

(8) ‖y − yh‖ ≤ c1‖f − fh‖+ c2‖f‖‖L− Lh‖ for any h ∈ (0, h0]

holds with some c1, c2 > 0 independent of h and f.

P r o o f. The assumption (5) guarantees ‖L−1‖ ≤ 1/γ. Using the approxi-
mation property (6) and perturbation theory, we know Lh to be invertible for
sufficiently small h > 0. In fact, (5) leads directly to

‖Lhu‖ ≥ (γ − ‖Lh − L‖)‖u‖ for any u ∈ V .
Due to (6), some c, h0 > 0 exist such that

‖Lhu‖ ≥ c‖u‖ for any u ∈ V, h ∈ (0, h0] .

This results in ‖L−1‖ ≤ 1/c for any h ∈ (0, h0]. From (4) and (7) we obtain

Lh(yh − y) + (Lh − L)y = fh − f .
Thus we have

‖yh − y‖ ≤
1
c

(
‖fh − f‖+

1
γ
‖f‖ ‖Lh − L‖

)
for any h ∈ (0, h0] .

In [21] we considered different applications of this lemma. A simple realization
of the principle of approximate operators is given by a piecewise simplification of
the coefficients of the differential operator L and of the right hand side f .

Let {xi}Ni=0 be a grid on the interval Ω, i.e.

0 = x0 < x1 < . . . < xN−1 < xN = 1 .

We set hi = xi−xi−1, Ωi = (xi−1, xi), i = 1(1)N and h = maxi hi, which defines
the step size of the grid. We assume that the grid is quasi-uniform, i.e. hi ≥ ch,
i = 1(1)N . Here and in the sequel c, c1, c2, . . . denote some positive constants
which can be different at different occurrences. Let

Pm := {v : v|Ωi
a polynomial of degree ≤ m}

be the space of piecewise polynomials of maximal degree m. We consider the
differential operator L defined by

(10) 〈Lu, v〉 =
∫
Ω

(u′v′ + su′v + tuv) dx for any u, v ∈ V

with (piecewise) sufficiently smooth functions s(·), t(·). An approximate operator
Lh can be given by

(11) 〈Lhu, v〉 =
∫
Ω

(u′v′ + shu
′v + thuv) dx for any u, v ∈ V

with some sh, th ∈ Pm. From the definition of the operators L and Lh we obtain
the estimate

‖Lh − L‖ ≤ ‖sh − s‖+∞ + ‖th − t‖+∞ .
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If the originally given operator L is stable in the sense of (5) we can apply Lemma 1
to this approximation. Let us select sh, th ∈ P0 and fh ∈ Pm; then the solution
of the auxiliary problem (7) can be represented by standard functions explicitly.
The solution yh forms an adapted exponentially fitted spline (compare [23], [42]).
In the case sh, th 6∈ P0 some difficulties arise because the exact solution of (7) is
not, as a rule, analytically available. However, this restricts the order of approx-
imation of the scheme (7) for problem (4). One can overcome this obstacle by
combining (7) with an iteration

(12) Lhy
k+1
h = fh − (L− Lh)ykh, k = 0, 1, . . .

In connection with nonlinear problems and successive linearizations this technique
has been investigated e.g. in [24].

Let us consider the general problem (1) with a selfadjoint operator L related
to the following two-point boundary value problem:

(13) −(a(x)y′)′(x) = f(x, y(x)) in Ω, y(0) = y(1) = 0 .

The operator F is given by (3). Then an approximate linearization Dh(y) of F
at y on the given grid {xi}Ni=0 can be defined by

(14) 〈Dh(y)z, v〉 =
∫
Ω

dh[y](x)z(x)v(x) dx for any z, v ∈ H1
0 (Ω) ,

with some function dh[y] ∈ P0 depending on the actual iterate y as follows:

(15) dh[y] =
1
2

[
∂f

∂y
(xi−1, y(xi−1)) +

∂f

∂y
(xi, y(xi))

]
, x ∈ Ωi, i = 1(1)N .

As a simplification of the operator L we take

(16) 〈Lhy, v〉 =
∫
Ω

ah(x)y′(x)v′(x) dx for any y, v ∈ V

with some ah ∈ P0. A realization of (12) adapted to the nonlinear problem (13)
is now given by

(17) (Lh +Dh(yk))yk+1 = (F +Dh(yk))yk + (Lh − L)yk, k = 0, 1, . . . ,

with some initial guess y0 ∈ V . Assuming limh→+0 ‖a − ah‖h = 0, (17) actually
forms an approximate version of Newton’s method. By standard arguments for
proving the convergence of perturbed Newton techniques (compare, e.g., [37]) this
results in

Theorem 1. Let y ∈ V denote some solution of problem (13) that is stable in
the sense that

(18) 〈(L− F ′(y))u, u〉 = γ‖u‖2 for any u ∈ V

with some γ > 0; f(·, ·) is supposed to be Lipschitz-continuously differentiable.
Then some h > 0 and δ > 0 exist such that method (17) for any h ∈ (0, h]
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and ‖y0 − y‖ ≤ δ generates a well-defined sequence {yk} converging to y. More
precisely , we have some constants c1, c2 > 0 such that

(19) ‖yk+1 − y‖ ≤ (c1‖yk − u‖+ c2h)‖yk − y‖, k = 0, 1, . . .

R e m a r k s. 1. The inequalities (19) show the method (17) to be asymptoti-
cally superlinearly convergent for h→ +0.

