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1. Introduction. There is a series of papers on the analysis of the Galerkin
and improved Galerkin methods for the boundary integral equation for the single
layer potential for the Laplacian on the square plate [10, 11, 12, 20]. Here we
are interested in the error analysis of the boundary element discretization of time
harmonic scalar problems which appear in direct acoustic scattering problems.
The classical theory of these scattering problems for smoothly bounded exterior
(or interior) domains is well described in [1]. The method of integral equations of
the first kind and its rigorous theory for domains of that kind was initiated in [17,
15]. The underlying analysis for boundary integral equations and their approxi-
mation by Galerkin’s method for screen problems in R3 using Sobolev spaces of
locally finite energy was founded in [29]. Results for the transient acoustic scat-
tering problem by flat objects have recently been obtained in [13]. A review of
boundary integral equations is given in [32].

It is obvious that the computer implementation even of the Galerkin method
has to be done by approximation of the scalar products, which results in addi-
tional error terms in the calculated solution. The same observation holds for the
collocation method.

The question of convergence of collocation methods for general pseudodiffer-
ential operators on manifolds in R3 is still open. Several results were obtained re-
cently, mainly for regular meshes and tensor-product splines. We refer the reader
to [27, 4, 3, 23, 24, 5].

For one-dimensional boundary integral equations there is a lot of literature on
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discretized Galerkin methods for singular integral equations [22] as for the single
layer potential [14] and for general pseudo-differential operators [31]. A review on
this field is given in [21].

Quadrature methods for the double layer potential equation (a singular inte-
gral equation of the second kind) over the boundary of a polyhedron have recently
been extensively studied in [25].

A discretized Galerkin method for the boundary integral equation of the first
kind on a square for the single layer potential of the Laplacian was analyzed
in [18]. For practical use it was proved that it is sufficient to use a fixed num-
ber of calculations per matrix element to ensure convergence of the discretized
method. The method was introduced by approximation of the scalar products of
a Galerkin method by a composite Simpson-product formula. This formula was
directly applied to integrals which have continuous integrands, while the weakly
singular integrals are reduced to continuous ones by Duffy’s [9] transformation
of coordinates. Duffy’s transformation of coordinates and its application in the
theory of boundary integral equations are studied in [28].

In this paper we present a new result even for the Laplacian by defining a
discretized method which uses only a one-point quadrature rule for “most” of
the matrix elements. Our numerical approximation schemes are defined in Sec-
tion 2.

It is known that the boundary pseudodifferential operators for the Helmholtz
equation are smooth and compact perturbations of the corresponding ones for the
Laplacian [29]. By the methods of [13] we prove that the Galerkin equations here
are uniquely solvable for all mesh widths (see Theorem 4.2(i) below). The same
result is valid for the collocation methods, which follows from results in [4, 5]. The
unique solvability for all mesh widths does not in general carry over to the case of
discretized Galerkin methods. The parameter dependence of the stability of these
methods on the wave number and the chosen quadrature methods is presented in
Theorem 4.4. More detailed estimates of the parameters can be found in [19]. In
Section 5 we present our main result, in Theorem 5.2. There conditions on the
parameters in the definition of our fully discretized schemes are given, to ensure
convergence of our discretized schemes.

In Section 6 we present numerical calculations for the Laplacian to demon-
strate that the low quadrature formula leads to good results.

2. Definition of numerical schemes. We assume Ω to be a bounded
Lipschitz domain which is a subset of the square [−1, 1] × [−1, 1], such that the
boundary of Ω has at least one point in common with the boundary of [−1, 1]×
[−1, 1]. If f is a distribution in S′(R2) we define the Fourier transform of f by

f̂(ξ) :=
∫

R2

eiξ·xf(x) dx (ξ ∈ R2) .
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For given s ∈ R and f, g ∈ S′(R2) we define scalar products

〈f, g〉s :=
∫

R2

f̂(ξ)ĝ(ξ)(1 + |ξ|)2s dξ

and norms
‖f‖2Hs(R2) := 〈f, f〉s .

The closure of the space of infinitely differentiable functions with compact support
in R2, C∞0 (R2), with respect to this norm is the Sobolev space Hs(R2). The
closure of the space of infinitely differentiable functions with compact support in
Ω, C∞0 (Ω), with respect to this norm is the Sobolev space H̃s(Ω). In its dual
space H−s(Ω) we use (as usual) the norm

‖f‖H−s(Ω) := inf
lf∈H−s(R2)

‖lf‖H−s(R2) ,

where the infimum is taken over all distributions lf whose restriction to Ω coin-
cides with f. In L2(Ω) we also use the scalar product

(f, g) :=
∫
Ω

f(x)g(x) dx ,

which is related to the already defined one by Plancherel’s formula

(f, g) = (2π)−2〈f, g〉0 .
We introduce the integral operators coming from the single layer potentials for
the Helmholtz equation with wave number κ ∈ C:

(2.1) Vκu(y) :=
∫
Ω

u(x)Φ(x− y, κ) dx (y ∈ Ω) ,

where Φ is (up to a constant) the fundamental solution for the Helmholtz equation
defined by

(2.2) Φ(x, κ) :=
eiκ|x|

|x|
.

We shall assume that the wave number κ has non-negative imaginary part κI .
The function defined by (2.2) represents an outgoing wave [1]. We denote the
real part of κ by κR. We also use the operator

Ṽκu(y) :=
1

4π

∫
Ω

u(x)Φ(x− y, κ) dx (y ∈ Ω) .

