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The paper analyses the biconjugate gradient algorithm and its preconditioned
version for solving large systems of linear algebraic equations with nonsingular
sparse complex matrices. Special emphasis is laid on symmetric matrices arising
from discretization of complex partial differential equations by the finite element
method.

1. Introduction. Our concern in this paper is the solution of a large system
of complex linear algebraic equations

(1.1) Ax = b ,

where A is a nonsingular N × N matrix. We shall assume that A is sparse,
i.e., only O(N) entries of A are different from zero. The necessity of solving
such systems arises when applying the finite element (or difference) method to
approximate differential equations with complex coefficients and some bound-
ary conditions. These problems come from electroengineering, acoustics, nuclear
physics (Schrödinger equation), geophysics, plasma physics and other domains
with time-periodic solutions (see e.g. [4, 8, 10]).

In solving factual three-dimensional problems the number of unknowns N can
be so large that we are not able to solve (1.1) by direct methods based on the
Gaussian elimination due to limitations of the internal fast computer memory.
On the other hand, iterative methods enable us to store only nonzero entries of
A and, of course, some information about their positions in A.
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At the present time the most efficient iterative methods seem to be conjugate
gradient type methods. The attractive feature of these methods is that they can
usually be stopped when the number of iterations is much less than N. We shall
deal with the biconjugate gradient method (BCG) which has, moreover, minimal
requirements upon computer memory. This method has been firstly described
by Fletcher [3, p. 80] for real nonsymmetric matrices. Its generalization to com-
plex non-Hermitian matrices can be found in [6, 10]. We establish some other
properties of the complex BCG method than in [6, 10] and derive a precondi-
tioned biconjugate gradient method (PBCG). The efficiency of BCG and PBCG
is demonstrated in solving a geophysical example.

2. Description and properties of the BCG method. Denote by αC the
conjugate complex number to a complex number α. Analogously, AC will stand
for the conjugate matrix to A. Further, let

AH = (AC)T ,

i.e., AH is the conjugate transposed matrix to A. By rH = (rC)T we mean the
row vector for a column vector r.

The biconjugate gradient method for the system (1.1) is defined in the following
way. Let x0 be an initial guess for the solution of (1.1) and let r̃0 be an arbitrary
N -dimensional column vector such that p̃H0 Ap0 6= 0 and r̃H0 r0 6= 0, where

(2.1) p0 = r0 = b−Ax0, p̃0 = r̃0 .

Then we set

αk =
r̃Hk rk
p̃Hk Apk

,(2.2)

xk+1 = xk + αkpk ,(2.3)
rk+1 = rk − αkApk ,(2.4)
r̃k+1 = r̃k − αCk AH p̃k ,(2.5)

βk =
r̃Hk+1rk+1

r̃Hk rk
,(2.6)

pk+1 = rk+1 + βkpk ,(2.7)
p̃k+1 = r̃k+1 + βCk p̃k, k = 0, 1, . . .(2.8)

Let

(2.9) M = inf{k ∈ {1, 2, . . .} | p̃Hk Apk = 0 or r̃Hk rk = 0} ,

i.e., the BCG algorithm (2.1)–(2.8) does not break down within M iterations.
Before we prove that the BCG algorithm terminates in at most N iterations,

we prove several auxiliary assertions.
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Lemma 2.1. Let x0, . . . , xM and r0, . . . , rM be determined by (2.1)–(2.8). Then

(2.10) rk = b−Axk, k = 0, . . . ,M ,

i.e., r0, . . . , rM represent a sequence of residual vectors.

P r o o f. We prove (2.10) by induction. From (2.1) we see that r0 is a residual
vector. Suppose now that rk = b − Axk holds for some k ∈ {0, . . . ,M − 1}.
Multiplying (2.3) by A, we have from (2.4)

rk+1 = rk − αkApk = b−Axk − αkApk
= b−Axk − (Axk+1 −Axk) = b−Axk+1.

R e m a r k 2.2. Let x̃0 and b̃ be arbitrary N -dimensional column vectors,
r̃0 = b̃−AH x̃0 and let

x̃k+1 = x̃k + αCk p̃k

be included in the BCG algorithm just after the relation (2.3). Then in a similar
way to Lemma 2.1 we can prove that

(2.11) r̃k = b̃−AH x̃k, k = 0, . . . ,M ,

i.e., r̃0, . . . , r̃M are residual vectors associated with the problem

AH x̃ = b̃ .

So, by the BCG method we can solve simultaneously the two systems Ax = b and
AH x̃ = b̃.