2. The method (17) is not implementable in the strict sense because it cannot,
as a rule, be realized using available finite-dimensional spaces with dimensions
bounded from above. Because of this, below we modify the method (17) to make
it implementable.

Let Ch(Ω) denote the space of piecewise continuous functions with jumps at
the grid points only. We introduce a projection πh : Ch(Ω)→ P1 by taking

(20) [πhw](x) = w(xi−1+0)
xi − x
hi

+w(xi−0)
x− xi−1

hi
, x ∈ Ωi, i = 1(1)N .

Furthermore, in view of the smoothing properties of L−1
h we can restrict our

investigations to the space U := V ∩ C2
h(Ω) (compare [24]) and we split the

operator L− Lh as

(21) (L− Lh)y = (Qh +Rh)y for any y ∈ U ,
with Qh, Rh : U →W defined by

〈Qhy, v〉 = −
N∑
i=1

∫
Ωi

((ah − a)y′)′(x)v(x) dx for any y ∈ U, v ∈ V ,(22)

〈Rhy, v〉 =
N−1∑
i=1

{[(ah − a)y′](xi − 0)− [(ah − a)y′](xi + 0)}v(xi)(23)

for any y ∈ U, v ∈ V .
Via integration by parts we obtain the identity in W

(24) (L− Lh)y = (Qh +Rh)y for any y ∈ U .
In [24] we proposed the method

(25) (Lh +Dh(ykh))yk+1
h

= πh(F +Dh(ykh))ykh + πhQhy
k
h +Rhy

k
h, k = 0, 1, . . . ,

with some initial function y0∈U . Unlike (17) this method can be realized using
known finite-dimensional representations by piecewise exponential splines (com-
pare, e.g., [22], [42]). However, we have to make the following additional assump-
tion on the variation of the function a(·):

(26) max
1≤i≤N

‖a′‖
C(Ωi)

ai
≤ β < 1

with some β∈(0, 1). Now we can prove (see [24]) the following convergence result:
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Theorem 2. Let y ∈ V denote some solution of problem (13) which satisfies
the regularity assumption (18). Furthermore, y is supposed to be twice continu-
ously differentiable. Then there exist δ > 0 and h > 0 such that the method (25)
is well defined for any h ∈ (0, h] and y0

h ∈ V ∩ C2(Ω) with ‖y0
h − y‖h,2 < δ. The

sequence {ykh} generated by the method converges to some yh approximating the
solution y of (13) with the accuracy

‖yh − y‖ ≤ ch2

with some c > 0.

A completely different technique, the method of truncated local Taylor expan-
sions considered in [1], can be investigated with the perturbed operator approach
as well. In [21] we analyzed this method by relating the obtained auxiliary prob-
lems to a specific perturbation of the original one.

Adapted discretization schemes for singularly perturbed problems using per-
turbed operators have been investigated in [31], [40], [42]. By means of Airy func-
tions in [42] a technique similar to (11) with sh, th ∈ P1 has been proposed. It
should be mentioned that an important property of the linear operator L, namely
some weak maximum principle, was used to prove that the schemes are uniformly
convergent with respect to the singular perturbation parameter (compare Sub-
section 5.3).

As already remarked, the perturbed operator technique is especially efficient
if some singularities occur which result in difficulties in standard discretization
methods. The proposed principle in combination with directional projections
in [25] is applied to generate enclosures of the solution of the Thomas–Fermi
equation. We describe this method briefly in Section 5 of this paper.

3. Generation of enclosures by monotone discretization. Let us con-
sider the abstract problem (1), i.e.

(27) Ly = Fy .

Additionally we suppose the operator L−F to be of monotone kind in the semi-
ordering of the spaces V and W . This means that

(28) (L− F )u ≤ (L− F )v ⇒ u ≤ v .

With the natural a.e. pointwise semi-ordering of V = H1
0 (Ω) and with the related

dual ordering in W = H−1(Ω) the weak maximum principle and the monotonicity
assumption

(29) f(x, s) ≥ f(x, t) for any x ∈ Ω, s ≤ t

guarantee (28) for the related operator L− F .
Let Wh ⊂W denote some finite-dimensional subspace. In most of the realiza-

tions (compare [23], [29]) we selected Wh = Pm on a grid {xi}Ni=0 over the interval
Ω. Mappings πh, πh : W → Wh are called lower and upper bounding operators,
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respectively, if

(30) πhw ≤ w ≤ πhw for any w ∈W .

Using the smoothing properties of L−1 the domain of πh, πh can be additionally
restricted, e.g. to Ch(Ω), in most of the applications.

By means of πh, πh we modify the original problem (27) to the following
auxiliary problems:

(31) y
h
, yh ∈ V : Ly

h
= πhFyh, Lyh = πhF yh .

As a direct consequence of the properties (28), (30) we obtain

Theorem 3. Let y and y
h
, yh solve (27) and the related problems (31), respec-

tively. Then the following enclosure holds:

(32) y
h
≤ y ≤ yh .

P r o o f. Equations (31) with property (30) result in

(L− F )y
h
≤ Ly

h
− πhFyh = 0 = (L− F )y

= Lyh − πhF yh ≤ (L− F )yh .

Since L− F is of monotone kind this yields (32).

R e m a r k s. 1. The assumption (28) is quite restrictive. It can be relaxed by
additionally considering monotonically convergent iteration techniques (compare
Section 4).

