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1. Introduction. Let us consider the following mathematical programming
problem:

(1) J(u)→ inf, u ∈ U ,
(2) U = {u ∈ U0 : gi(u) ≤ 0 , i = 1, . . . ,m, gi(u) = 0, i = m+ 1, . . . , s} ,

where U0 is a given set and J(u), g1(u), . . . , gs(u) are finite functions defined
on U0. It is known [7, 8, 10, 21], that the problem (1)–(2) is generally unstable
under perturbation of the functions J(u), gi(u); therefore solving it we have to use
some regularization technique. In the following we will use classical regularization
methods such as the method of stabilization, the method of residuals and the
method of quasisolutions. These methods will be based on the extension of the
feasible set, or on the penalty and barrier function methods. One can find the
application of these methods for the problem (1)–(2) in [7, 8, 10, 21, 9, 11, 2, 12,
22, 3, 13, 14, 24, 15] where the convergence rate for the objective function values
has also been investigated.

In this paper, which is a continuation of the papers [8, 21], we survey the
results published in [13, 14, 24, 15, 16, 23, 26, 4, 5, 17] on the convergence rate
of minimizing sequences constructed by the mentioned regularization methods.
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We note here that the estimates of the convergence rate for the function
values can be obtained under not very strong assumptions on the problem (1)–
(2), namely it is usually supposed that

Assumption 1. J∗ = infU J(u) > −∞, U∗ = {u ∈ U0 : J(u) = J∗} 6= ∅ and
there exist c1 ≥ 0, . . . , cs ≥ 0 such that

(3) J∗ ≤ J(u) +
s∑
i=1

cig
+
i (u) ≡ G0(u), u ∈ U0,

where g+
i (u) = max{gi(u), 0}, i = 1, . . . ,m; g+

i (u) = |gi(u)|, i = m+ 1, . . . , s.

Assumption 2. The set U0 is exactly known, but instead of the exact functions
J(u), gi(u) we only have their approximations Jδ(u), giδ(u) such that

(4) max{|Jδ(u)−J(u)|; max
1≤i≤s

|giδ(u)−gi(u)|} ≤ δ(1+Ω(u)), u ∈ U0, δ > 0,

where Ω(u) is a nonnegative function on U0.

It is worth mentioning that condition (3) is satisfied if the Lagrangian function
L(u, λ) = J(u) +

∑s
i=1 λigi(u), u ∈ U0, λ ∈ Λ0 = {λ ∈ Rs : λ1 ≥ 0, . . . , λm ≥ 0},

has a saddle point (u∗, λ∗), i.e. L(u∗, λ) ≤ L(u∗, λ∗) ≤ L(u, λ∗), u ∈ U∗, λ ∈ Λ0.
In this case any number for which |λi| ≤ ci can play the role of ci. Consequently,
the class of problems satisfying condition (3) is rich enough (see e.g. [18]).

The common structure of the mentioned methods of regularization consists of
the following steps: they construct the set U∗(δ) of optimal points for the prob-
lem given by the functions (Jδ(u), g1δ(u), . . . , gsδ(u), δ) for which the following
estimates are computed:

(5) J(u) ≤ J∗ + β(δ), Ω(u) ≤ Ω∗ + γ(δ), max
1≤i≤s

g+
i (u) ≤ %(δ), u ∈ U∗(δ) ,

where Ω∗ = infU∗ Ω(u); β(δ), γ(δ), %(δ) are positive functions of δ > 0. From
(4) and (5) one can deduce the following estimate of the convergence rate for the
objective function:

(6) −|c|1%(δ) ≤ J(u)− J∗ ≤ β(δ), u ∈ U∗(δ), |c|1 =
s∑
i=1

ci .

It is obvious from (6) that the convergence condition is

(7) lim
δ→0

β(δ) = lim
δ→0

%(δ) = 0 ;

in that case

(8) lim
δ→0

sup
U∗(δ)

|J(u)− J∗| = 0 .

