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Abstract. An iterative procedure containing two parameters for solving linear algebraic
systems originating from the domain decomposition technique is proposed. The optimization of
the parameters is investigated. A numerical example is given as an illustration.

The aim of the paper is to generalize the iterative procedure proposed in
[6]. The procedure is appropriate for solving linear algebraic systems of special
form originating from the discretization of boundary value problems on composite
domains and belongs to the domain decomposition algorithms. Mostly, such
algorithms present preconditioners for the CG method (see e.g. [1], [2], [4], [3]). A
one-parameter method to be used independently of the CG method is proposed
in [5].

Our approach differs from that of [6] in introducing two parameters and per-
forming their optimization. We thus obtain a reasonable improvement of the con-
vergence rate. The method can be easily modified to yield a preconditioner for
the CG method.

1. Description of the method. Let a system of linear algebraic equations

(1) Mw = d

be given, where

(2) M =

A DT O
D B ET

O E C

 , w =

x
y
z

 , d =

 f
g
h

 .
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We assume that the matrices A,B,C are square and symmetric, and O are null
matrices of appropriate orders.

Let B1 and B2 be symmetric matrices such that B = B1 + B2 and that the
matrices

A1 =
(
A DT

D B1

)
and A2 =

(
B2 ET

E C

)
are positive definite. It can easily be seen that the matrix M is also positive
definite.

Denote by SU the Schur complement of A in A1, i.e. SU = B1 − DA−1DT,
and by SL the Schur complement of C in A2, i.e. SL = B2 −ETC−1E. Further,
we put p = DA−1f + ETC−1h.

The procedure consists in the construction of a sequence of vectors yn con-
verging to the y-component of the true solution of (1). Simple calculation shows
that this exact value satisfies the equation

(3) (SU + SL)y0 = (g − p) .

Let α, β be real parameters, 0 < α, β < 1. Let an approximation yn to y0 be
given. Let y(1)

n+1 be the y-component of the solution of the system

Ax+DTy = f ,(41)
Dx+B1y = (1− α)g + α(DA−1f + SUyn)− (1− α)(ETC−1h+ SLyn) ,(42)

and let y(2)
n+1 be the y-component of the solution of

B2y + ETz = αg − α(DA−1f + SUyn) + (1− α)(ETC−1h+ SLyn) ,(51)
Ey + Cz = h .(52)

The new iteration is defined by

(6) yn+1 = βy
(1)
n+1 + (1− β)y(2)

n+1 .

R e m a r k 1. Substituting yn for y in the system (4), computing x from (41)
and substituting this value into the left-hand side of (42) we obtain

Dx+B1yn = DA−1f + SUyn .

An analogical manipulation with the system (5) gives

B2yn + ETz = ETC−1h+ SLyn .

This is the way for computing the right-hand sides in the above systems.

After solving systems (4) and (5) for y(1)
n+1 and y(2)

n+1, respectively, and substi-
tuting into (6) we get

yn+1 = {[αβ + (1− α)(1− β)]I − (1− α)βT − α(1− β)T−1}yn+

+ [(1− α)βS−1
U + α(1− β)S−1

L ](g − p),

where T = S−1
U SL.
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The character of the iterations is determined by the spectral radius of the
iteration matrix K,

K = [αβ + (1− α)(1− β)]I − (1− α)βT − α(1− β)T−1 .

Before considering the optimization of the spectral radius in dependence on
the parameters α and β we show that the process (if convergent) converges to the
exact solution. In the case of convergence we have

(I −K)y∞ = [(1− α)βS−1
U + α(1− β)S−1

L ](g − p) ,
where y∞ = limn→∞ yn. However, it is easily seen that

I −K = P (SU + SL) ,

where P = (1 − α)βS−1
U + α(1 − β)S−1

L . But for K convergent the matrix P is
regular and we see that y∞ satisfies (3).

The form of the matrix I −K enables us to rewrite the iterations in the form

yn+1 = yn − P [(SU + SL)yn − (g − p)] .
The matrix P can thus be considered as a preconditioner for the matrix SU +SL

and the proposed method as the method of residual iterations with precondi-
tioning. This also suggests the use of P as a preconditioner for the method of
conjugate gradients for the solution of the equation (3).

2. Optimization of the parameters. The eigenvalues of K depend only on
the eigenvalues of T . We will assume that we know the bounds for the spectrum
of this matrix:

sp(T ) ⊂ [m,M ], m,M > 0 .
Introducing new parameters s and t by

(7) s =
√
α(1− α)β(1− β), t =

√
(1− α)β
α(1− β)

we obtain
(1− α)β = st, α(1− β) = s/t .

Further, we have

(8) t ∈ (0,∞), s ∈ (0, t/(1 + t)2] .

Conversely, for every pair (s, t) satisfying (8) the system (7) has at least one
solution α, β. Indeed, put

ψ(q) =
qt

(q + t)(1 + qt)
.