2. The simplest bounding mappings are given by πh = p
h
, πh = ph with

p
h
, ph : Ch(Ω)→ P0 defined by

(33) [p
h
](x) = inf

ξ∈Ωi

w(ξ), [ph](x) = sup
ξ∈Ωi

w(ξ) for x ∈ Ωi, i = 1(1)N .

The rate of convergence of monotone discretization in dependence on the mesh
size h > 0 is mainly influenced by the approximation properties of the bounding
operators. Because of the piecewise constant replacement, the method (31) with
πh = ph gives (33) coming from

‖yh − y‖ = O(h)

only (compare [27]). Here and in the sequel we omit the indication whether we
deal with the lower or with the upper bounding operator if the related result holds
for both of them. Higher order approximations are obtained by a shifted poly-
nomial interpolation (see [29], [30]). If Sh : Ch(Ω)→ Ch(Ω) denotes a piecewise
approximating operator then a bounding operator can be defined by

(34) πhw := [Sh + ph(I − Sh)]w

with ph given by (33). The bounding property (30) immediately results from the
bounding property of ph and (34). Indeed, we have

πhw = (Sh + ph(I − Sh))w ≥ (Sh + (I − Sh))w = w .
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The approximation behaviour of πh is obtained from

(I − πh)w = (I − ph)(I − Sh)w .

Since ‖(I−ph)w‖+∞ ≤ 2‖w‖+∞ the order of approximation of πh defined by (34)
mainly depends on the approximation properties of the operator Sh. For further
details we refer to [29], [30].

In Theorem 3 the existence of the solution y of (27) as well as the existence
of the solutions y

h
, yh of the auxiliary problems have been supposed. Under mild

additional conditions we investigated this problem in [27]. Another approach is
via monotone iteration which we now describe.

4. Monotone iteration discretization. The monotone discretization tech-
nique as considered in Section 3 suffers from some serious drawbacks:

• The generated auxiliary problems (31) are highly nonlinear because of the
behaviour of the bounding operators πh. Thus, an adapted iteration method
is required for solving (31) efficiently.

• The assumption (28), i.e. that L−F is of monotone kind, restricts the class
of problems which can be handled with monotone discretization.

A possible way to relax the assumptions needed for monotone discretization
methods is to combine the technique with a monotone iteration scheme. First
we sketch the basic principle of monotone iterations. Let T : V → V be some
operator and u0, u0 ∈ V some elements such that

u0 ≤ u0 ,(35)
u0 ≤ Tu0 , u0 ≥ Tu0 ,(36)

u0 ≤ u ≤ v ≤ u0 ⇒ Tu ≤ Tv .(37)

These properties lead to

Lemma 2. Under the above assumptions the sequences {uk}, {uk} generated
by the iterations

uk+1 = Tuk, uk+1 = Tuk, k = 0, 1, . . . ,

satisfy

u0 ≤ u1 ≤ . . . ≤ uk−1 ≤ uk ≤ . . . ≤ uk ≤ uk−1 ≤ . . . ≤ u1 ≤ u0 .

If , additionally , the operator T has some f i x e d p o i n t p r o p e r t y (compare,
e.g., [45]) then at least one y ∈ [uk, uk] exists which is a fixed point of T , i.e.
y = Ty.

The fixed point property in our cases of two-point boundary value problems
can be proved by compact embeddings as guaranteed by the Rellich–Kondrashov
theorem.
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To apply monotone iterations to auxiliary problems (31) some modifications
are needed. Let us consider problem (27) and let y0, y 0 ∈ V be given such that

(38) y0 ≤ y 0 .

Furthermore, we assume that some constant % > 0 exists which guarantees

(39) y0 ≤ u ≤ v ≤ y 0 ⇒ (F + %I)u ≤ (F + %I)v .

For the bounding operators πh, πh, additionally, the starting inequalities

(40) (L+ %I)y0 ≤ πh(F + %I)y0, (L+ %I)y 0 ≥ πh(F + %I)y 0

should be satisfied. Now we have the following basic algorithm:

(41) (L+ %I)yk+1 = πh(F + %I)yk, (L+ %I)y k+1 = πh(F + %I)yk ,
k = 0, 1, . . .

Theorem 4. Let L+ %I be an operator of monotone kind and let (L+ %I)−1

have the smoothing property (L + %I)−1f ∈ H2(Ω) for any f ∈ P0. Then the
algorithm (38)–(41) generates sequences {yk}, {yk} with

y0 ≤ y1 ≤ . . . ≤ yk−1 ≤ yk ≤ . . . ≤ yk ≤ yk−1 ≤ . . . ≤ y1 ≤ y 0 .

Furthermore, each of the intervals [yk, yk] contains at least one solution y ∈ V of
the original problem (27).

R e m a r k s. 1. The iteration process (41) can be accelerated by using some
modified linearization of F instead of the operator %I. This results in an iteration
technique

(42) (L+Dk)yk+1 = πh(F +Dk)yk, (L+Dk)yk+1 = πh(F +Dk)yk ,
k = 0, 1, . . . ,

with [Dky](x) := dk(x)y(x) and some adapted dk ∈ P0. To prove the monotonic-
ity of {yk}, {yk} additional investigations are necessary if Dk is changed during
the iteration (compare [9]).

2. In practical implementations the bounding operators p
h
, ph are replaced

by available piecewise constant bounds. In this case the bounds are, as a rule,
not monotone. This can be overcome by additional intersections of the bounding
intervals as known from interval analysis (see [9]).