Conditions (7) are the consistency conditions for the parameters of the regular-
ization methods.
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In Sections 2–4 we expound this common structure for each regularization
method. Assuming that Assumptions 1 and 2 are satisfied we describe the con-
struction of U∗(δ) and the consistency conditions of the parameters; moreover,
we give explicit formulas for the functions β(δ), γ(δ), %(δ) in (5).

In Section 5 we deal with the convergence rate for the optimizing sequences.
To obtain such type of convergence rate much stronger assumptions on problem
(1)–(2) will be required. We formulate these assumptions and under these as-
sumptions we give estimates for the distance (in the norm-metric) between the
optimal solution and its approximation obtained by any regularization technique.

2. The methods of extended feasible set. Let us define

(9) W (δ) = {u ∈ U0 : g+
iδ(u) ≤ δ(1 +Ω(u)), i = 1, . . . , s} .

From (4) it follows that

g+
iδ(u) ≤ g+

i (u) + δ(1 +Ω(u)), u ∈ U, i = 1, . . . , s,

therefore U ⊆ W (δ), δ > 0. Consequently, W (δ) is a nonempty set which is in
fact an extension of U . Moreover, using (4), for every u ∈W (δ) we have

(10) g+
i (u) ≤ g+

iδ(u) + δ(1 +Ω(u)) ≤ 2δ(1 +Ω(u)), u ∈W (δ), i = 1, . . . , s.

The method of stabilization based on the extended feasible set solves the prob-
lem

(11) t(u) = Jδ(u) + αΩ(u)→ inf, u ∈W (δ), α = α(δ) > 0.

The problem (11) is considered as an extremal problem of the first type [7, 8, 10,
21], i.e. we seek a point u = u(δ) from the set

(12) U∗(δ) = {u ∈W (δ) : t(u) ≤ t∗ + ε(δ)}, ε(δ) > 0,

where t∗ = infW (δ) t(u). Choose the parameter α(δ) consistently with the param-
eter δ > 0 in the sense that

(13) α(δ) > δ(1 + 2|c|1), δ > 0.

Then under Assumptions 1 and 2 the estimates (5) and (6) will be satisfied with
the parameters (cf. [10, 12, 15])

γ(δ) =
2δ(1 +Ω∗)(1 + |c|1) + ε(δ)

α(δ)− δ(1 + 2|c|1)
,

β(δ) = α(δ)Ω∗ + ε(δ) + 2δ(1 +Ω∗) + δγ(δ),

(14)

%(δ) = 2δ +Ω∗ + γ(δ), δ > 0.(15)

The method of residuals based on the extended feasible set defines a point
u = u(δ) from the set

(16) U∗(δ) = {u ∈ V (δ) : Ω(u) ≤ inf
V (δ)

Ω(u) + ε(δ)}, ε(δ) > 0,



236 M. KOVÁCS AND F. P. VASIL’EV

where

(17) V (δ) = {u ∈W (δ) : Jδ(u) ≤ inf
W (δ)

[Jδ(u) + θ(δ)Ω(u)] + σ(δ)} ,

θ(δ) > 0, σ(δ) > 0 .

Let the parameters θ(δ), σ(δ) be made consistent with the parameter δ by choosing

(18) θ(δ) ≥ δ(1 + 2|c|1), σ(δ) ≥ δ(3 +Ω∗ + 2|c|1).

Then under Assumptions 1 and 2 for the problem (1)–(2) the estimates (5) and
(6) hold [15] with parameters

(19)
γ(δ) = ε(δ) ,
β(δ) = 2δ(1 +Ω∗) + θ(δ)Ω∗ + σ(δ) + δε(δ),

and %(δ) is computed by the rule (15) with γ(δ) taken from (19).

The method of quasisolutions based on the extended feasible set defines a point
u = u(δ) from the set

(20) U∗(δ) = {u ∈ Q(δ) : Jδ(u) ≤ inf
Q(δ)

Jδ(u) + ed}, ε(δ) > 0,

where

(21) Q(δ) = {u ∈W (δ) : Ω(u) ≤ r(δ)}, r(δ) > ω∗ = inf
U
Ω(u).