For a positive definite M ×M matrix A we denote by λmin(A) (λmax(A)) the
smallest (largest) eigenvalue of A. For M ×M matrices A we introduce norms by

‖A‖∞ := max
i=1,...,M

M∑
k=1

|Ai,k|, ‖A‖2 :=
√
λmax(AA∗) ,

where A∗ is the complex conjugate of the transpose of A.
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We now formulate the boundary integral equation in question [10, 12]:

(2.3) Ṽκw
(κ)(y) =

1
4π

∫
Ω

w(κ)(x)Φ(x− y, κ) dx = f(y) for y ∈ Ω .

w(κ) gives the jump of the normal derivative of the solution of Helmholtz’s equa-
tion in R3 \ Ω, which satisfies the Dirichlet problem with given f on Ω, and
Sommerfeld’s radiation condition [1, p. 70, (3.7)]. Instead of (2.3) we shall inves-
tigate the equivalent integral equation

(2.4) Vκu
(κ)(y) =

∫
Ω

u(κ)(x)Φ(x− y, κ) dx = f(y) for y ∈ Ω

to simplify some constants. We look for functions u(κ) ∈ H̃−1/2(Ω), given f ∈
H1/2(Ω). To discretize equation (2.3) we introduce for given N ∈ N the grids

�N =
{
xNk =

k

N
=
(
k1

N
,
k2

N

)∣∣∣∣k ∈ Z2

}
and the functions ϕ0

0 as the characteristic function of the interval [0, 1], and we
let ϕ1

0(t) =
∫

R ϕ
0
0(x)ϕ0

0(x− t) dx = max(1− |t|, 0) be the normalized linear spline
with node at t0 = 0. For d ∈ {0, 1} the normalized tensor product splines are
ϕ0,d

0 (x1, x2) = ϕd0(x1)ϕd0(x2). On the grids �N we introduce the spline functions
of degree d = 0 and d = 1 by

ϕN,dk (x) = ϕ1,d
0 (N(x− xNk )) .

In Ω we furthermore introduce the grids

ωN,d = {k = (k1, k2) ∈ Z2 | supp(ϕN,dk ) ⊆ Ω} .
ωN,d is a totally ordered set if we use the lexicographical order

k ≤ k′ :⇔ (k2 < k′2 or (k2 = k′2 and k1 ≤ k′1)) .

We define

h :=
1
N

as parameter for the mesh length.
The Galerkin equations for (2.3) with piecewise constant trial functions then

read

(2.5)
∫
Ω

∫
Ω

∑
k∈ωN,0

ακkϕ
N,0
k (x)ϕN,0k′ (y)Φ(x− y, κ) dx dy

=
∫
Ω

f(y)ϕN,0k′ (y) dy, for k′ ∈ ωN,0 .

The collocation equations for piecewise bilinear ansatz functions collocating in
the nodes read

(2.6)
∫
Ω

∑
k∈ωN,1

βκkϕ
N,1
k (x)Φ(x− xNk′ , κ) dx = f(xNk′), for k′ ∈ ωN,1 .
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It is known [12, 29] that the Galerkin schemes lead to approximations u(κ)
h =∑

k∈ωN,0 ακkϕ
N,0
k of the uniquely determined solutions u(κ) of the integral equation

(2.3) for all f ∈ H1/2(Ω).
If one is interested in functions f which also have higher regularity, say f ∈

Hs(Ω), s > 1, then it is known [12, 7] that the solutions u(κ) of the integral
equations are in H−ε(Ω) (= H̃−ε(Ω)) for any 0 < ε < 1

2 . Furthermore, the
following quasi-optimal convergence result [12, 2, 6] holds for the spline functions
uκh which are defined by the Galerkin equations (2.5):

(2.7) ‖u(κ) − uκh‖H̃−1/2(Ω)
≤ Ch1/2−ε‖f‖Hs(Ω)

with a constant C independent of f and h (but depending on κ).

For κ = 0 a similar result is derived for the solution v
(0)
h =

∑
k∈ωN,1 β0

kϕ
N,1
k

of the collocation method in [5]. The case of κ 6= 0 can also be handled by the
methods introduced in that paper.

The following lemma gives a representation of the coefficient matrices of the
numerical schemes (2.4), (2.5).

Lemma 2.1. For k, k′ ∈ ωN,0 we have

(2.8) A
(κ,N)
k,k′ := (Vκϕ

N,0
k , ϕN,0k′ ) = h3

∫
[−1,1]2

ϕ1,1
0 (x)Φ(x− k + k′, hκ) dx

and

(2.9) (Vκϕ
N,0
k , ϕN,0k′ ) = h2(Vκϕ

N,1
k )(xN,0k′ ) .

R e m a r k s. 1. The representation (2.8) is proved as in [18, Lemma 2.1]. The
equality of block Toeplitz matrices stated in (2.9) was shown in [4].

2. The matrix elements (Vκϕ
N,0
k , ϕN,0k′ ) only depend on (|k1 − k′1|, |k2 − k′2|).

So we introduce matrices B(κ,N) by

(2.10) B
(κ,N)
k = h3

∫
R2

ϕ1,1
0 (x)Φ(x− k, hκ) dx = h3

∫
[−1,1]2

ϕ1,1
0 (x)Φ(x− k, hκ) dx

for k ∈ N2
0, k ∈ [0, 2N ]2. In the following we shall also denote by B

(κ,N)
k the

right-hand side of (2.10) for arbitrary k ∈ Z2.

Here we introduce a numerical scheme which depends on several parameters
to discretize the sesquilinear forms which are defined by Galerkin’s scheme (2.5)
and the collocation scheme (2.6).

For a given continuous function g : [0, 1] × [0, 1] → R we introduce as in [18]
the composite Simpson-product formula of mesh length 1/M :
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(2.11) CSP(g) :=
M−1∑
l=0

M−1∑
m=0

1
36M2

[
g

(
m

M
,
l

M

)
+4g

(
m

M
,

2l + 1
2M

)
+g
(
m

M
,
l + 1
M

)
+ 4g

(
2m+ 1

2M
,
l

M

)
+16g

(
2m+ 1

2M
,

2l + 1
2M

)
+4g

(
2m+ 1

2M
,
l + 1
M

)
+g
(
m+ 1
M

,
l

M

)
+ 4g

(
m+ 1
M

,
2l + 1
2M

)
+ g

(
m+ 1
M

,
l + 1
M

)]
.