In [8] we give an interval realization of the monotone iteration discretization
(MID) method. The needed interval operations can be efficiently implemented in
advanced programming languages like, e.g., PASCAL-SC [34].

5. Application of monotone discretizations to selected problems. In
this section we mainly report on the results of [25], [31].

5.1. The Thomas–Fermi equation. In this subsection we deal with the original
Thomas–Fermi equation

(43) y′′ = x−1/2y3/2
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with the boundary condition

(44) y(0) = 1, y(a) = 0 .

Here a > 0 denotes some given constant. The boundary value problem (43), (44)
occurs in the investigation of potentials and charge densities of ionized atoms.
Existence, uniqueness and smoothness properties of the solution of (43), (44) have
been shown in various publications (see, e.g., [16]). Let Ω := (0, a). In H1

0 (Ω) we
use the same norm as in H1(Ω). For V := H1(Ω) and W := H−1(Ω) we define
operators L,F : V →W by

〈Lu, v〉 :=
∫
Ω

u′(x)v′(x) dx for any u ∈ V, v ∈ H1
0 (Ω) ,

〈Fu, v〉 := −
∫
Ω

x−1/2[u(x)]3/2+ v(x) dx for any u ∈ V, v ∈ H1
0 (Ω) .

Here [·]+ denotes the positive part, i.e. [t]+ := max{0, t} for any t∈R. The opera-
tor L−F is coercive on the subspace of V realizing the boundary conditions (44),
i.e. for

U := {v ∈ V : v(0) = 1, v(a) = 0}
we have

〈(L− F )u− (L− F )v, u− v〉 ≥ γ‖u− v‖2 for any u, v ∈ U

with some constant γ > 0. Furthermore, L − F is of monotone kind. Now, we
define a finite-dimensional subspace Wh ⊂W by

Wh := lin{ζij}N 1
i=1,j=0

with

ζij(x) :=
{
x−1/2(xi − x)j , x ∈ Ωi,
0 otherwise,

i = 1(1)N , j = 0, 1. Thus, the functions v ∈Wh can be represented by

(45) v(x) =
N∑
i=1

1∑
j=0

wijζij(x) a.e. in Ω

with some wij ∈ R, i = 1(1)N , j = 0, 1.
In monotone discretization as shown in Section 3 we replace the nonlinear

operator F : V → W by appropriate bounding operators Fh, Fh : U ⊂ V →
Wh ⊂W , respectively. Then the auxiliary problems

(46) y
h
, yh ∈ U : (L− Fh)yh = 0, (L− Fh)yh = 0

are to be solved instead of (43), (44). We define

[Fhu](x) := − x−1/2

(
[ui]

3/2
+ −

[ui]
3/2
+ − [ui−1]3/2+

hi
(xi − x)

)
,(47)
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[Fhu](x) := − x−1/2

(
[ui]

3/2
+ − 3

2
[ui]

1/2
+ [u′i]−(xi − x)

)
,(48)

for any x ∈ Ωi.
Here [t]− := min{0, t}, t∈R, and ui := u(xi), u′i := u′(xi), i = 1(1)N . Bound-

ing operators of the form (47), (48) replacing the original functions by piecewise
secants and tangents, respectively, have been proposed in [48] and applied in [17],
for example.

Now we take advantage of the linearity of the operator L and its relation to
local boundary value problems. We define functions φi, ψij by

φi(x) =

 (x− xi−1)/hi, x ∈ Ωi,
(xi+1 − x)/hi+1, x ∈ Ωi+1,
0 otherwise,

with i = 0(1)N ,

ψi0(x) =
{

4
3 (x3/2 − x3/2

i−1φi−1(x)− x3/2
i φi(x)), x ∈ Ωi,

0 otherwise,
and

ψi1(x) =
{
xiψi0 − 4

15 (x5/2 − x5/2
i−1φi−1(x)− x5/2

i φi(x)), x ∈ Ωi,
0 otherwise,

with i = 1(1)N .
From these definitions we obtain

(49) −φ′′i (x) = 0 a.e. in Ω, φi(xk) = δik

and

(50) −ψ′′ij(x) + ζij(x) = 0 a.e. in Ω, ψij(xk) = 0 .

Taking yi ∈ R, i = 0(1)N , as parameters the superposition principle results in
the representation

(51) yh(x) =
N∑
i=0

yiφi(x) +
N∑
i=1

1∑
j=0

wijψij(x)

of the solutions yh of the auxiliary problems (46). Here the wij denote the co-
efficients of Fhyh with respect to the base {ζij} of Wh and y0 = 1, yN = 0 are
given by the boundary conditions (44). We obtain the remaining coefficients yi,
i = 1(1)N − 1, in (51) from the differentiability of yh at the inner grid points.
Taking the supports of φi, ψij into account this leads to

(52)
ui − ui−1

hi
+

1∑
j=0

wijψ
′
ij(xi − 0) =

ui+1 − ui
hi+1

+
1∑
j=0

wi+1jψ
′
i+1j(xi + 0) ,

with i = 1(1)N − 1.
The existence and local uniqueness of solutions y

h
, yh of the auxiliary prob-

lems (46) for sufficiently small h > 0 can be shown by the technique used in [27].
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Theorem 5. Let y
h
, yh ∈W denote solutions of the auxiliary problems (46).