If Assumptions 1 and 2 are satisfied then the estimates (5) and (6) can be obtained
[15] with parameters

(22)
γ(δ) = max{0; r(δ)−Ω∗} ,
β(δ) = max{0; J∗(r(δ))− J∗}+ ε(δ) + 2δ(1 +Ω∗ + γ(δ)),

where

(23) J∗(r) = inf
U(r)

J(u), U(r) = {u ∈ U : Ω(u) ≤ r}

and with parameter %(δ) obtained by putting the value γ(δ) from (22) into (15).

3. The barrier function methods. Discussing this method we will limit
our investigations to the most simple generalized barrier function [2, 3, 5]

(24) Bδ(u) =

s∑
i=1

1
ν(δ) + δ(1 +Ω(u))− giδ(u)

+
s∑

i=m+1

1
ν(δ) + δ(1 +Ω(u)) + giδ(u)

, u ∈W (δ), ν(δ) > 0,

+∞, u ∈ U0 \W (δ),

where W (δ) is defined as in (9).
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If {uk} ∈W (δ) and limk→∞(g+
iδ(uk)−δ(1+Ω(uk))) = 0, then limk→∞Bδ(uk)

≥ 1/ν(δ). It is seen from here that in the case of little value of ν(δ) the value
limk→∞Bδ(uk) will be large. Consequently, Bδ(u) characterizes to what extent
we penalize the closeness of the point u to the boundary of the extended feasible
set, i.e. to the set

ΓpW (δ) = {u ∈ U0 : g+
iδ(u) = δ(1 +Ω(u)) for at least one i, 1 ≤ i ≤ s}.

The cases of other simple and more general barrier functions are discussed in
[2, 3, 5].

The method of stabilization based on the barrier function technique chooses a
point u = u(δ) which minimizes the function

(25) t(u) = Jδ(u) + α(δ)Ω(u) + a(δ)Bδ(u), α(δ) > 0 , a(δ) > 0 ,

with accuracy ε(δ) > 0, i.e. this point is chosen from the set U∗(δ) which was
defined according to (12). The consistency of the parameters is characterized by
the inequality

(26) α(δ) > δ(1 + 2|c|1) + 2δ
a(δ)
ν2(δ)

(2s−m).

If Assumptions 1 and 2 and condition (26) are satisfied then the estimate for the
method satisfies the inequalities (5) and (6) [2, 5] with parameters

(27)

γ(δ) =
2δ(1 +Ω∗)

[
1 + |c|1 + 2

a(δ)
ν2(δ)

(2s−m)
]

+ ε(δ) +
a(δ)
ν(δ)

(2s−m)

α(δ)− δ
[
1 + 2|c|1 + 2

a(δ)
ν2(δ)

(2s−m)
] ,

β(δ) = α(δ)Ω∗ + ε(δ) +
a(δ)
ν(δ)

(2s−m) + δ(1 +Ω∗)
[
1 + 2

a(δ)
ν2(δ)

(2s−m)
]

+ δ(1 +Ω∗ + γ(δ))
[
1 + 2

a(δ)
ν2(δ)

(2s−m)
]
,

and %(δ) is defined by (15) with γ(δ) from (27).

The method of residuals based on the barrier function technique defines the
set U∗(δ) according to (16), but here

(28) V (δ) = {u ∈W (δ) : Jδ(u) + a(δ)Bδ(u)

≤ inf
W (δ)

[Jδ(u) + a(δ)Bδ(u) + θ(δ)Ω(u)] + σ(δ)},

σ(δ) > 0, θ(δ) > 0, a(δ) > 0 .

Under Assumptions 1 and 2 and the consistency condition (18), we have the
estimates (5) and (6) for the method defined by (16) and (28), where the exact
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values of the parameters are (cf. [5])

(29)
γ(δ) = ε(δ),

β(δ) = 2δ(1 +Ω∗) + θ(δ)Ω∗ + σ(δ) + δε(δ) +
a(δ)
ν(δ)

(2s−m),

while the parameter %(δ) is defined by (15) with γ(δ) taken from (29).