There are three different types of integrals in the coefficient matrices character-
ized by singularities of their integrands. To approximate the values (Vκϕ

N,0
k , ϕN,0k′ )

which are defined by integrals with singular integrands, we first use the formula

(2.12)
∫

[−1,1]2

ϕ1,1
0 (x)Φ(x− k, hκ) dx ≈

∫
[−1,1]2

ϕ1,1
0 (x)
|x− k|

dx ,

which is obtained from the Taylor expansion of the function ez around z0 = 0
taking z = ihκ|x−k|. Next we approximate the integral

∫
[−1,1]2

(ϕ1,1
0 (x)/|x−k|) dx

as in [18] by using Duffy’s transformation of coordinates [9]

u1 → v1, u2 → v1v2 .

This substitution transforms the triangle with corners (0, 0), (1, 0), (1, 1) into the
rectangle with corners (0, 0), (0, 1), (1, 1), (1, 0) and integrands with square-root
singularities at (0, 0) into smooth integrands. This leads to the representation

B0,N
(0,0) = h3

∫
[0,1]2

8
(1− t)(1− st)√

(1 + s2)
ds dt .

Similar representations for B0,N
(1,0), B

0,N
(1,1) are in [18, 19].

Our Galerkin methods and collocation methods define bilinear forms on the
piecewise constant functions or the piecewise bilinear functions, respectively.

For L,M ∈ N we define discretized Galerkin and collocation methods by the
introduction of matrices qκ,L,M,N given by

(2.13) qκ,L,M,N
k,k′ := h3CSP (g|k1−k′1|,|k2−k′2|) if |k1 − k′1| ≤ L and |k2 − k′2| ≤ L .

The functions gk were already defined for k ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. For
other values of k, we define

(2.14) gk(x1, x2)

:= (1− x1)(1− x2)
( 2∑
m=1

2∑
n=1

Φ((x1 + (−1)mk1, x2 + (−1)nk2), 0)
)
.

Then by double symmetrization it is easy to see that the identity

(2.15) (V0ϕ
N,0
k , ϕN,0k′ ) =

1∫
0

1∫
0

gk−k′(x1, x2) dx1 dx2

holds.
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If |k1 − k′1| > L or if |k2 − k′2| > L then the matrix elements qκ,L,M,N
k,k′ are

defined simply by

(2.16) qκ,L,M,N
k,k′ := h3Φ((|k1 − k′1|, |k2 − k′2|), hκ) = h3 e

ihκ|k−k′|

|k − k′|
.

This approximation is found by application of the midpoint rule to the matrix
elements (Vκϕ

N,0
k , ϕN,0k′ ), given by (2.8). It will be proved that it coincides with

the first term of the asymptotic expansion of that integral for |k − k′| → ∞.
Our discretized Galerkin schemes will be defined by the linear systems

(2.17)
∑

k∈ωN,0

γκk q
κ,L,M,N
k,k′ = h2f(xNk′), for k′ ∈ ωN,0 ,

which in the case of existence lead to the solution uκN :=
∑
k∈ωN,0 γκkϕ

N,0
k . Here

we use the midpoint formula for approximation of the right-hand side. We define
our discretized Galerkin method for functions f ∈ H2+ε(Ω) for ε > 0, which
implies continuous differentiability of f .

The discretized collocation schemes are introduced by the linear systems

(2.18)
∑

k∈ωN,1

N2%κkq
κ,L,M,N
k,k′ = f(xNk′), for k′ ∈ ωN,1 ,

which in the case of existence leads to the solution

vκN :=
∑

k∈ωN,0

%κkϕ
N,1
k .

3. Consistency. In this section we prove consistency estimates for the ma-
trix elements of the discretized Galerkin and collocation methods introduced in
Section 2.

Let us introduce the notation

d(k) := min
x∈[−1,1]2

|x− k| .

Lemma 3.1. If L > 1, k ∈ N2
0, k1 > L or k2 > L and h > 0, κI ≥ 0,

x ∈ [−1, 1]2 then the following estimate holds:∣∣∣ ∫
[−1,1]2

(Φ(x− k, hκ)− Φ(k, hκ))ϕ1,1
0 (x) dx

∣∣∣(3.1)

=
∣∣∣ ∫
[−1,1]2

Φ(x− k, hκ)ϕ1,1
0 (x) dx− Φ(k, hκ)

∣∣∣
≤ h2|κ|2

24d(k)
+

h|κ|
12d2(k)

+
1

12d3(k)
.
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P r o o f. The following representation holds for the partial derivatives of Φ:

∂Φ(x, hκ)
∂x1

(x) =
ihκ|x| − 1
|x|2

x1Φ(x, hκ) ,

∂2Φ(x, hκ)
∂x2

1

(x) =
−h2κ2x2

1|x|2 − 2ihκx2
1|x|+ ihκx2

2|x|+ 2x2
1 − x2

2

|x|4
Φ(x, hκ) ,

∂2Φ(x, hκ)
∂x1∂x2

(x) =
(−h2κ2|x|2 − 2ihκ|x|+ 2)x1x2 − (ihκ|x| − 1)x1x2

|x|4
Φ(x, hκ) .