Then the estimates
y
h
≤ y ≤ yh

hold for the solution y of the original problem (43), (44).

P r o o f. The definitions (47), (48) of the bounding operators Fh, Fh give

Fhu ≤ 0, Fhu ≤ 0 for any u ∈W .

Together with (46) and the definition of the operator L this leads to the convex-
ity of the functions y

h
, yh. Because the functions [·]+ and (·)3/2 are convex and

nondecreasing, also the superpositions [y
h
]3/2+ , [yh]3/2+ are convex. Now, using (47)

we obtain

(53) Fhyh ≤ Fyh .

Because of [yh]3/2+ ≥ 0 and [yh]3/2+ (a) = 0 we have

([yh]3/2+ )′(a) ≤ 0 .

With the convexity of [yh]3/2+ this leads to

([yh]3/2+ )′ ≤ 0 on Ω .

Thus, the identity

[Fhyh](x) = −x−1/2([yi]
3/2
+ − 3

2 [yi]
1/2
+ [y′i]−(xi − x)), x ∈ Ωi ,

holds with yi=yh(xi), y′i = y′h(xi). Because of the known structure of the solution
yh its first derivative y′h is explicitly available and need not be approximated
numerically.

Using the convexity of [yh]3/2+ , we now obtain

F yh ≤ Fhyh .
By the properties of the bounding operators this leads to

(L− F )y
h
≤ (L− Fh)y

h
= 0 = (L− F )y = (L− Fh)yh ≤ (L− F )yh .

Because the operator L− F is of monotone kind this completes the proof.

R e m a r k. Basing on the monotonicity of y
h
, yh shown in the proof above one

can take

[Fhu](x) := − x−1/2[ui−1]3/2+ , x ∈ Ωi ,(54)

and
[Fhu](x) := − x−1/2[ui]

3/2
+ , x ∈ Ωi ,(55)

as simple bounding operators approximating F with order O(h).

Next, we characterize the order of approximation of the solution y of (43),
(44) by y

h
, yh.
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Theorem 6. There exists some c > 0 such that

‖yh − yh‖ ≤ ch
2

for sufficiently small h > 0.

P r o o f. From (46) we obtain

0 = (L− Fh)y
h

= (L− F )y
h
− (Fh − F )y

h
.

By coercivity of the operator L− F this results in

(56) ‖y − y
h
‖ ≤ 1

γ
‖(Fh − F )y

h
‖ .

The sequence {y
h
} can be shown to be bounded. Using (46), the smoothing

property of L−1 and the continuous embedding H2(Ω) ↪→ C1+1/2(Ω) (compare
[3]) we obtain

|y′
h
(ξ)− y′

h
(η)| ≤ c1h1/2 for any ξ, η ∈ Ωi, i = 1(1)N ,

with some c1 > 0. Taking the definition (47) of Fh into account and integrating
by parts this leads to

|〈(Fh − F )y
h
, v〉| ≤ c2h2‖v‖ for any v ∈ V

with some c2 > 0. Thus, we have

‖(Fh − F )y
h
‖ ≤ c2h2 .

Estimate (56) and the analogous result for the upper solution yh prove the state-
ment of the theorem.

We refer to [25] for further details of the proposed discretization technique.
Numerical implementations for the case a = 1 yield the following table:

x y
h

(x) y(x) yh(x)

h = 0.1 h = 0.025 h = 0.025 h = 0.1

0.0 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 0.84923 0.84946 0.84947 0.84950 0.84979
0.2 0.72692 0.72721 0.72723 0.72727 0.72766
0.3 0.61896 0.61927 0.61929 0.61933 0.61977
0.4 0.52000 0.52039 0.52041 0.52045 0.52090
0.5 0.42725 0.42753 0.42755 0.42758 0.42802
0.6 0.33843 0.33867 0.33869 0.33872 0.33912
0.7 0.25218 0.25239 0.25240 0.25242 0.25277
0.8 0.16749 0.16764 0.16765 0.16767 0.16794
0.9 0.08360 0.08368 0.08369 0.08370 0.08387
1.0 0.00000 0.00000 0.00000 0.00000 0.00000

5.2. A nonlinear eigenvalue problem. Some of the underlying ideas as mono-
tone discretization by bounding operators and using convexity can be applied to
other types of problems as well. In the case of generalized Emden–Fowler equa-
tions considered e.g. in [19] this approach leads to a sequence of finite-dimensional
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nonlinear eigenvalue problems. The related eigenfunctions are represented by
piecewise cubic polynomials. It should be mentioned that unlike in [19] here we
concentrate our attention on the construction of an adapted discretization of the
eigenvalue problem. The generated finite-dimensional systems can be treated by
a technique similar to [23], for example. Here we applied some shooting method
to solve the finite-dimensional problems.

Let us consider the generalized Emden–Fowler equation (superlinear case,
compare [19])

y′′(x) + λy3(x) = 0 in Ω := (0, 1), y(0) = y(1) = 0

as an example. Related to this problem we define

(57) 〈Fu, v〉 :=
∫
Ω

[u(x)]3+v(x) dx for any u, v ∈ H1
0 (Ω) .