The method of quasisolutions based on the barrier function technique defines
the set U∗(δ) by

(30) U∗(δ) = {u ∈ Q(δ) : Jδ(u) + a(δ)Bδ(u) ≤ inf
Q(δ)

[Jδ(u) + a(δ)Bδ(u)] + ε(δ)},

where a(δ) > 0, ε(δ) > 0 and the set Q(δ) is given by (21). For this method we
obtain the following result [5]: if the problem (1)–(2) satisfies Assumptions 1 and
2 and condition (21) is also satisfied then the estimates (5) and (6) are valid with
parameters

(31)

γ(δ) = max{0; r(δ)−Ω∗},
β(δ) = max{0; J∗(r(δ))− J∗}+ ε(δ) + 2δ(1 +Ω∗ + γ(δ))

+
a(δ)
ν(δ)

(2s−m),

while %(δ) is computed by the formula (15) with γ(δ) taken from (31) and J∗(r)
is defined in (23).

4. The penalty function methods. Analyzing the regularization methods
in connection with the penalty function techniques we will limit our investigations
to the very simple penalty function P (u) and its approximation Pδ(u) given by
the formulas

(32) P (u) =
s∑
i=1

(g+
i (u))p, Pδ(u) =

s∑
i=1

(g+
iδ(u))p, u ∈ U0, p ≥ 1.

More general cases are discussed in [22]. Since the deviation |Pδ(u)− P (u)| may
be computed from (4) and (32), for the sake of simplicity we replace the condition
(4) in Assumption 2 with

(33) max{|Jδ(u)− J(u)|; |Pδ(u)− P (u)|} ≤ δ(1 +Ω(u)), u ∈ U0, δ > 0 ;

we will refer to the modified assumption as Assumption 2′.

The method of stabilization based on the penalty function methods defines the
set U∗(δ) by the rule (12), but here

(34)
t(u) = Jδ(u) + α(δ)Ω(u) +A(δ)Pδ(u), α(δ) > 0, A(δ) > 0 ,
t∗ = inf

U0
t(u) .
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For the consistency of the parameters the following is required in addition to (13):

(35) α(δ) > δ(1 +A(δ)), δ > 0.

If Assumptions 1 and 2′ and conditions (13) and (35) are satisfied then the es-
timates (5) and (6) hold for the method defined by (12) and (34), where the
parameters are given as follows (cf. [8, 11, 12, 22, 13]):

(36)
γ(δ) =

2δ(1 +Ω∗)(1 +A(δ)) + ε(δ)
α(δ)− δ(1 +A(δ))

+


0 if p = 1,
MA(δ)1/(p−1)

α(δ)− δ(1 +A(δ))
if p > 1,

β(δ) = α(δ)Ω∗ + ε(δ) + δ(1 +A(δ))(2 + 2Ω∗ + γ(δ)),

(37) %(δ) =


(

β(δ)
A(δ)− |c|

)
if p = 1, inf

δ>0
A(δ) > |c|,[(

|c|
A(δ)

)p/(p−1)

+
p

p− 1
· β(δ)
A(δ)

]1/p
if p > 1 ,

where

|c| =


max |ci| if p = 1,( s∑
i=1

|ci|p/(p−1)
)(p−1)/p

if p > 1; M = (p− 1)
(
|c|
p

)p/(p−1)

.

The method of residuals based on the penalty function methods defines the set
U∗(δ) by the rule (16), but in this formula V (δ) is the following set:

(38) V (δ) = {u ∈ U0 : Jδ(u) +A(δ)Pδ(u)

≤ inf
U0

[Jδ(u) +A(δ)Pδ(u) + δ(1 +A(δ))Ω(u)] + σ(δ)}

σ(δ) > 0, A(δ) > 0.

If the parameters σ(δ), A(δ) are consistent in the sense that

(39) σ(δ) ≥ δ(1 +A(δ))(3 +Ω∗) +M(A(δ))−1/(p−1), δ > 0,

and Assumptions 1 and 2′ are satisfied, then the estimates (5) and (6) hold [14]
with parameters

(40) γ(δ) = ε(δ) , β(δ) = δ(1 +A(δ))(3Ω∗ + 2 + ε(δ)) + σ(δ)

and %(δ) is computed by (37) with γ(δ) and β(δ) taken from (40).