By Taylor’s expansion of Φ(x− k, hκ) around x = 0 we obtain∫
[−1,1]2

Φ(x− k, hκ)ϕ1,1
0 (x) dx =

∫
[−1,1]2

Φ(k, hκ)ϕ1,1
0 (x) dx

+
∫

[−1,1]2

k1x1
ihκ|k| − 1
|k|2

Φ(k, hκ)ϕ1,1
0 (x) dx

+
∫

[−1,1]2

k2x2
ihκ|k| − 1
|k|2

Φ(k, hκ)ϕ1,1
0 (x) dx

+
1
2

∫
[−1,1]2

1∫
0

xTD2Φ(ϑx− k, hκ)x dϑϕ1,1
0 (x) dx ,

where xT is the transpose of x, and D2Φ(x) is the matrix defined by

(3.2) D2Φ(x) =

(
∂2Φ
∂x2

1
(x) ∂2Φ

∂x1∂x2
(x)

∂2Φ
∂x1∂x2

(x) ∂2Φ
∂x2

2
(x)

)
.

Taking into account∫
[−1,1]2

ϕ1,1
0 (x) dx = 1,

∫
[−1,1]2

x1ϕ
1,1
0 (x) dx = 0 =

∫
[−1,1]2

x2ϕ
1,1
0 (x) dx

we get∣∣∣ ∫
[−1,1]2

Φ(x− k, hκ)ϕ1,1
0 (x) dx− Φ(k, hκ)

∣∣∣
≤ 1

2

∫
[−1,1]2

1∫
0

|xTD2Φ(ϑx− k, hκ)x| dϑϕ1,1
0 (x) dx .

So the essential point that the linear term in the Taylor remainder vanishes after
integration comes out. By the explicit representation of the second derivatives,
the asymptotic behaviour as k →∞ of the left-hand side of (3.1) is obvious. The
constants are estimated in [19].
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An estimate of the error ‖A(κ,N) − qκ,L,M,N‖∞ will be derived later with the
help of the following lemma.

Lemma 3.2. There are non-negative constants C1, C2, C3, C4 such that for all
N,L ∈ N, h = 1/N , κI ≥ 0, N > L ≥ 2, the following estimate holds:

(3.3)
∑

k∈[−2N,2N ]2\[−L,L]2

∣∣∣ ∫
[−1,1]2

Φ(x− k, hκ)ϕ1,1
0 (x) dx− Φ(k, hκ)

∣∣∣
≤ C1h

2|κ|2 lnN + C2h|κ| lnN

+ C3h
|κ|

2(L− 1)
+ C4h|κ|2 +

1
(L− 1)2

+
π

6(L− 1)
.

P r o o f. From Lemma 3.1 we get∑
k∈[−2N,2N ]2\[−L,L]2

∣∣∣ ∫
[−1,1]2

Φ(x− k, hκ)ϕ1,1
0 (x) dx− Φ(k, hκ)

∣∣∣
≤

∑
k∈[−2N,2N ]2\[−L,L]2

(
h2|κ|2

24d(k)
+

h|κ|
12d2(k)

+
1

12d3(k)

)
.

This sum can be estimated by comparison with an integral over a domain with
diameter growing with N . Because of

N∫
1

π/2∫
0

r−nr dα dr = O(N2−n), N →∞ ,

the formula comes out. Again, a more detailed proof with determination of con-
stants is presented in [19].

In the next lemma we state an estimate of |(VκϕN,0k , ϕN,0k′ ) − qκ,L,M,N
k,k′ | for

given k − k′ ∈ [−L,L]2.

Lemma 3.3. For N,L ∈ N, h = 1/N , κI ≥ 0, N > L > 1, the following
estimates hold.

(i) If k − k′ ∈ [−L,L]2\[−1, 1]2 then

(3.4) |(VκϕN,0k , ϕN,0k′ )−qκ,L,M,N
k,k′ | ≤ h4|κ|+ 3h3

20M4d5(k − k′)
+

h3

10M4d4(k − k′)
.

(ii) If k = k′ then

(3.5) |(VκϕN,0k , ϕN,0k )− qκ,L,M,N
k,k | ≤ h4|κ|+ h3

12M4
.

(iii) If k − k′ ∈ [−1, 1]2, k 6= k′ then

(3.6) |(VκϕN,0k , ϕN,0k′ )− qκ,L,M,N
k,k′ | ≤ h4|κ|+ h3

9M4
.
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P r o o f o f (i). First we compare the matrix elements corresponding to the sin-
gle layer operator of the Helmholtz equation with their analogues for the Laplace
equation:

|(VκϕN,0k , ϕN,0k′ )− (V0ϕ
N,0
k , ϕN,0k′ )| ≤ h3

∫
[−1,1]2

ϕ1,1
0 (x)

∣∣∣∣eihκ|x−k+k′| − 1
|x− k + k′|

∣∣∣∣ dx
= h3

∫
[−1,1]2

ϕ1,1
0 (x)

∣∣∣ 1∫
0

ihκeiϑhκ|x−k+k′| dϑ
∣∣∣ dx

≤
∫

[−1,1]2

ϕ1,1
0 (x)h4|κ| dx = h4|κ| .

We used the fact that the argument of the exponential function above always has
non-positive real part.

So it is sufficient to estimate the error coming from the “static part”
|(V0ϕ

N,0
k , ϕN,0k′ ) − q0,L,M,N

k,k′ |, taking into account that we defined q0,L,M,N
k,k′ =

qκ,L,M,N
k,k′ under the given restrictions on the values of k and k′.

The following inequalities have been proved in [18, Lemma 3.3]:

|(V0ϕ
N,0
k , ϕN,0k )− q0,L,M,N

k,k | ≤ h3

12M4
, |(V0ϕ

N,0
k , ϕN,0k′ )− q0,L,M,N

k,k′ | ≤ h3

9M4
;

the latter holds under the assumption k − k′ ∈ [−1, 1]2, k 6= k′.

If k − k′ 6∈ [−1, 1]2 then it is easily derived from [18, Lemma 3.2] that

|(V0ϕ
N,0
k , ϕN,0k′ )− q0,L,M,N

k,k′ | ≤ h3

1440M4
4
(

54
d5(k − k′)

+
36

d4(k − k′)

)
(3.7)

=
3h3

20M4d5(k − k′)
+

h3

10M4d4(k − k′)
.