Similarly to (47), (48) we apply piecewise secants and piecewise tangents to define
bounding operators. But, unlike in the case of the Thomas–Fermi equation, here
the solution u is concave and the superposition u3 is neither concave nor convex.
Thus, we use the piecewise linearizations to the function u itself. This results in
the following bounding operators:

[Fhu](x) :=
[
ui −

ui − ui−1

hi
(xi − x)

]3
+

,(58)

[Fhu](x) := [ui − u′i(xi − x)]3+ ,(59)

for any x ∈ Ωi. Now, the finite-dimensional eigenvalue problem can be given in
the abstract form

(60) yh ∈ H1
0 (Ω), Lyh = λhFhyh .

This problem can be treated in an adapted finite-dimensional space. Because
Fhy for any y ∈ H1

0 (Ω) are piecewise cubic polynomials we know the solutions
yh of (60) to be polynomials of degree five. Finally, we report on some numerical
results obtained with the proposed method for the Emden–Fowler equation. With
the scaling y′(0) = 1 as used in [19] we solved these problems for various stepsizes
h > 0 on equidistributed grids by a shooting method. Our results are given in the
following table:

h λh according to (59) λh according to (58) difference

0.1 88.0498 97.528966 9.36E−0
0.01 94.475750 94.566103 9.04E−2
0.001 94.535760 94.536652 8.92E−4
0.0001 94.536350 94.536358 8.00E−6

The bounds converge quadratically as expected. For an example of another tech-
nique for solving eigenvalue problems which uses analytic information by taking
proper functions into the ansatz of the eigenfunctions we refer to [49].
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5.3. Singularly perturbed problems. In [31] we applied the concept of monotone
discretization to singular as well as to singularly perturbed problems. Let us
consider the following singularly perturbed singular problem:

(61) −ε2 d
dx

(
xα
du

dx

)
+ p(x)u = f(x), x ∈ (0, 1), u(0) = u(1) = 0

with some parameter α ∈ (0, 1) and a perturbation parameter ε (0 < ε� 1). We
assume the functions p and f to be sufficiently smooth and we suppose p(x) ≥
p0 > 0 for any x ∈ (0, 1) with some constant p0.

The results of Section 2 can be used to deduce that problem (61) for any fixed
ε 6= 0 admits a unique solution u ∈ H1,α

0 (Ω). Here H1,α
0 (Ω) denotes the related

weighted Sobolev space equipped with the norm

‖v‖ :=
( ∫
Ω

xα|v′(x)|2 dx
)1/2

for any v ∈ H1,α
0 (Ω) .

Because of the embedding H1,α
0 Ω ↪→ C(Ω) this solution is continuous. However,

the direct application of this embedding leads to a bound of ‖u‖L∞ which tends
to +∞ for ε → 0. But in the singularly perturbed case it is essential to analyze
carefully the dependence of all estimates on the perturbation parameter ε. Here
the maximum principle is a useful tool. Taking v(x) := ‖f‖L∞/p0 and v(x) :=
−‖f‖L∞/p0, respectively, we obtain the estimate

(62) max
x∈[0,1]

|u| ≤ 1
p0

max
x∈[0,1]

|f(x)| .

This gives a bound of ‖u‖L∞ uniform with respect to ε.
The reduced solution u0 := f/p in general does not satisfy the boundary

conditions of the original problem. Therefore, near x = 0 and x = 1 a boundary
layer exists. Introducing ξ1 = (1−x)/ε the boundary layer correction near x = 1
satisfies

−d
2v

dξ21
+ p(1)v(ξ1) = 0, v(0) = −u0(1), v(+∞) = 0 .

One can easily see that this problem has an exponentially decreasing solution
v1(ξ1). Setting ξ0 = x/ε2/(2−α) we obtain the boundary value problem

− d

dξ0

(
ξα0

dv

dξ0

)
+ p(0)v(ξ0) = 0, v(0) = −u0(0), v(+∞) = 0 .

Again there exists an exponentially decreasing solution v0. In this case it can be
expressed by means of cylinder functions. This fact indicates that a numerical
scheme for solving (61) which converges uniformly with respect to ε should reflect
the complicated boundary structure, especially near x = 0.

Similarly to the investigations in Section 2 we denote by p and f a piecewise
constant approximation of the given functions p and f , respectively. As in the
original problem we assume p(x) ≥ p0 > 0 in (0, 1) with some constant p0.
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Now, an approximate solution uh of the singularly perturbed boundary value
problem (61) is defined by

(63) −ε2 d
dx

(
xα
duh
dx

)
+ p(x)uh = f(x), x ∈ (0, 1), uh(0) = uh(1) = 0 .

This problem has to be interpreted in the weak form as in the unperturbed case,
i.e. we need to find some uh ∈ H1,α

0 (Ω) such that

(64) ε2
∫
Ω

xαu′h(x)v′(x) dx+
∫
Ω

p(x)uh(x)v(x) dx =
∫
Ω

f(x)v(x) dx

for any v ∈ H1,α
0 (Ω) .

For any fixed ε 6= 0 and for any h > 0 problem (64) has a unique solution uh.
Furthermore, the following error equation holds:

(65) −ε2 d
dx

(
xα
d(uh − u)

dx

)
+ p(x)(uh − u) = f − f + (p− p)u a.e. in (0, 1)

and the boundary conditions

(66) (uh − u)(0) = (uh − u)(1) = 0

are satisfied. Using the bound ‖u‖L∞≤c which is independent of the perturbation
parameter ε 6= 0, from (65), (66) we obtain

Theorem 7. Let p and f denote some first order piecewise constant approx-
imations of the functions p and f respectively. Then there is some constant c
independent of ε 6= 0 such that

‖u− uh‖L∞ ≤ ch .
If , additionally , the conditions f ≥ 0, p ≤ p, f ≥ f are satisfied then we have
uh(x) ≥ u(x) for any x ∈ [0, 1].

