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The method proposed here has been devised for solution of the spectral prob-
lem for the Lamé wave equation (see [2]), but extended lately to more general
problems. This method is based on the phase function concept or the Prüfer angle
determined by the Prüfer transformation cot θ(x) = y′(x)/y(x), where y(x) is a
solution of a second order self-adjoint o.d.e. The Prüfer angle θ(x) has some use-
ful properties very often being referred to in theoretical research concerning both
single- and multi-parameter Sturm–Liouville spectral problems (see e.g. [6, 14, 5]).
All these properties may be useful for numerical solution of the above problems
as well. For an account of numerical methods for solving the single-parameter
Sturm–Liouville spectral problem by means of a modified Prüfer transformation
one is referred to [1, 11, 9].

1. First, we shall consider the case of the following couple of second order
self-adjoint o.d.e. with coefficients depending linearly on two spectral parameters:

(1)
{
y′′1 + (q1(x1) + λp11(x1) + µp12(x1))y1 = 0, x1 ∈ [0, 1],
y′′2 + (q2(x2) + λp21(x2) + µp22(x2))y2 = 0, x2 ∈ [0, 1];

each of the functions y1, y2 is subject to the homogeneous boundary conditions

(2)
{
ν−1

i0 y
′
i(0) sinαi + νi0yi(0) cosαi = 0,

ν−1
i1 y

′
i(1) sinβi + νi1yi(1) cosβi = 0,

i = 1, 2 .

Here we have introduced positive numbers νij to be clarified later on.
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In order to use the known theoretical results without any additional comments
we shall assume everywhere that all the coefficients in the given equations are
continuous and even sufficiently smooth. (Note that most of the results are true
under essentially weaker restrictions — see e.g. [5]. The consideration of this
question is outside the scope of the article.)

Suppose that for each x1, x2 ∈ I,

(3) p11(x1) > 0 , p12(x1) > 0 , p21(x2) > 0 , p22(x2) < 0

(here I = [0, 1]). According to standard well-known results in Sturm–Liouville’s
theory for a single equation the conditions (3) yield the following monotonicity
of the so-called spectral curves µ = µni

i (λ), i = 1, 2: µn1
1 (λ) decreases in λ while

µn2
2 (λ) increases. Here we denote by µ = µni

i (λ) the eigenvalue µ associated
with the reduced Sturm–Liouville problem restricted to the ith equation and
ith pair of boundary conditions. The index ni means that the corresponding
eigenfunction yni

i (xi) has exactly ni internal zeros. Both mappings µ = µni
i (λ),

i = 1, 2, are analytic (see [5]) and one-to-one, so they have to intersect at a
single point (λn, µn) which is the eigenvalue of the complete problem (1)–(2)
with eigenfunction Y n(x1, x2) = yn1

1 (x1)× yn2
2 (x2), n = (n1, n2).

2. The spectral curves divide the plane (λ, µ) of spectral parameters into four
regions, each characterized by the signs of the differences ∆µi = µ− µni

i (λ) and
∆λi = λ− λni

i (µ):

region 1: ∆µ1 < 0 and ∆µ2 > 0, ∆λ1 < 0 and ∆λ2 < 0, hence λ < λn;
region 2: ∆µ1 < 0 and ∆µ2 < 0, ∆λ1 < 0 and ∆λ2 > 0, hence µ < µn;
region 3: ∆µ1 > 0 and ∆µ2 < 0, ∆λ1 > 0 and ∆λ2 > 0, hence λ > λn;
region 4: ∆µ1 > 0 and ∆µ2 > 0, ∆λ1 > 0 and ∆λ2 < 0, hence µ > µn.

To find the position of an arbitrary point (λ, µ) with respect to the eigenvalue
(λn, µn), the modified phase functions θi are introduced:

(4)
y′i(xi)
yi(xi)

= ν2
i (xi) cot θi(xi, λ, µ) , i = 1, 2 .

Here νi(xi) is the so-called scaling function. We use scaling functions to make the
Prüfer angle change as slowly as possible. If neither equation of system (1) has
a turning point within I, then the scaling functions should be chosen to satisfy
ν2

i (xi) =
√
qi(xi) + λpi1(xi) + µpi2(xi); otherwise the choice of νi(xi) is a more

sophisticated task. Anyway, for the sake of simplicity one could set νi(xi) ≡ 1.
Since the functions yi(xi) are solutions of (1), the phase functions satisfy the

first order non-linear phase equations

(5) θ′i = ν2
i (xi) cos2 θi +

qi(xi) + λpi1(xi) + µpi2(xi)
ν2

i (xi)
sin2 θi +

νi(xi)′

νi(xi)
sin 2θi ,

xi ∈ I, i = 1, 2.
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If the solution yi(xi) satisfies the ith left boundary condition (2) then the phase
function θl

i is initially equal to αi:

(6) θl
i(0, λ, µ) = αi ,

and referred to as the left-defined phase function θl
i(xi, λ, µ). In contrast to the

left-defined phase function (6), the right-defined one, determined by

(7) θr
i (1, λ, µ) = βi + πni ,

accounts for the number of oscillations of each solution yi(xi) associated with it
(see [6, 9]).