The proofs of the lemmas cited used the well-known error estimate for the
composite Simpson product formula [8, p. 45/46], [30],∣∣∣ 1∫

0

1∫
0

g(x, y) dx dy − CSP(g)
∣∣∣ ≤ ‖∂4g/∂x4‖∞ + ‖∂4g/∂y4‖∞

2880M4
,

which is available for g ∈ C4([0, 1]2). The asymptotic correctness of the error
estimate (3.7) when |k−k′| tends to infinity already follows from the observation
that the fourth derivatives with respect to x of the restriction to [0, 1]2 of the
function ϕ1,1

0 (x)/|x− k + k′| are of order d−4(k − k′).

Lemma 3.4. If N,L ∈ N, h = 1/N , κI ≥ 0, N > L > 1, then

(3.8)
∑

k∈[−L,L]2

|(VκϕN,0k , ϕN,00 )− qκ,L,M,N
k,0 | ≤ 4(L− 1)2h4|κ|+ 5.1

h3

M4
.
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P r o o f. The methods of the foregoing result can be used to prove the lemma,
see [19].

After these preparations we are in a position to estimate the difference of
the matrices Aκ,N defined by (2.8) and the matrices of our discretized methods
qκ,L,M,N , which are defined by (2.13) and (2.16) measured in the ‖ · ‖∞-norm. In
[14] the authors used the Schur norm to prove consistency of the matrix elements
for one-dimensional problems.

Theorem 3.5. There is a constant C > 0 such that for all N,L ∈ N, h = 1/N ,
κI ≥ 0, the following consistency estimate holds:

‖A(κ,N) − qκ,L,M,N‖∞ ≤ C(h5|κ|2 lnN + h4|κ| lnN + h4|κ|(L− 1)2)(3.9)

+ h3

(
1

2(L− 1)2
+

π

6(L− 1)

)
+ 5.1

h3

M4
.

P r o o f. Here we extend the definition of Aκ,Nk,k′ − qκ,L,M,N
k,k′ to k ∈ Z2 and

k′ ∈ Z2 by means of the right-hand sides of (2.8), (2.16), respectively. Because of

Aκ,Nk,k′ − q
κ,L,M,N
k,k′ = (Vκϕ

N,0
|k−k′|, ϕ

N,0
0 )− qκ,L,M,N

|k−k′|,0

it follows by the substitution k′ → k′′ = k − k′ that

‖A(κ,N) − qκ,L,M,N‖∞ = max
k∈[−N,N ]2

∑
k′∈[−N,N ]2

|Aκ,N|k−k′|,0 − q
κ,L,M,N
|k−k′|,0 |

= max
k∈[−N,N ]2

k1+N∑
k′′1 =k1−N

k′′2 +N∑
k′′1 =k2−N

|Aκ,N(|k′′1 |,|k
′′
2 |),0
− qκ,L,M,N

(|k′′1 |,|k
′′
2 |),0
|

≤
∑

k′′∈[−2N,2N ]2

|Aκ,N(|k′′1 |,|k
′′
2 |),0
− qκ,L,M,N

(|k′′1 |,|k
′′
2 |),0
| .

Using the estimates of Lemmas 3.3 and 3.4 we obtain the final result (3.9).

R e m a r k. Theorem 3.5 demonstrates that for a given wave number κ satis-
fying κI ≥ 0, there are absolute constants C1, C2 and C3 such that

(3.10) ‖A(κ,N) − qκ,L,M,N‖∞ ≤ C1
h3

M4
+ C2

h3

L− 1
+ C3h

4L2.

So given ε > 0 arbitrarily small we can (by choosing L and M sufficiently large)
have the estimate

‖A(κ,N) − qκ,L,M,N‖∞ ≤ εh3

for sufficiently small h. This was proved in the case κ = 0 in [18] to be sufficient
to get convergence of the fully discretized scheme. The same will be proved for
general κ in Sections 4 and 5.
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4. Stability. We reduce the question of invertibility of the matrices of the
discretized methods to the invertibility of the matrices of the Galerkin scheme by
a perturbation argument. The invertibility of the Galerkin matrices for all κI ≥ 0
and all N ∈ N will be proved as well. The latter result was derived in [13]. We
need some estimates for the inverses of the Galerkin matrices.

Lemma 4.1. Denote by ‖ · ‖ any vector norm in Cn; by the same symbol we
denote a compatible matrix norm in C(n,n). If A is an invertible n × n matrix
then

(4.1) ‖A−1‖−1 ≥ inf
0 6=x∈Cn

|(Ax, x)|
‖x‖2

.

P r o o f. By the definition of a compatible matrix norm, the Cauchy–Schwarz
inequality and the substitution y = Ax we obtain

‖A−1‖ = sup
y 6=0

‖A−1y‖
‖y‖

= sup
y 6=0

‖A−1y‖2

‖A−1y‖ ‖y‖

≤ sup
y 6=0

‖A−1y‖2

|(A−1y, y)|
=
(

inf
y 6=0

|(A−1y, y)|
‖A−1y‖2

)−1

=
(

inf
x6=0

|(x,Ax)|
‖x‖2

)−1

.

The following theorem contains estimates for the inverse norm of the Galerkin
matrices for wave numbers κ which satisfy κI ≥ 0. This result was proved in [18,
Lemma 4.2] in the special case κ = 0.

Theorem 4.2. (i) If κI ≥ 0 then the matrices A(κ,N) are invertible for all
N ∈ N.

(ii) If κ = 0 then

(4.2) ‖(A(κ,N))−1‖−1
2 ≥ π

5
h3 .