R e m a r k 2.3. If A is a nonsingular Hermitian matrix, that is, A = AH ,
and r̃0 = r0, then the BCG method (2.1)–(2.8) leads to the standard conjugate
gradient method with real coefficients αk, βk and vectors

p̃k = pk, r̃k = rk, k = 0, . . . ,M − 1 ,

which are complex in general.

In the next theorem we show that the sequences {rk}, {r̃k} and {pk}, {p̃k}
generated by the BCG method satisfy the biorthogonality and biconjugacy con-
dition, respectively. This theorem can be found in [3, p. 80] for the real case.

Theorem 2.4. Let (2.9) hold. Then for all k, l ∈ {0, . . . ,M}, k 6= l, we have

(2.12) r̃Hk rl = 0

and

(2.13) p̃Hk Apl = 0 .

P r o o f. We prove the theorem by induction and only for k < l, as the case
k > l can be treated analogously. By (2.4), (2.1) and (2.2), we have

(2.14) r̃H0 r1 = r̃H0 r0 − α0p̃
H
0 Ap0 = 0 ,
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and, by (2.7), (2.5), (2.2), (2.14) and (2.6),

p̃H0 Ap1 = p̃H0 Ar1 + β0p̃
H
0 Ap0

=
1
α0

(r̃H0 − r̃H1 )r1 +
β0

α0
r̃H0 r0 =

1
α0

(−r̃H1 r1 + β0r̃
H
0 r0) = 0 .

Now let l be a fixed positive integer less than M . Assuming that both (2.12)
and (2.13) hold for all nonnegative k < l, we prove that they remain valid also if
l is replaced by l + 1. Using (2.4), (2.12), (2.8) and (2.13) for k < l, we obtain

r̃Hk rl+1 = r̃Hk rl − αlr̃Hk Apl = −αl(p̃Hk − βk−1p̃
H
k−1)Apl = 0,

where β−1 = 0 and p̃−1 = 0 if necessary, and from (2.4), (2.2), (2.8) and (2.13),

r̃Hl rl+1 = r̃Hl rl − αlr̃Hl Apl = r̃Hl rl −
r̃Hl rl
p̃Hl Apl

(p̃Hl − βl−1p̃
H
k−1)Apl = 0 .

Combining (2.7), (2.5), (2.13) and (2.12) for k < l, we get

p̃Hk Apl+1 = p̃Hk Arl+1 + βlp̃
H
k Apl =

1
αk

(r̃Hk − r̃Hk+1)rl+1 = 0 ,

and finally, from (2.7), (2.5), (2.2), (2.12) and (2.6),

p̃Hl Apl+1 = p̃Hl Arl+1 + βlp̃
H
l Apl

=
1
αl

(r̃Hl − r̃Hl+1)rl+1 +
βl
αl
r̃Hl rl =

1
αl

(−r̃Hl+1rl+1 + βlr̃
H
l rl) = 0.

Corollary 2.5. If (2.9) holds then

r̃Hl pk = p̃Hk rl = 0 for 0 ≤ k < l ≤M .

P r o o f. Using (2.7) repeatedly, we find that

pk = rk + βk−1rk−1 + βk−1βk−2rk−2 + . . .+
( k−1∏
j=0

βj

)
r0 .

Thus (2.12) yields r̃Hl pk = 0 for k < l. The second relation p̃Hk rl = 0 follows
similarly from (2.8) and (2.12).

Lemma 2.6. If (2.9) holds then the vectors {rl}M−1
l=0 are linearly independent

(i.e. M ≤ N necessarily).

P r o o f. By (2.9),

(2.15) r̃Hl rl 6= 0 ∀l ∈ {0, . . . ,M − l} .

Suppose that r0, . . . , rM−1 are linearly dependent. Then there exist complex num-
bers c0, . . . , cM−1 and an integer k ∈ {0, . . . ,M − 1} so that

(2.16) ck 6= 0



PRECONDITIONED BICONJUGATE GRADIENTS 199

and

(2.17) 0 =
M−1∑
l=0

clrl .

Now by (2.17) and (2.12),

0 =
M−1∑
l=0

clr̃
H
k rl = ckr̃

H
k rk ,

which contradicts (2.15) and (2.16).

R e m a r k 2.7. Under the assumption (2.9) the BCG algorithm terminates in
at most M iterations and from Lemma 2.6 we know that M ≤ N . If rM = 0
then, by Lemma 2.1, xM is the true solution of the system (1.1). If rM 6= 0 then,
by (2.9), p̃HMApM = 0 or r̃HMrM = 0, which means that the algorithm has broken
down. However, the latter case happens very rarely in practical computations. In
this case we have to restart the algorithm with other initial value (e.g. x0 = xM ).
The real difficulty may also come when the iteration is close to breakdown. For
real symmetric and indefinite matrices the algorithm (2.1)–(2.8) can be modified
so that it never breaks down — see [9, p. 1264] (cf. also [4, 5, 11]).