For each fixed pair (λ, µ) let us compute both θl
i(x, λ, µ) and θr

i (x, λ, µ) as the
solutions of the initial value problems (5), (6) and (5), (7), respectively. The signs
of the differences

∆θi = θl
i(x
∗
i , λ, µ)− θr

i (x∗i , λ, µ)

at an arbitrary point x∗i coincide with the signs of ∆λi, i = 1, 2. Moreover,
∆θi = 0 iff the point (λ, µ) lies on the curve µ = µni

i (λ).
Thus the two-parameter spectral problem (1)–(2) is reduced to the system of

equations {
∆θ1(x∗1, λ, µ) = 0 ,
∆θ2(x∗2, λ, µ) = 0

with functions ∆θi having the above properties.
The algorithm of numerical solution of the problem above consists of two

steps. The first one is the construction of a rectangle containing the eigenvalue,
i.e. we have to find one point for each region and draw a vertical line if the point
(λ, µ) lies in region 1 or 3 and a horizontal one otherwise.

After this rectangle has been constructed, the iterative process begins. At
each step, the rectangle is divided evenly either by a vertical or a horizontal line
depending on whether the center of the current rectangle lies in regions 1 and
3 or in 2 and 4 respectively. Then the half of the rectangle not containing the
eigenvalue is ignored. Note that each time the decision is made only by means of
the solutions of the initial value problems (5), (6) and (5), (7).

No matter what the initial guess is, the process tends to the eigenvalue.
Using phase functions and some additional auxiliary functions there exists a

method to recover the corresponding eigenfuction normalized (for example) by∫
I2

∫
{p11(x1)p22(x2)− p12(x1)p21(x2)}Y (x1, x2) dx1 dx2 = 1 .

3. Before proceeding to the above algorithm we have made strong assump-
tions (3) on the behavior of coefficients. These restrictions can be relaxed. Instead
of (3) it is sufficient to assume that

(8) det{pij(xi)} = p11(x1)p22(x2)− p12(x1)p21(x2) 6= 0 for all (x1, x2) ∈ I2 .
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(Note that the sign of the determinant does not change by the continuity of
pij and (8).) Then there is a non-singular linear transformation of the spectral
parameters

(9) λ = a1ν + b1η , µ = a2ν + b2η ,

such that the new coefficients p̃ij defined by(
p̃11 p̃12

p̃21 p̃22

)
=
(
p11 p12

p21 p22

)(
a1 b1
a2 b2

)
satisfy (3). This fact was proved for an arbitrary number of spectral parameters
by Sleeman in [13]. In [10] another proof was proposed for the two-parameter case,
which enables us to choose new spectral parameters explicitly. The inequality (8)
is just the sufficient condition for the validity of Klein’s oscillation theorem (see
[7]), i.e. the problem (1)–(2) has discrete spectrum and the eigenfunctions form
a complete set in L2[I2], orthogonal with respect to the weight

σ(x1, x2) = p11(x1)p22(x2)− p12(x1)p21(x2) .

The described algorithm can be applied to equations with non-linear coeffi-
cients in spectral parameters. Instead of (1) we shall consider the system

(10)
{
y′′1 +Q1(x1, λ, µ)y1 = 0 , x1 ∈ I,
y′′2 +Q2(x2, λ, µ)y2 = 0 , x2 ∈ I,

with boundary conditions (2).
Suppose each reduced problem in (10), (2) can be solved for any fixed λ

with respect to µ and vice versa. If Q1(x1, λ, µ) increases in both λ and µ, and
Q2(x2, λ, µ) increases in λ and decreases in µ, one can apply the algorithm without
any changes because the spectral curves have the same monotonicity as in the
linear case. This analogy can be continued as follows. Let K1 be the set such that
each line µ − µ0 = k(λ − λ0) intersects the first spectral curve at a single point
(λ0, µ0); here k ∈ K1 and µ0 = µn1

1 (λ0). The set K2 is defined in the same way.
We introduce another two sets: M1 = R\K1, M2 = R\K2. Note that for each
point (λ0, µ0) of the ith spectral curve the pair of sectors formed by the lines
µ− µ0 = m(λ− λ0) with m ∈Mi covers the whole curve µ = µni

i (λ). If

(11) M1 ∩M2 = ∅
then the new spectral parameters may be chosen by means of (9) in which the
functions Q̃i(x, ν, η) = Qi(x, λ, µ) have the required monotonicity. In the linear
case the condition (11) is equivalent to (8).