(iii) If κI > 0 then

(4.3) ‖(A(κ,N))−1‖−1
2 ≥ κI

|κ|
min

(
1,

1
|κ|

)
π

5
h3 .

(iv) If κR 6= 0, κI = 0 then

(4.4) ‖(A(κ,N))−1‖−1
2 ≥ min

(
1,

1
|κR|

)
π

5
√

2
h3 .

P r o o f. By [16, Lemma 3.1] the Fourier transform of Φ(x, κ) is given by

Φ̂(ξ, κ) =
2π√
|ξ|2 − κ2

and is holomorphic with respect to z = |ξ|, with branch points at z = ±κ;
moreover, it has positive real part for z ∈ R, κI > 0.
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By Lemma 4.1 we have for κI > 0

‖(A(κ,N))−1‖−1
2 ≥ inf

Σ
k∈ωN,0 |αk|2 6=0

|
∑
k,k′∈ωN,0 αkA

(κ,N)
k,k′ αk′ |∑

k∈ωN,0 |αk|2
.

By application of Plancherel’s formula to (2.8) twice and taking into account the
formula for Φ̂, we obtain, with vh =

∑
k∈ωN,0 αkϕ

N,0
k and Sh,0 = span{ϕN,0k |

k ∈ ωN,0},

‖(A(κ,N))−1‖−1
2 ≥ inf

vh 6=0,vh∈Sh,0

4πh2(Vκvh, vh)
〈vh, vh〉0

= 2πh2 inf
vh 6=0,vh∈Sh,0

∫
R2

(√
|ξ|2 − κ2

)−1|v̂h(ξ)|2 dξ
‖vh‖20

The latter term was estimated in [18] for the case κ = i. Next, we reduce the case
of arbitrary κ to the known one κ = i.

If κI > 0 the following inequality is obtained from [13, Lemma 5, (4.2)] (under
a slightly different definition of the square root defining Φ̂):

Re
√
|ξ|2 − κ2 ≥ κI

|κ|
√
|ξ|2 + |κ|2 .

From the estimate above and the triangle inequality we obtain

Re
1√

|ξ|2 − κ2
≥ κI
|κ|

1√
|ξ|2 + |κ|2

≥ κI
|κ|

min
(

1,
1
|κ|

)
1√
|ξ|2 + 1

.

So for κI > 0 we proved

‖(A(κ,N))−1‖−1
2 ≥ 2πh2 κI

|κ|
min

(
1,

1
|κ|

)
inf

vh 6=0,vh∈Sh,0

∫
R2
|v̂h(ξ)|2√
|ξ|2+1

dξ

‖vh‖20

= 2πh2 κI
|κ|

min
(

1,
1
|κ|

)
inf

vh 6=0,vh∈Sh,0

‖vh‖2
H̃−1/2([−1,1]2)

‖vh‖20
.

The last term can be estimated when a constant C is determined such that the
inverse inequality

‖vh‖0 ≤
C√
h
‖vh‖H̃−1/2[−1,1]2

(vh ∈ Sh,0)

holds. In [18, Theorem 4.5, Corollary 4.1] it was proved by rough estimates that
the constant can be chosen to be

√
10. So in the case κI > 0 we showed that

the closure of the numerical range of A(κ,N), defined by {(A(κ,N)x, x)/(x, x) |
x ∈ Cn\{0}}, does not contain zero for any N ∈ N, which implies invertibility
of these matrices, stated in part (i) of the theorem. Furthermore, collecting the
above inequalities we have proved (4.3).
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(4.2) was proved in [18]; it remains to prove statement (iv) of the theorem.
We define

√
|ξ|2 − κ2

R so that it has real and positive values if |ξ|2 > κ2
R and we

define it by i
√
‖ξ|2 − κ2

R| if |ξ|2 < κ2
R. Then it follows with vh ∈ Sh,0 that∣∣∣∣ ∫

R2

|v̂h(ξ)|2√
|ξ|2 − κ2

R

dξ

∣∣∣∣ =
1√
2

(∣∣∣∣ ∫
R2

Re
|v̂h(ξ)|2√
|ξ|2 − κ2

R

dξ

∣∣∣∣+
∣∣∣∣ ∫

R2

Im
|v̂h(ξ)|2√
|ξ|2 − κ2

R

dξ

∣∣∣∣)

≥ 1√
2

( ∫
|ξ|2>κ2

R

|v̂h(ξ)|2√
|ξ|2 − κ2

R

dξ +
∫

|ξ|2<κ2
R

|v̂h(ξ)|2√
‖ξ|2 − κ2

R|
dξ

)

≥ 1√
2

min
(

1,
1
|κR|

) ∫
R2

|v̂h(ξ)|2√
|ξ|2 + 1

dξ .

The rest of the proof of (4.4) runs along the lines of the proof of (iii).

We shall use Banach’s fixed point principle in finite-dimensional spaces to
prove invertibility criteria for the matrices defined by the discretized Galerkin
method. The following result is well known:

Lemma 4.3. If

(4.5) ‖A(κ,N) − qκ,L,M,N‖∞ < ‖(A(κ,N))−1‖−1
2 ,

then the matrix qκ,L,M,N is invertible.

We now state sufficient conditions for invertibility of our discretized Galerkin
and collocation schemes.

Theorem 4.4. (i) If L ≥ 3 and M ≥ 3 the matrices q0,L,M,N are invertible
for all N ∈ N.

(ii) If κI ≥ 0 then there exist integers L(κ),M(κ) such that there is an integer
N(κ) such that for all L,M,N ∈ N, L ≥ L(κ), M ≥ M(κ), N ≥ N(κ) the
matrices qκ,L,M,N are invertible.

P r o o f o f (i). In Theorem 3.5 we proved

‖A(0,N) − q0,L,M,N‖∞ ≤ h3

(
1

2(L− 1)2
+

π

6(L− 1)

)
+ 5.1

h3

M4
.