Finally, we give some numerical results obtained in the example

(67) −ε2 d
dx

(
xα
du

dx

)
+(1+x2)u = 2+sin(2πx), x ∈ (0, 1), u(0) = u(1) = 0 .

For the finite-dimensional realization we again use the representation of the
solution uh of (63) in the form

(68) uh(x) =
N−1∑
i=1

uiϕi(x) +
N∑
i=1

wiψi(x) .

In the present case the adapted base functions ϕi and ψi are supposed to satisfy

−ε2 d
dx

(
xα
dϕi
dx

)
+ pϕi = 0, ϕi(xj) = δij(69)

and

−ε2 d
dx

(
xα
dψi
dx

)
+ pψi = 1, ϕi(xj) = 0 ,(70)
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respectively. Similarly to [42] the base functions defined by (69), (70) are higher
transcendental functions, in our case cylinder functions. As for the unperturbed
problems the smoothness of the approximate solution uh results in conditions at
the inner grid points xi. From the representation (68) we obtain a tridiagonal
linear system, i.e. the unknown coefficients ui are determined by

(71) aiui−1 + biui + ciui+1 = ri, i = 1(1)N − 1 ,

with u0 = uN = 0 and the coefficients

(72) ai = ϕ′i−1(xi − 0), bi = ϕ′i(xi − 0)− ϕi(xi + 0), ci = −ϕ′i+1(xi + 0)

and the right hand side

ri = −fiψ′i(xi − 0) + fi+1ψ
′
i+1(xi + 0) .

Now, we discuss the system (71). From the maximum principle we obtain ϕi(x) ≥
0. Further, the defining equation (69) results in

−ε2xα dϕi
dx

ϕi

∣∣∣∣xi

xi−1

+ ε2
xi∫

xi−1

xα
(
dϕi
dx

)2

dx+
xi∫

xi−1

p(ϕi)2 dx = 0 .

Thus, ϕ′i(xi − 0) > 0 holds. In a similar way one can show that ai < 0, bi > 0,
ci < 0. Together with the regularity of system (71), which is a consequence of the
coercivity of the operator related to (63), this proves the matrix corresponding
to (71) to be an M-matrix.

An essential problem in applying the proposed method consists in the deter-
mination of the functions ϕi, ψi which satisfy (69), (70). The base functions can
be represented by

(73) ϕi(x) =

{
ki1vi1(x) + ki2vi2(x) for x ∈ [xi−1, xi],
di1vi1(x) + di2vi2(x) for x ∈ [xi, xi+1],
0 otherwise

with appropriate coefficients ki1, ki2, di1, di2 such that ϕi(xj)=δij . The functions
vi1, vi2 are defined by

vi1(x) = x(1−α)/2I(1−α)/(2−α)

(
2
√
pi

ε(2− α)
x(2−α)/2

)
,

vi2(x) = x(1−α)/2K(1−α)/(2−α)

(
2
√
pi

ε(2− α)
x(2−α)/2

)
.

Here Iν and Kν denote the modified Bessel functions of the first kind and of the
second kind, respectively, of order ν. Furthermore, the functions ψi are given by

ψi(x) =
{

(1/pi)(1− ϕi−1(x)− ϕi(x)) for any x ∈ [xi−1, xi],
0 otherwise.

In [1] truncated Taylor expansions have been considered to approximate the
required base functions ϕi, ψi. However, this approach does not guarantee a
uniform (w.r.t. ε) convergence of the approximate scheme.
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In our numerical experiments we applied an iterative technique with a sim-
plified operator to generate the solution uh of the auxiliary problem (63). Let us
define mappings b(·, ·), c(·, ·) : H1,α

0 (Ω)×H1,α
0 (Ω)→ R by

b(u, v) = ε2
∫
Ω

xαu′(x)v′(x) dx+
N−1∑
i=1

diuivi ,(74)

c(u, v) =
N−1∑
i=1

diuivi +
∫
Ω

f(x)v(x) dx−
∫
Ω

p(x)u(x)v(x) dx .(75)

Here di = (hipi + hi+1pi+1)/2 and pi, pi+1 denote the values of the function p in
the intervals Ωi and Ωi+1, respectively. The sequence {uk} ⊂ H1,α

0 (Ω) is defined
via

b(uk+1, v) = c(uk, v) for any v ∈ H1,α
0 (Ω) .

This is equivalent to

(76) −ε2 d
dx

(
xα
duk+1

dx

)
= f − puk, x 6= xi ,

and

(77) ε2xαi ((uk+1)′(xi − 0)− (uk+1)′(xi + 0)) + diu
k+1
i = diu

k
i ,

i = 1(1)N − 1 .

We use the function u0 ≡ 0 as starting iterate in (76), (77). Let functions ζj , ηj
on Ω be defined by

ζj(x) = xj(2−α), j = 0, 1, . . . , and ηj(x) = xj(2−α)−1, j = 1, 2, . . .

These functions satisfy

−(xαζ ′j)
′ = %jζj−1, j = 1, 2, . . . , and − (xαη′j)

′ = σjηj−1, j = 2, 3, . . . ,

with
%j = − j(2− α)[j(2− α)− 1 + α], j = 1, 2, . . . , and
σj = − (j − 1)(2− α)[j(2− α)− 1], j = 2, 3, . . .