We now find a q, 0 < q < 1, such that s = ψ(q). This is always possible, because
the function ψ is (for a fixed t) positive and increasing on the interval [0, 1] and
takes the values between 0 and t/(1+t)2. Setting α = 1/(1+qt) and β = t/(q+t),
we obtain one solution of (7).
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With the new parameters, we have

K =
[
1− s

(
t+

1
t

)]
I − s

(
tT +

1
t
T−1

)
.

For every eigenvalue µi of T we have an eigenvalue λi of K,

λi = 1− s
(
t+

1
t

)
− s
(
tµi +

1
tµi

)
or, introducing the function ϕ(t) = t+ t−1 − 2,

λi = 1− s[4 + ϕ(t) + ϕ(tµi)] .

The spectral radius of K, %(K) = maxi λi, should be minimized as a function
of s and t. Instead of maxi λi we consider

R(s, t) = max
x∈[m,M ]

[1− s[4 + ϕ(t) + ϕ(tx)]]

and minimize the function R(s, t) for s, t satisfying (8). We thus obtain an upper
bound for the spectral radius %(K).

Theorem. The function R(s, t) attains its minimum in the region given by (8)
for

s =
2

8 + 2ϕ(
√
Mm) + ϕ(

√
M/m)

and t =
1√
Mm

and we have

min
s,t

R(s, t) =
ϕ(
√
M/m)

8 + 2ϕ(
√
Mm) + ϕ(

√
M/m)

.

P r o o f. We define P (t, x) = 4 + ϕ(t) + ϕ(tx) and first let t be fixed and look
for an optimal s. We easily find that

min
s
R(s, t) = R(sopt, t) =

maxx P (t, x)−minx P (t, x)
maxx P (t, x) + minx P (t, x)

,

where

sopt =
2

maxx P (t, x) + minx P (t, x)
.

Because the function ϕ(t) is not monotone we distinguish several cases for the
determination of maxx P (t, x) and minx P (t, x). Then, the minimization in t will
be carried out.

C a s e (i): 1/m ≤ t. Here, we have 1 ≤ tm ≤ tx ≤ tM and ϕ(tm) ≤ ϕ(tx) ≤
ϕ(tM). Therefore,

max
x

P (t, x) = 4 + ϕ(t) + ϕ(tM), min
x
P (t, x) = 4 + ϕ(t) + ϕ(tm)

and

min
s
R(s, t) =

ϕ(tM)− ϕ(tm)
8 + 2ϕ(t) + ϕ(tM)− ϕ(tm)

.
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However, this is an increasing function of t, as can be easily found by considering
its derivative. The minimization in t thus gives

(9) min
s,t

R(s, t) =
ϕ(M/m)

8 + 2ϕ(1/m) + ϕ(M/m)
.

C a s e (ii): 1/
√
Mm ≤ t ≤ 1/m. Here, we have tm ≤ 1 and tM≥1. Therefore,

there exists an x such that tx = 1. Further, we have 1/(tm) ≤ tM and therefore

max
x

P (t, x) = 4 + ϕ(t) + ϕ(tM), min
x
P (t, x) = 4 + ϕ(t)

and

min
s
R(s, t) =

ϕ(tM)
8 + 2ϕ(t) + ϕ(tM)

.

This is also an increasing function of t and the optimal value t = 1/
√
Mm gives

(10) min
s,t

R(s, t) =
ϕ(
√
M/m)

8 + 2ϕ(
√
Mm) + ϕ(

√
M/m)

.

C a s e (iii): 1/M ≤ t ≤ 1/
√
Mm. This case is solved similarly to (ii) and the

optimal value is again given by (10).

C a s e (iv): t ≤ 1/M . This case is similar to (i) and the optimal value is

(11) min
s,t

R(s, t) =
ϕ(M/m)

8 + 2ϕ(1/M) + ϕ(M/m)
.

An elementary analysis shows that (10) is the smallest value of (9), (10)
and (11).

The value given by (10) is less than one, so the iterative process converges for
the optimum values of the parameters. The parameters α and β necessary for the
iteration scheme are computed from s and t by the procedure described above.

Remark 2. If the bounds for the spectrum of T are optimal, i.e., if µmin = m
and µmax = M , and, moreover, if µk =

√
Mm for some k, the estimate (10)

gives the exact value of %(K). In other cases the spectral radius is less than the
estimate.

3. Numerical example. As an illustration of the above procedure we con-
sider the following problem. Let O be the L-shaped domain of Fig. 1, consisting of
three squares, each with side length 1

2 . Let the following boundary value problem
be given on O:

(12)
∆u = 0 in O ,

u = g on ∂O ,

where g is chosen so that the exact solution be

u(x, y) = x3 − 3xy2 .
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(1, 1)

O3

( 12 ,
1
2 ) i2

O1 i1 O2

(0, 0) (1, 0)
Fig.1

We introduce a uniform square mesh with step 1/(2n). Then we approximate the
problem in the usual way with the standard five point scheme. We thus obtain a
system of linear algebraic equations. In order to put it in a suitable form (1) with
appropriate blocking of M,w and d we gather the equations corresponding to the
mesh points lying in O1 and O3 in the first block, the equations corresponding to
both interfaces i1 and i2 in the second block and the equations corresponding to
the mesh points in O2 in the third block.