Let us introduce the so-called Krylov space

Kk = span(r0, . . . , rk−1), k ∈ {1, . . . ,M} ,
where span stands for the linear span. Sometimes Kk is called the right Krylov
space (see [12, p. 485]) whereas span(r̃0, . . . , r̃k−1) is called the left Krylov space.
The next lemma establishes several expressions of the right space. A similar lemma
can be stated also for the left space.

Lemma 2.8. Let (2.9) hold and let

Kk1 = span(p0, . . . , pk−1) ,
Kk2 = span(r0, . . . , Ak−1r0),
Kk3 = span(A(x∗ − x0), . . . , Ak(x∗ − x0)) ,

where x∗ is the true solution of (1.1). Then Kk = Kk1 = Kk2 = Kk3 .

P r o o f. We prove the lemma by induction. The case k = 1 is evident due to
(2.1). So let the assertion hold for some k ∈ {1, . . . ,M − 1}. We divide the proof
into the following four steps, showing successively that Kk+1 ⊂ Kk+1

1 ⊂ Kk+1
2 ⊂

Kk+1
3 ⊂ Kk+1.

1. By (2.7), rk = pk − βk−1pk−1 and thus Kk+1 ⊂ Kk+1
1 .

2. We check whether pk ∈ Kk+1
2 . By the induction assumption rk−1 ∈ Kk =

Kk2 ⊂ Kk+1
2 , pk−1 ∈ Kk1 = Kk

2 ⊂ Kk+1
2 , and thus we obtain Apk−1 ∈ Kk+1

2 . Using
now (2.7) and (2.4), we find that

pk = rk + βk−1pk−1 = rk−1 − αk−1Apk−1 + βk−1pk−1 ∈ Kk+1
2 .
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Hence, Kk+1
1 ⊂ Kk+1

2 .
3. Since r0 = b−Ax0 = A(x∗ − x0), we immediately see that Kk+1

2 = Kk+1
3 .

4. By Lemma 2.6, dimKk+1 = k + 1. We already know that Kk+1 ⊂ Kk+1
3 .

Hence, dimKk+1
3 = k + 1 and thus necessarily Kk+1 = Kk+1

3 .

3. The BCG algorithm for complex symmetric matrices. A finite el-
ement approximation of time-harmonic problems often leads to the system (1.1)
whose matrix is symmetric — see e.g. [4, 8] or (5.2) below. Let us now derive the
form of the BCG algorithm in this case.

Theorem 3.1. Let A be a nonsingular complex symmetric matrix (i.e. A =
AT ), r̃0 = rC0 and let the sequences {rk}, {r̃k}, {pk}, {p̃k} be generated by (2.1)–
(2.8). Then

(3.1) r̃k = rCk for k = 0, . . . ,M − 1 ,

and

(3.2) p̃k = pCk for k = 0, . . . ,M − 1 .

P r o o f. By (2.1) and the assumption r̃0 = rC0 we see that the theorem is valid
for k = 0. Further, suppose its validity for some k ∈ {0, . . . ,M − 2}; we prove it
for k + 1. By (2.5) and (2.4),

r̃k+1 = r̃k − αCk AH p̃k = rCk − αCk (AT )CpCk = rCk − αCk ACpCk = rCk+1 .

To verify (3.2) we employ (2.8), (3.1) and (2.7):

p̃k+1 = r̃k+1 + βCk p̃k = rCk+1 + βCk p
C
k = pCk+1 .

Corollary 3.2. For complex symmetric matrices the BCG algorithm (2.1)–
(2.8) reduces to the form

p0 = r0 = b−Ax0 ,(3.3)

αk =
rTk rk
pTkApk

,(3.4)

xk+1 = xk + αkpk ,(3.5)
xk+1 = rk − αkApk ,(3.6)

βk =
rTk+1rk+1

rTk rk
,(3.7)

pk+1 = rk+1 + βkpk, k = 0, 1, . . .(3.8)

R e m a r k 3.3. Notice that only one matrix-vector multiplication is necessary
in each iteration. Moreover, it is sufficient to store in computer memory only four
vectors b, p, r, x (besides A). The vectors Apk, k=0, 1, . . . , occurring in (3.4) and
(3.6) can be currently stored in b. Contrary to Remark 2.3, the coefficients αk
and βk are complex in general and rTk rk does not represent a scalar product in
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the complex case. Note that the popular conjugate gradient type methods OR-
THODIR, GMRES, ORTHOMIN and ORTHORES (see e.g. [14, p. 77]) require
much more memory cells than the BCG method.

