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Among the applications of orthogonal polynomials described briefly on my
previous visit to this Center [9, §3.2] were slowly convergent series whose terms
could be represented in terms of the Laplace transform at integer arguments. We
proposed to sum such series by means of Gaussian quadrature rules applied to
suitable integrals involving weight functions of Einstein and Fermi type (cf. [13]).
In the meantime it transpired that the technique is applicable to a large class
of numerical series and, suitably adapted, also to power series and Fourier series
of interest in plate problems. In the following we give a summary of these new
applications and the contexts in which they arise.

1. Spirals and series. Our first class of series may well have its roots in pre-
Archimedean mathematics. The series arise in connection with a discrete spiral
whose vertices vn are at a distance

√
n+ 1 from the origin,

(1.1) dist(vn, 0) =
√
n+ 1 , n = −1, 0, 1, 2, . . . ,

and at a distance 1 from one another,

(1.2) dist(vn, vn−1) = 1, n = 0, 1, 2, . . .

Feeling that this spiral deserves a classical name, P. J. Davis [5] has called it
the discrete spiral of Theodorus, in remembrance of the 4th century B.C. math-
ematician Theodorus of Cyrene, reputed to have proven the irrationality of the
square roots of all nonsquare integers up to 17. (The spiral is also known as
“Quadratwurzelschnecke” [14].) Davis poses the problem of “interpolating” to
the discrete spiral by a smooth — indeed analytic — spiral that would enjoy the
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basic distance properties (1.1), (1.2) in a continuous, rather than discrete, sense.
In other words, if v(α) is an analytic complex-valued function representing the
spiral, then, in analogy to (1.1) and (1.2), it should satisfy

(1.1′) |v(α)| =
√
α+ 1 , for all α > −1 ,

and

(1.2′) |v(α)− v(α− 1)| = 1 , for all α > 0 .

The problem is reminiscent of Christian Goldbach’s problem posed in his 1729
letter to Euler of interpolating to the factorials. Euler’s solution may well have
inspired Davis to provide a solution to the spiral problem in the form of an infinite
product,

(1.3) v(α) =
∞∏
k=1

1 + i/
√
k

1 + i/
√
k + α

, α > −1 (i =
√
−1) .

It is easily seen that this function satisfies (1.1′) and the recurrence formula

(1.4) v(α) =
(

1 +
i√
α

)
v(α− 1) , α > 0 ,

hence also (1.2′). Furthermore, if extended to the complex plane, v becomes an
analytic function of α. By simple manipulations, the spiral (1.3) can be written
in polar coordinates as (cf. [5, Supplement A])

(1.5)

v(α) = r(α) exp(iθ(α)) ,

r(α) =
√

1 + α , θ(α) =
1
2

α∫
0

∞∑
k=1

1
(k + α)3/2 + (k + α)1/2

dα .

The infinite product in (1.3) and the infinite series in (1.5), while both con-
verge, do not lend themselves to easy evaluation. It is slowly convergent series
exemplified by the one in (1.5) whose summation we wish to consider first. Specif-
ically, we will be dealing with series of the type

(1.6) S0 =
∞∑
k=1

kν−1r(k),

and their alternating companion series

(1.7) S1 =
∞∑
k=1

(−1)k−1kν−1r(k),

where ν is a real number between 0 and 1, and r a rational function,

(1.8) r(s) =
p(s)
q(s)

, deg p ≤ deg q .

We are ignoring, for the time being, the shift k 7→ k + α typical in the series of
(1.5), as well as the problem of subsequent integration. Both matters can be dealt
with easily, once the necessary formulae are in place.
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2. Summation by integration. There are many ways of transforming a
series into an integral. Here we use the Laplace transform,

(2.1) (Lf)(s) =
∞∫
0

e−stf(t) dt ,

assuming that the general term, ak, of the series can be represented as the Laplace
transform of some function, f , evaluated at the integer k,

(2.2) ak = (Lf)(k) , k = 1, 2, 3, . . .

One then gets
∞∑
k=1

ak =
∞∑
k=1

∞∫
0

e−ktf(t) dt =
∞∫
0

f(t)e−t
∞∑
k=1

e−(k−1)t dt =
∞∫
0

f(t)
t
· t

et − 1
dt .