By (4.2) and Lemma 4.3, to guarantee the invertibility of q0,L,M,N it is sufficient
to find L and M such that

(4.6) h3

(
1

2(L− 1)2
+

π

6(L− 1)

)
+ 5.1

h3

M4
<
π

5
h3 .

It is easily checked that one can take L = 3 = M . The proof of (ii) is analogous.

R e m a r k. The factor of h4 in equation (3.10) grows with L2, so that one
should choose L as small as possible to ensure stability for not too small num-
bers h.
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5. Error estimates. We shall present a result on quasi-optimal convergence of
the discretized Galerkin and collocation methods. We need the following prepara-
tory lemma.

Lemma 5.1. If there are constants 0 < C1 < C2 such that the sequences of
matrices qκ,L,M,N and A(κ,N) satisfy

(5.1) ‖A(κ,N) − qκ,L,M,N‖∞ ≤ C1h
3

and

(5.2) inf
06=x∈C4N2

|(A(κ,N)x, x)|
‖x‖2

> C2h
3

(here 4N2 is the number of elements in ωN,0), then for all ε > 0 and for all
x ∈ C4N2

,

(5.3) |(A(κ,N)x, x)| ≤
(

C2

C2 − C1
+ ε

)
|(q(κ,L,M,N)x, x)| .

P r o o f. We estimate the bilinear forms of the matrices in question for any
vector x ∈ C4N2

:∣∣∣∣(( C2

C2 − C1
+ ε

)
q(κ,L,M,N)x, x

)∣∣∣∣− |(A(κ,N)x, x)|

=
∣∣∣∣( C2

C2 − C1
+ ε

)
((q(κ,L,M,N) −A(κ,N))x, x)

+
(

C2

C2 − C1
+ ε

)
(A(κ,N)x, x)− (A(κ,N)x, x)

∣∣∣∣
≥
∣∣∣∣( C2

C2 − C1
+ ε− 1

)
(A(κ,N)x, x)

∣∣∣∣
−
(

C2

C2 − C1
+ ε

)
|((q(κ,L,M,N) −A(κ,N))x, x)|

≥
∣∣∣∣( C2

C2 − C1
+ ε− 1

)
(A(κ,N)x, x)

∣∣∣∣
−
(

C2

C2 − C1
+ ε

)
‖q(κ,L,M,N) −A(κ,N)‖2(x, x)

≥
((

C2

C2 − C1
+ ε− 1

)
C2h

3 −
(

C2

C2 − C1
+ ε

)
C1h

3

)
(x, x)

= εh3(x, x) ≥ 0 .

Next we present our main result:

Theorem 5.2. There are integers L(κ),M(κ) such that the discretized Galer-
kin equations (2.17) and the discretized collocation equations (2.18) are uniquely
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solvable for sufficiently large N and there is a constant C > 0 such that for any
function f ∈ H2+ε(Ω) and any 0 < ε < 1

2 we have the error estimates

‖uκ − uκN‖H̃1/2(Ω)
≤ Ch1/2−ε‖f‖H2+ε(Ω) ,(5.4)

‖vκ − vκN‖H̃1/2(Ω)
≤ Ch1/2−ε‖f‖H2+ε(Ω) .(5.5)

P r o o f. From the proof of Theorem 4.4 it follows that we can choose num-
bers M(κ), L(κ) such that the assertions of Lemma 5.1 are satisfied for suf-
ficiently large N ≥ N(κ). On the space Sh,0 of piecewise constant functions
wh =

∑
k∈ωN,0 αkϕ

N,0
k we define the sesquilinear form (Qκ,L,M,Nwh, wh) associ-

ated with qκ,L,M,N by

(Qκ,L,M,Nwh, wh) :=
∑

k,k′∈ωN,0

αkq
κ,L,M,N
k,k′ αk′ .

There is a constant C1 > 0 such that the functions uκN =
∑
k∈ωN,0 γκkϕ

N,0
k defined

by equation (2.17) and uκh =
∑
k∈ωN,0 ακkϕ

N,0
k defined by (2.5) satisfy

‖uκN − uκh‖2H̃−1/2(Ω)
≤ 2π(Vκ(uκh − uκN ), uκh − uκN )

≤ C1(Qκ,L(κ),M(κ),N (uκh − uκN ), uκh − uκN ) .

Using (2.5), (2.17) we obtain

(Qκ,L(κ),M(κ),N (uκh − uκN ), uκh − uκN )

= (Qκ,L(κ),M(κ),N (uκh − uκN ), uκh)−
∑

k∈ωN,0

(ακk − γκk )N2f(xk)

= (Qκ,L(κ),M(κ),N (uκh − uκN ), uκh)− (Vκ(uκh − uκN ), uκh)

+ (f, uκh − uκN )−
∑

k∈ωN,0

((ακk − γκk )N2f(xk)) .

We estimate the first term as in [18]:

|(Qκ,L(κ),M(κ),N (uκh, u
κ
h − uκN )− (V uκh, u

κ
h − uκN ))|

≤ C2‖A(κ,N) −Qκ,L(κ),M(κ),N‖2‖uκh‖0‖uκh − uκN‖0h−2

≤ C2‖A(κ,N) −Qκ,L(κ),M(κ),N‖∞‖uκh‖0‖uκh − uκN‖0h−2

≤ C3h
3‖uκh − uκN‖H̃−1/2(Ω)

h−1/2‖uκh‖H−ε(Ω)h
−εh−2 .