4. Preconditioned BCG method. Let A be a nonsingular complex N ×N
matrix and let Z be its “easily invertible” approximation (cf. Remark 4.2). Sup-
pose that Z is of the form

(4.1) Z = LU ,

where L and U are lower and upper triangular matrices, respectively. Multiplying
(1.1) by L−1 and setting

x̂ = Ux ,(4.2)

Â = L−1AU−1 ,(4.3)

b̂ = L−1b ,(4.4)

we may write
Âx̂ = L−1AU−1Ux = L−1Ax = L−1b = b̂ ,

that is,

(4.5) Âx̂ = b̂ .

It is known that the condition number of Â has a considerable influence on the
rate of convergence of all iterative methods. An appropriate choice of Z enables
us to reduce essentially the condition number of Â.

By the preconditioned biconjugate gradient method we shall mean the bicon-
jugate gradient method (2.1)–(2.8) applied to the system (4.5). Thus formally we
get:

p̂0 = r̂0 = b̂− Âx̂0, ̂̃p0 = ̂̃r0 ,(4.6)

α̂k =
̂̃rHk r̂k̂̃pHk Âp̂k ,(4.7)

x̂k+1 = x̂k + α̂kp̂k ,(4.8)

r̂k+1 = r̂k − α̂kÂp̂k ,(4.9) ̂̃rk+1 = ̂̃rk − α̂Ck ÂH ̂̃pk ,(4.10)

β̂k =
̂̃rHk+1r̂k+1̂̃rHk r̂k ,(4.11)

p̂k+1 = r̂k+1 + β̂kp̂k ,(4.12) ̂̃pk+1 = ̂̃rk+1 + β̂Ck
̂̃pk, k = 0, 1, . . . ,(4.13)

where x̂0 is an initial guess for (4.5) and ̂̃r0 is an arbitrary N -dimensional column
vector. Throughout this section we again assume that the BCG algorithm (4.6)–
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(4.13) does not break down. In this algorithm there occurs Â which is, however,
not suitable for computer implementation. That is why, for k = 0, 1, . . . , we set
(cf. (4.2))

(4.14) xk = U−1x̂k

and introduce the following notation:

rk = Lr̂k, r̃k = UĤ̃rk ,(4.15)

sk = U−1r̂k, s̃k = L−Ĥ̃rk ,(4.16)

vk = U−1p̂k, ṽk = L−Ĥ̃pk ,(4.17)

αk = α̂k, βk = β̂k ,(4.18)

where L−H = (L−1)H . We will now try to eliminate from (4.6)–(4.13) all quanti-
ties with the symbol ̂. Thus by (4.6), (4.15), (4.4), (4.3) and (4.14) we get

(4.19) L−1r0 = L−1b− L−1AU−1Ux0 = L−1(b−Ax0) .

From (4.6), (4.16) and (4.17) we further have

Uv0 =Us0 = L−1r0 ,(4.20)
LH ṽ0 =LH s̃0 = U−H r̃0 .(4.21)

The coefficient (4.7) can be, by (4.15)–(4.18) and (4.3), rewritten as follows:

(4.22) αk =
(LH s̃k)HL−1rk

(LH ṽk)HL−1AU−1Uvk
=

s̃Hk rk
ṽHk Avk

and the equation (4.8), by (4.14) and (4.17), as

(4.23) Uxk+1 = Uxk + αkUvk .

To rearrange (4.9) and (4.10), we employ (4.15), (4.17) and (4.3):

L−1rk+1 = L−1rk − αkL−1AU−1Uvk ,(4.24)
U−H r̃k+1 = U−H r̃k − αCk U−HAHL−HLH ṽk .(4.25)

Finally, the coefficient (4.11) and the equations (4.12) and (4.13) can be trans-
formed by means of (4.14)–(4.18) to the form

βk =
(LH s̃k+1)HL−1rk+1

(LH s̃k)HL−1rk
=
s̃Hk+1rk+1

s̃Hk rk
,(4.26)

Uvk+1 = Usk+1 + βkUvk ,(4.27)
LH ṽk+1 = LH s̃k+1 + βCk L

H ṽk .(4.28)

From (4.1) and (4.15)–(4.28) we deduce the following corollary.