The method of quasisolutions based on the penalty function methods defines
the set U∗(δ) as follows:

U∗(δ) = {u ∈ Q(δ) : Jδ(u) +A(δ)Pδ(u)(41)
≤ inf
Q(δ)

[Jδ(u) +A(δ)Pδ(u)] + ε(δ)}, ε(δ) > 0,
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where

(42) Q(δ) = {u ∈ U0 : Ω(u) ≤ r(δ)}, r(δ) > ω∗ = inf
U0
Ω(u).

Under Assumptions 1 and 2′ the method defined by (41) and (42) satisfies the
estimates (5) and (6) with parameters (cf. [24])

(43)
γ(δ) = max{0; r(δ)−Ω∗},
β(δ) = max{0; J∗(r(δ))− J∗}+ ε(δ) + δ(1 +A(δ))(1 +Ω∗ + γ(δ)),

and %(δ) is defined by the rule (37), in which the parameters β(δ) and γ(δ) are
taken from (43) and J∗(r) is from (23).

5. Estimation of the convergence rate of the regularized minimizers.
In this section we show that under stronger assumptions on the problem (1)–(2)
for each regularization method described above we may obtain an estimate of the
convergence rate of the chosen optimizing sequences.

Assumption 3. The set U0 is a convex closed subset of a reflexive Banach
space B which is equipped with the norm ‖u‖; J(u), g+

1 (u), . . . , g+
m(u) are convex

and (in the strong topology) lower semicontinuous functions on U0.

Theorem 1. Let Assumptions 1–3 be satisfied and let J(u) be a strictly uni-
formly convex function on U0 with modulus of convexity ωJ(t). Let the set U∗(δ)
be defined by one of the described methods of regularization with consistently cho-
sen parameters (see the conditions (13), (18), (26), (35), (39)) and let u∗ denote
the solution of the problem (1)–(2). Then

(44) ‖u− u∗‖ ≤ ω−1
J (β(δ) + |c|1%(δ)), u ∈ U∗(δ) ,

where ω−1
J (ξ) is the inverse function of ωJ(t) and the parameters β(δ), %(δ) are

the values from (5) and (6) corresponding to the considered regularization method.
If the parameters β(δ), %(δ) satisfy the condition (7), then

(45) lim
δ→0

sup
u∈U∗(δ)

‖u− u∗‖ = 0.

If B = H is a Hilbert space and J(u) is strongly convex on U0, i.e. ωJ(t) =
γt2, then the estimate (44) has the following particular form:

‖u− u∗‖ ≤
1
γ

(β(δ) + |c|1%(δ))1/2, u ∈ U∗(δ).

P r o o f. Under the conditions of the theorem the set U is convex and closed
and with the strictly uniformly convex function J(u) the solution of the problem
(1)–(2) is unique, i.e. U∗ = {u∗} [10, 18]. Moreover, the function G0(u) in (3)
is also strictly uniformly convex with the same modulus of convexity ωJ as
the function J(u), and it reaches the infimum on U0 at the point u∗, while
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infU0 G0(u) = G(u∗) = J∗. Then [10, 18]

ωJ(‖u− u∗‖) ≤ G0(u)−G0(u∗) = J(u)− J∗ +
s∑
i=1

cig
+
i (u), u ∈ U0.

Using the estimate (5) we hence obtain the estimate ωJ(‖u−u∗‖) ≤ β(δ)+|c|1%(δ)
for every u ∈ U∗(δ). Taking into consideration the strict monotonicity of ωJ this
inequality is equivalent to (44).

Since limξ→+0 ω
−1
J (ξ) = 0, limξ→+0 ω

−1
Ω (ξ) = 0 [18], we deduce that (45) is

valid.