This holds with constants C2, C3 independent of h. Here we used again the equiv-
alence (up to the factor of h) of the L2-norm to its discrete version and the inverse
inequality. By these methods, the Cauchy–Schwarz inequality and the result in
[5, Lemma 3.7], which carries over to piecewise constant trial functions, we get,
with other constants C4, C5,
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|(f, uκh − uκN )−
∑

k∈ωN,0

((ακk − γκk )N2f(xk))|

≤
√ ∑
k∈ωN,0

|ακk − γκk |2
√ ∑
k∈ωN,0

|(ϕN,0k , f)−N2f(xNk )|2

≤ C4h
−1‖uκh − uκN‖0‖f‖H2+ε(Ω)h

2

≤ C5h
1/2‖uκh − uκN‖H̃−1/2(Ω)

‖f‖H2+ε(Ω) .

So we have proved

‖uκN − uκh‖2H̃−1/2(Ω)
≤ C3h

1/2−ε‖uκh − uκN‖H̃−1/2(Ω)
‖uκh‖H−ε(Ω)

+ C5h
1/2‖uκh − uκN‖H̃−1/2(Ω)

‖f‖H2+ε(Ω) .

We divide this inequality by ‖uκh − uκN‖H̃−1/2(Ω)
to get

‖uκh − uκN‖H̃−1/2(Ω)
≤ C3h

1/2−ε‖uκh‖H−ε(Ω) + C5h
1/2‖f‖H2+ε(Ω) .

By a standard trick [26], [18, p. 16], [5, p. 12] it can be proved that there is a
constant C6 such that

‖uκh‖H−ε(Ω) ≤ C6‖uκ‖H−ε(Ω) .

Because of the invertibility of Vκ : Hε(Ω)→ H1+ε(Ω) and the continuous imbed-
ding of H2+ε(Ω) into H1+ε(Ω) there is a constant C7 such that

‖uκh‖H−ε(Ω) ≤ C7‖f‖H2+ε(Ω) .

Collecting of all the estimates we obtain (5.4).
On the space Sh,1 of piecewise bilinear functions zh =

∑
k∈ωN,1 βkϕ

N,1
k we

define the bilinear form (Qκ,L,M,N
c zh, zh) associated with qκ,L,M,N by

(Qκ,L,M,N
c zh, zh) :=

∑
k,k′∈ωN,1

βkq
κ,L,M,N
k,k′ βk′ .

The proof of the convergence of the discretized collocation solutions runs along
the same lines as the one for the discretized Galerkin solutions. The essential fact
we need is the convergence of the collocation solutions vκh defined by (2.6), which
is proved in [4] (see also [5]). In particular, the existence of a constant C8 > 0
such that

|(Vκzh, zh)| ≤ C8h
2

∑
k,k′∈ωN,1

βk(Vκϕ
N,1
k )(xN,1k′ )βk′

holds for all zh =
∑
k∈ωN,1 βkϕ

N,1
k ∈ Sh,1 was obtained in [4, 5]. From this and

Lemma 5.1 we obtain the estimate

‖vκh − vκN‖2H̃1/2(Ω)
≤ C8|(Qκ,L,M,N

c (vκh − vκN ), vκh − vκN )| .
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From (2.6) and (2.18) we obtain a constant C9 such that

|(Qκ,L,M,N
c (vκh − vκN ), vκh − vκN )|

=
∣∣∣(Qκ,L,M,N

c (vκh − vκN ), vκh)−
∑

k,k′∈ωN,1

(βκk − %κk)h2(Vκϕ
N,1
k )(xN,1k′ )%k′

∣∣∣
≤ C9‖vκh − vκN‖H̃−1/2(Ω)

‖vκh‖H−ε(Ω) ,

taking into account the consistency of the matrices in the last inequality. By the
same trick we used above, we finally obtain (5.5).

6. Numerical results. Some results for the capacity of the square plate
[−1, 1]2 found by our discretized Galerkin and collocation methods are presented.
We have chosen the parameters to be L = 3 = M. Let us point out that our
aim was not to improve the methods to approximate the true solution. Indeed,
our results are worse than the results given in [11, 12, 20] found by mesh refine-
ment. Our main interest was to state and prove error estimates for the discretized
Galerkin and collocation methods by use of the midpoint formula, which reduces
computational work.

In the following tables we list, in the first column, the number N of partitions
of [0, 1], in the second column the capacity C0

N :=
∫

[−1,1]2
u

(0)
N (x) dx determined by

our discretized Galerkin method, in the third column we present the values CN we
derived in [18] by a discretized Galerkin method of high accuracy. The error terms
we gave in brackets stem from analytical a posteriori results and determine the
intervals where the capacities determined by the true Galerkin solutions are. In
the fourth column we list the experimental convergence rate α, which is defined by

α := ln
0.7335− C0

N

0.7335− C0
N+1

(
ln
N + 1
N

)−1

.

Here we use the extrapolated value 0.7335 for the capacity used in [11, 12, 20]. The
theoretical value for this convergence rate is 1− ε. The first table was calculated
by discretized Galerkin’s method using piecewise constant elements.

N C0
N CN α

1 0.67266 0.67267 ± 0.00064 −
2 0.69995 0.69995 ± 0.00041 0.85
3 0.71042 0.70993 ± 0.00030 0.92
4 0.71595 0.71531 ± 0.00024 0.95
5 0.71937 0.71868 ± 0.00020 0.97
6 0.72169 0.72099 ± 0.00018 0.98
7 0.72337 0.72268 ± 0.00016 0.99
8 0.72464 0.72396 ± 0.00014 1.00



DIRICHLET SCREEN PROBLEMS 133

In the next table we calculated CN,c =
∫

[−1,1]2
v

(0)
N (x) dx determined by our dis-

cretized collocation method with piecewise bilinear trial functions collocating at
the nodes.

N CN,c α

1 0.33633 −
2 0.51846 0.88
3 0.58851 0.97
4 0.62436 0.98
5 0.64605 0.99
6 0.66057 1.00
7 0.67097 1.00
8 0.67879 1.00
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und Approximation mit Randelementmethoden, Dissertation, Darmstadt 1989.
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