We use the splitting B = B1 + B2 with B1 = B2 = B/2. The application of
the method consists in the following steps:

1) We choose the values on i1 and i2 arbitrarily.
2) We solve the discrete Dirichlet problems on each particular square sep-

arately. This corresponds to the computing of x from (41) and of z from (52)
according to Remark 1.

3) We compute the values of the discrete normal derivatives of these solutions
on both interfaces from both sides. We again proceed according to Remark 1. The
splitting of B we made gives just the discrete normal derivatives.

4) We solve the systems (4) and (5), i.e., solve three separate discrete boundary
value problems with the Neumann conditions on the interfaces. The solution of
the discrete boundary value problem on O2 has, however, to satisfy the Dirichlet
condition at the single point ( 1

2 ,
1
2 ).

5) We compute the new approximation of the values on the interfaces from (6).

For the numerical experiment the null vector was taken for the initial approx-
imation of the values on the interfaces. Two choices of the parameters were used.
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The first one was the choice of standard parameters α = 0.5, β = 0.5. This choice
does not guarantee convergence, in general, but it is reasonable in many cases.
It yields convergence in our case. The second choice are the optimal parameters
computed according to §2.

The maximum and minimum eigenvalues of the matrix T computed numer-
ically, i.e. the approximate eigenvalues of the generalized eigenvalue problem
SLu = µSUu, were taken as the values of M and m, respectively. The values
of the optimal parameters for different values of n are shown in Table 1.

Table 1. Optimal parameters

n α β

4 0.5454 0.5724

8 0.5590 0.6186

16 0.5664 0.6614

32 0.5699 0.6999

64 0.5713 0.7337

128 0.5713 0.7631

Tables 2 and 3 show the results of the iterative process for the first four iter-
ations. The values shown are the maximum norms of the error on the interfaces.
The standard semilogarithmic form for numbers is used.

Table 2. Direct iterations, standard parameters

It. n = 4 n = 8 n = 16 n = 32 n = 64 n = 128

1 6.25e−3 1.95e−2 4.28e−2 7.48e−2 1.15e−1 1.63e−1

2 2.10e−4 1.84e−3 7.92e−3 2.28e−2 5.16e−2 1.01e−1

3 7.49e−6 1.82e−4 1.53e−3 7.11e−3 2.36e−2 6.28e−2

4 2.76e−6 1.85e−5 2.97e−4 2.24e−3 1.08e−2 3.92e−2

Table 3. Direct iterations, optimal parameters

It. n = 4 n = 8 n = 16 n = 32 n = 64 n = 128

1 2.56e−3 7.69e−3 1.44e−2 2.20e−2 2.97e−2 3.72e−2

2 4.36e−5 2.57e−4 7.45e−4 1.54e−3 2.63e−3 3.88e−3

3 5.05e−7 7.78e−6 3.96e−5 1.18e−4 2.64e−4 4.90e−4

4 8.45e−9 2.63e−7 2.06e−6 8.68e−6 2.45e−5 5.41e−5
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As mentioned in §1, the matrix P can be used for the preconditioning of the
CG method. It follows from [1] that the spectral radius of P (SU +SL) is bounded
independently of n. The numerical realization of this method is easy and needs
only minimal extra computational effort in comparison to the direct method. The
results of computations with the preconditioned CG method, again for two choices
of iteration parameters, are shown in Tables 4 and 5.

Table 4. Preconditioned CG method, standard parameters

It. n = 4 n = 8 n = 16 n = 32 n = 64 n = 128

1 3.14e−3 1.06e−2 2.15e−2 3.41e−2 4.79e−2 6.40e−2

2 3.50e−5 1.59e−4 3.73e−4 7.38e−4 1.27e−3 1.93e−3

3 3.84e−9 3.83e−7 3.99e−6 1.44e−5 2.49e−5 2.58e−5

4 1.24e−14 6.41e−11 4.48e−9 5.84e−8 3.24e−7 7.45e−7

Table 5. Preconditioned CG method, optimal parameters

It. n = 4 n = 8 n = 16 n = 32 n = 64 n = 128

1 2.47e−3 6.51e−3 1.23e−2 1.86e−2 2.47e−2 3.04e−2

2 1.10e−6 2.56e−5 1.20e−4 2.92e−4 5.08e−4 7.39e−4

3 4.01e−10 9.07e−8 1.52e−6 7.92e−6 2.27e−5 4.57e−5

4 1.83e−15 2.24e−11 1.92e−9 2.84e−8 1.96e−7 8.49e−7
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