Another estimate for the convergence rate of optimizing sequences may be
obtained under a weaker assumption for the objective function J(u) but a much
stronger condition for the stabilizing function Ω(u). Namely, let us associate
with (1)–(2) the problem of finding the Ω-normal solution u∗ ∈ U∗ as follows:

(46)

Ω(u)→ inf
U∗
,

U∗ = {u ∈ U0 : gi(u), i = 1, . . . ,m;

gi(u) = 0, i = m+ 1, . . . , s; J(u)− J∗ ≤ 0} .

Assumption 4. The function Ω(u) is strictly uniformly convex on U0 with
modulus of convexity ωΩ(t) and for the problem (46) there exist real numbers
µ0 ≥ 0, . . . , µs ≥ 0 such that

(47) Ω∗ ≤ Ω(u) + µ0(J(u)− J∗) +
s∑
i=1

µig
+
i (u) ≡ G1(u), u ∈ U0.

Condition (47) holds, for example, if the Lagrangian function of the extremal
problem (46) has a saddle point; in this case any value not less than the modulus
of the ith Lagrangian multiplier can play the role of µi in (47).

Theorem 2. Let Assumptions 1–4 be satisfied and let the set U∗(δ) be de-
fined by one of the described methods of regularization with consistently chosen
parameters. Then

(48) ‖u− u∗‖ ≤ ω−1
Ω (µ0β(δ) + |µ|1%(δ) + γ(δ)), u ∈ U∗(δ),

where ω−1
Ω (ξ) is the inverse function of ωΩ(t), |µ|1 =

∑s
i=1, and β(δ), %(δ), γ(δ)

are the values from (5) and (6) corresponding to the considered regularization
method.

If the parameters β(δ), %(δ) satisfy condition (7) and

(49) lim
δ→+0

γ(δ) = 0,

then also (45) holds.
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If B = H is a Hilbert space and Ω(u) = ‖u‖2 then ωΩ(t) = t2, and the
estimate (48) has the form

‖u− u∗‖ ≤ (µ0β(δ) + |µ|1%(δ) + γ(δ))1/2, u ∈ U∗(δ).
P r o o f. Under the conditions of the theorem the set U∗ in (46) is a closed,

convex set, and the strictly uniformly convex functionΩ(u) has a unique minimum
point u∗ on it [10, 18]. The function G1(u) given by (47) is also strictly uniformly
convex on U∗ with modulus of convexity ωΩ(t). From (47) it follows that the
function G1(u) reaches an infimum on U0 at the point u∗ while infU0 G1(u) =
G1(u∗) = Ω∗. Consequently,

ωΩ(‖u− u∗‖) ≤ G1(u)−G1(u∗)

= Ω(u)−Ω∗ + µ0(J(u)− J∗) +
s∑
i=1

µig
+
i (u), u ∈ U0.

From this, using (5) it follows that ωΩ(‖u−u∗‖) ≤ γ(δ)+µ0β(δ)+ |µ|1%(δ)), u ∈
U∗(δ), which is equivalent to (48).

(45) can be proved as in the previous theorem.

Using the explicit formulas for β(δ), γ(δ), %(δ) we can express the conditions
(7) and (49) by the parameters of the methods. For example, for the method
given by (11) and (12) the conditions

sup
δ>0

δ

α(δ)
<

1
1 + 2|c|1

, sup
δ>0

ε(δ)
α(δ)

<∞, lim
δ→0

(α(δ) + ε(δ)) = 0

guarantee (7), and to satisfy (49) it is enough to require that

lim
δ→0

δ + ε(δ)
α(δ)

= 0 .

We remark that the rate of convergence for the minimizing sequence can be
obtained for all considered regularization methods and also for their modifications
in the case if we assume that the problem (1)–(2) has the property of the so called
strong compatibility [18]. Some results in this field can be found in [13, 14, 24,
15, 16, 5]. Furthermore, we mention the papers [1, 25, 6, 20, 19], in which the
regularization of the linear programming problems is discussed, and the rate of
convergence is established without the assumption of uniform convexity of the
objective and the stabilizing functions.
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[23] F. P. Vas i l ’ ev, M. Kovács, M. M. Potapov and Yu. N. Chekanov, An estimate
of the convergence rate for a continuous analogue of the regularized gradient method for
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