Corollary 4.1. The preconditioned biconjugate gradient method
(PBCG) for the system (1.1) may be written as follows: Let x0 and r̃0 be arbitrary
N -dimensional column vectors. Then we set

r0 = b−Ax0 ,(4.29)
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v0 = s0 = Z−1r0 ,(4.30)
ṽ0 = s̃0 = Z−H r̃0 ,(4.31)

αk =
s̃Hk rk
ṽHk Avk

,(4.32)

xk+1 = xk + αkvk ,(4.33)
rk+1 = rk − αkAvk ,(4.34)
r̃k+1 = r̃k − αCk AH ṽk ,(4.35)
sk+1 = Z−1rk+1 ,(4.36)
s̃k+1 = Z−H r̃k+1 ,(4.37)

βk =
s̃Hk+1rk+1

s̃Hk rk
,(4.38)

vk+1 = sk+1 + βkvk ,(4.39)
ṽk+1 = s̃k+1 + βCk ṽk, k = 0, 1, . . .(4.40)

R e m a r k 4.2. If A is sparse then the matrices L and U in (4.1) may be chosen
so that they are sparse. The inversion of Z in (4.30) need not be performed, since
the vector s0 can be obtained more easily in the following two steps:

Ly = r0 ,

Us0 = y ,

which have not great pretensions to the number of arithmetic operations. Analo-
gously we proceed in (4.31), (4.36) and (4.37).

R e m a r k 4.3. It follows from (4.29), (4.33) and (4.34) that

rk = b−Axk, k = 0, 1, . . . ,

i.e., the sequence {rk} represents the residual vectors of the original equation
(1.1). The proof is the same as in Lemma 2.1.

R e m a r k 4.4. If A is symmetric (or Hermitian) then Z can be chosen in the
form Z=LLT (or Z=LLH), where L is a lower triangular matrix. The algorithm
(4.29)–(4.40) may then be simplified as in Corollary 3.2 (or Remark 2.3).

5. Numerical test. We compared the BCG method with classical iterative
methods in solving a model geophysical problem which is thoroughly treated in
[8, p. 163]. This problem is described by Helmholtz’s partial differential equation

−∆u+ iσu = f

in a rectangular domain Ω ⊂ R2 with mixed boundary conditions. Here i stands
for the imaginary unit, f ∈ L2(Ω) and σ is a real piecewise constant function
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with great jumps. Define a sesquilinear form

(5.1) a(z, u) =
∫
Ω

((grad z)T graduC + iσzuC) dΩ ,

where z and u belong to the complex Sobolev space H1(Ω). For the standard
finite element piecewise bilinear and real basis functions z1, . . . , zN the associated
stiffness matrix

(5.2) A = (a(zi, zj))Ni,j=1

will be, due to (5.1), sparse complex and symmetric. Note that the matrix A+AH

is moreover positive definite (cf. [15, p. 802]). Numerical tests show that the
spectrum of A entirely lies inside the first quadrant near the real axis.

The next table contains the minimum number of iterations necessary to
achieve the prescribed tolerance of the error and residual vector for N = 740.
The true solution x∗ of (1.1) has been obtained by the Gaussian elimination. The
symbol ‖ ·‖∞ stands for the standard l∞-norm (maximum norm). We have taken
the initial guess x0 = 0 in all the cases considered.

Method ‖x∗ − xk‖∞ < 5 · 10−3 ‖rk‖∞ < 5 · 10−4

Jacobi ∞ ∞
Kaczmarz (orth. projections) 10892 9351
CG for system (5.3) 689 696
Gauss–Seidel 404 338
SOR with ω = 1.4− 0.2i 192 170
BCG (3.3)–(3.8) 93 108
PBCG by diagonal matrix 79 82
PBCG by incomplete factorization 39 43

The classical Jacobi method (see [13, p. 73]) has not converged. The Kaczmarz
method of orthogonal projections (see [8, p. 89]) converges for any nonsingular
matrix. Nevertheless, we see that its convergence can be extremely slow. The
standard conjugate gradient method applied to the system (cf. [2, p. 68])

(5.3) AHAx = AHb

(whose matrix is Hermitian but ill-conditioned) also converges very slowly. The
number of iterations is almost equal to N . Moreover, it was necessary to use dou-
ble precision in this case. The next two rows contain the results of the successive
overrelaxation method [7] for ω = 1 (Gauss–Seidel) and ω = 1.4 − 0.2i (almost
optimal). Note that the duration of one iteration of the proposed BCG algorithm
(3.3)–(3.8) was only 1.2 times that for the Gauss–Seidel method. The last two
rows illustrate the effect of preconditioning by the diagonal matrix Z = diag(A)
(see [8, p. 222]) and by the incomplete Choleski factorization (cf. [1, p. 284]).
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