If the sets M1,M2 have a common bound l and this bound lies in both K1

and K2, then the line µ = lλ determines the new coordinate direction.
The bounds of the sets M1,M2 may be defined from the known estimates for

the derivatives of the spectral curves dµi/dλ ∈ [k1i, k2i] like in [5, 12], where

k1i = −max
[0,1]

[
∂Qi

∂λ

/
∂Qi

∂µ

]
, k2i = −min

[0,1]

[
∂Qi

∂λ

/
∂Qi

∂µ

]
.
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4. The method may be extended to the case of three spectral parameters. We
shall consider the system y′′1 + (q1(x1) + λp11(x1) + µp12(x1) + νp13(x1)) y1 = 0 , x1 ∈ I,

y′′2 + (q2(x2) + λp21(x2) + µp22(x2) + νp23(x2)) y2 = 0 , x2 ∈ I,
y′′3 + (q3(x3) + λp31(x3) + µp32(x3) + νp33(x3)) y3 = 0 , x3 ∈ I,

with boundary conditions (2) where i = 1, 2, 3. It was proved in [13] that if

(12) det {pij(xi)} 6= 0

for any (x1, x2, x3) ∈ I3 with i, j = 1, 2, 3, then there exists a non-singular linear
transformation of the spectral parameters which provides the desired signs of new
coefficients. So we shall restrict our consideration to the coefficients with signs+ + +

+ + −
+ − −

 .

Suppose also that all the second order minors of (pij(xi)) do not vanish.
Further, (12) leads to the existence of the solution (λn, µn, νn) of this three-

parameter spectral problem for an arbitrary triplet n = (n1, n2, n3), where n1, n2,
n3 are the numbers of internal zeros of y1(x1), y2(x2), y3(x3) respectively (Klein’s
oscillation theorem). This means that the spectral surfaces ν = νni

i (λ, µ), i =
1, 2, 3, divide the spectral space into eight regions.

Thus, as in the two-parameter case, each point of the spectral space is associ-
ated with the three signs of the differences of the phase functions, given by (4)–(8)
where i = 1, 2, 3. Moving from an arbitrary point (λ, µ, ν) along the coordinate
lines one may determine a point in regions with signs

(+,+,+) , where λ > λn ,

(−,−,−) , where λ < λn ,

(+,+,−) , where µ > µn ,

(−,−,+) , where µ < µn ,

(+,−,−) , where ν > νn ,

(−,−,+) , where ν < νn .

The planes λ = const for the first two points, µ = const for the next ones, and
ν = const for the last form a parallelepiped containing the spectral point.

If the center (λ∗, µ∗, ν∗) of the current parallelepiped belongs to one of the
regions above, then just like in the two-parameter case, the appropriate coordinate
plane cuts off half of the parallelepiped with the eigenvalue, while the other half is
ignored. For instance, if the point (λ∗, µ∗, ν∗) is in the region (+,+,+) then the
eigenvalue is located in the half λ < λ∗. However, there is a difference between
the two- and three-parameter cases. The point is that there are two regions

(+,−,+) and (−,+,−)
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with boundaries intersecting twice the coordinate lines or having no common
point with these lines at all. So if the center (λ∗, µ∗, ν∗) lies in these regions, the
position of the eigenvalue with respect to each coordinate plane is not known a
priori.

To overcome this drawback we propose the following. Let (λ∗, µ∗, ν∗) be in
the region (+,−,+). Moving along the coordinate line λ in the direction of its
decrease, we eventually find a point (λ∗∗, µ∗, ν∗) belonging to the region (−,−,−).
But within the interval [(λ∗, µ∗, ν∗), (λ∗∗, µ∗, ν∗)] there have to be points either
from the region (−,−,+) or from (+,−,−). After any of these points is found
(e.g. by successive bisection of the interval) one should draw the plane µ = µ∗ or
ν = ν∗ depending on the region where this point happens to be. The eigenvalue
lies in the half µ < µ∗ or ν > ν∗ respectively.

The division of the current parallelepiped should be continued until the current
parallelepiped containing the eigenvalue becomes sufficiently small.

It is worth mentioning that the isolation of the eigenvalue in an n-dimensional
parallelepiped should be done in the same way provided (12) holds for any
(x1, . . . , xn) ∈ In. However, the greater the value of n, the more complicated
the localization of the eigenvalue, since the number of regions in the spectral
parameter space grows faster than the number of coordinate semi-axes.

The described algorithm was successfully applied to the two-parameter Lamé
wave equation for a wide range of problem data changes. Up till now only a few
calculations of the ellipsoidal wave functions are known ([3, 4]). For instance,
standard programs based upon this algorithm solve the problem of scattering of
plane waves on a general ellipsoid. (The analytical solution in the form of a series
of ellipsoidal wave functions was proposed in [8].)

The author is grateful to A. A. Abramov and N. B. Konyukhova for the
discussion of the scope of the paper and for useful remarks.
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