Furthermore, we have

−(xαζ ′0)′ = 0 and − (xαη′1)′ = 0 .

Because f , p are piecewise constant the functions uk generated by (76), (77)
can be represented locally in the subintervals by

(78) uk(x) =
k∑
j=0

skijζj(x) +
k∑
j=1

tkijηj(x), x ∈ Ωi ,

with coefficients skij , t
k
ij ∈ R. The piecewise differential equations (76) result in

sk+1
i,j = − pi

ε2%j
skij−1, tk+1

i,j = − pi
ε2σj

tkij−1, j = 2(1)k, i = 1(1)N ,
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and

sk+1
i1 =

1
ε2

[
fi −

pi
%1
ski0

]
, i = 1(1)N .

The remaining coefficients sk+1
i0 , tk+1

i1 are determined by the differentiability, i.e.
from uk+1 ∈ C1(Ω), and by the boundary conditions uk+1(0) = uk+1(1) = 0 and
by the equations (77). As in the previous cases this can be reduced to tridiagonal
linear systems provided appropriate representations are used.

The sequence generated by (76), (77) converges to the required solution uh of
the auxiliary problem (63) only if the step size h > 0 is small enough. This can
be avoided by solving (63) with the exact bases ϕi, ψi given by (69), (70).

In the following table we present the achieved accuracies δh:= max0≤i≤N{ui−
ui} for different values ε2 and various step sizes on equidistributed grids.

α = 0.5 α = 0.8
N \ ε2

0.1 0.01 0.001 0.0001 0.01

50 7.055E−2 1.104E−1 1.257E−1 — 1.129E−1
100 3.533E−2 5.530E−2 6.305E−2 — 5.648E−2
200 1.767E−2 2.766E−2 3.154E−2 3.209E−2 2.825E−2

The sign “—” in the table indicates that the iteration method used failed. In
these cases Bessel functions have to be used to represent the solution. The results
given above show a good agreement with Theorem 7 stating an ε-uniform linear
convergence of the proposed method. The maximal difference between the gen-
erated upper and lower solutions varies mildly only if the parameters ε or α are
changed.

6. Other problems and techniques. In this section we briefly refer to
other problems which can be handled by monotone discretization as well as to
some other techniques for generating enclosures in differential equations.

The monotone discretization takes advantage of some monotonicity behaviour
of the differential operator. These properties occur in several further classes of
problems as shown in [51]. Thus, the idea of monotone discretization could be
applied to a wider range of problems.

In [32], [39] the method was used to generate two-sided bounds of the solution
of 1D-parabolic problems. By means of Rothe’s method of semi-discretization in
time the original problem was transformed into a sequence of two-point boundary
value problems which can be handled by the technique described. To guarantee
a pointwise enclosure by Rothe’s method the right hand side of the differential
equation was properly shifted.

In [13] the monotone discretization method was applied to systems of two-
point boundary value problems.

Initial value problems for ordinary differential equations form another field
of possible applications of monotone discretization. However, the wrapping effect
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blows up the generated bounds if no special treatment is used. Here a combination
with the method proposed in [36] could be useful.

A serious obstacle for the trivial extension of monotone discretization to par-
tial differential equations consists in the fact that the generated auxiliary problems
have to be solved analytically. This restricts the method to specific problems and
to special classes of differential operators. Especially in the case of elliptic and of
higher-dimensional parabolic problems the monotone discretization concept has
to be modified. First attempts in this direction can be found in [18], [50].

Finally, let us briefly mention two other approaches for generating two-sided
enclosures of the solution of differential equations. In [4], [6], [7], for example, a
powerful technique of reliable numerical algorithms has been investigated. The
basic principle of these algorithms consists in a Taylor expansion of the solution
combined with an appropriate shift. Further specific implementations using in-
terval arithmetics make these methods applicable to a large range of problems. A
special method for high accuracy bounds of the solution of initial value problems
was introduced in [36].

Local linearizations and adapted monotone modifications of iteration methods
form the base of a new type of methods proposed in e.g. [38], [46], [47]. These
methods can also be used to handle nonmonotone branches of nonlinear problems.
Furthermore, the underlying fixed point principles enable one to derive existence
results. Thus, these algorithms form a constructive tool for solving nonlinear
problems.
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tisierungsverfahren für schwach nichtlineare Randwertaufgaben, Numer. Math. 49 (1986),
95–110.

[28] C. Grossmann and H.-G. Roos, Feedback grid generation via monotone discretization
for two-point boundary-value problems, IMA J. Numer. Anal. 6 (1986), 421–432.

[29] —, —, Uniform enclosure of high order for boundary value problems by monotone dis-
cretization, Math. Comp. 53 (1989), 609–617.

[30] —, —, Convergence analysis of higher order monotone discretization, Wiss. Z. Tech. Univ.
Dresden 38 (1989), 155–168.

[31] —, —, Enclosing discretization for singular and singularly perturbed boundary value prob-
lems, in: H.-G. Roos, A. Felgenhauer and L. Angermann (eds.), Numerical Methods in
Singular Perturbed Problems, TU Dresden, 1991, 71–82.

[32] G. Koeppe, H.-G. Roos and L. Tobiska, An enclosure generating modification of the
method of discretization in time, Comment. Math. Univ. Carolin. 28 (1987), 447–453.
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