The second factor in the last integral is known, in solid state physics, as Einstein’s
function,

(2.3) ε(t) =
t

et − 1
.

(It is, of course, also the generating function of the Bernoulli numbers.) Thus,

(2.4)
∞∑
k=1

ak =
∞∫
0

f(t)
t
ε(t) dt , ak = (Lf)(k) .

Entirely analogously, one finds for alternating series

(2.5)
∞∑
k=1

(−1)k−1ak =
∞∫
0

f(t)ϕ(t) dt , ak = (Lf)(k) ,

where

(2.6) ϕ(t) =
1

et + 1

is known as Fermi’s function. Since both functions ε and ϕ have strings of poles
along the imaginary axis, it will be convenient to treat them as weight functions
and to deal with the respective integrals in (2.4), (2.5) by means of weighted Gaus-
sian quadrature. This is basically the approach we are going to take to evaluate
the series S0, S1 in (1.6) and (1.7), respectively. The main problem is to identify
the function f in (2.2), which requires a little bit of special functions.

3. Special function theory. By a preliminary use of partial fraction expan-
sion, attention may be restricted to rational functions of the form

(3.1) r(s) =
1

(s+ a)m
, Re a ≥ 0 , Im a ≥ 0 , m ≥ 1 ,
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where the condition Re a ≥ 0 can be achieved, if necessary, by first summing a
few of the initial terms directly. We thus consider

(3.2) S0 =
∞∑
k=1

kν−1

(k + a)m
, S1 =

∞∑
k=1

(−1)k−1 kν−1

(k + a)m
.

Since both kν−1 and (k + a)−m are Laplace transforms of power functions
(multiplied by an exponential in the latter case), we can use the convolution
theorem to find the function f in the representation (2.2) for

(3.3) ak = kν−1 · (k + a)−m .

One finds, after a change of variables,

f(t) =
tm−νe−at

(m− 1)!Γ (1− ν)

1∫
0

eatu(1− u)m−1u−ν du .

The integral on the right relates the function f to a Kummer function M(α, β, z)
with parameters α = 1−ν, β = m+1−ν and variable z = at (cf. [1, Eq. 13.2.1]),

(3.4) f(t) = t1−νgm−1(t; a, ν) ,

where

(3.5) gn(t; a, ν) = gn(t) =
tne−at

Γ (n+ 2− ν)
M(1− ν, n+ 2− ν, at) , n = 0, 1, 2, . . .

The well-known recurrence relation relative to the second parameter in Kummer’s
function [1, Eq. 13.4.2] then yields

(3.6)
gn+1(t) =

1
n+ 1

{(
t+

n+ 1− ν
a

)
gn(t)− t

a
gn−1(t)

}
, n = 0, 1, 2, . . . ,

g−1(t) =
t−1

Γ (1− ν)
.

(It is assumed here that a 6= 0; similar, even simpler, formulae hold for a = 0.)
The only function we need to identify, therefore, is g0(t); it can be expressed [1,
Eq. 13.6.10] as

(3.7) g0(t; a, ν) = e−atγ∗(1− ν,−at)

in terms of Tricomi’s form of the incomplete gamma function [1, Eq. 6.5.4]

(3.8) γ∗(λ, z) =
z−λ

Γ (λ)

z∫
0

e−ttλ−1 dt ,

an entire function in both its variables. The functions gn(t), n = 0, 1, 2, . . . ,
therefore, are all entire functions of t.
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Of particular interest to us is the parameter value ν = 1/2 (cf. (1.5)), for
which Tricomi’s incomplete gamma function becomes Dawson’s integral [1, Eqs.
6.5.18, 7.1.17],

(3.9) F (z) = e−z
2

z∫
0

et
2
dt ,

and in terms of which

(3.10) g0

(
t; a,

1
2

)
=

2√
π

F (
√
at)√
at

.

The presence of the square roots on the right gives only the appearance of singular
behavior; in reality, they cancel out, since F is an odd function.

4. Summation formulae. We now combine the results of §§2, 3. The relation
(2.4), together with (3.3) and (3.4), yields

(4.1)
∞∑
k=1

kν−1

(k + a)m
=

∞∫
0

t−νε(t) · gm−1(t; a, ν) dt ,

where ε is given by (2.3) and the function gm−1 is computable via (3.6) and (3.7)
(resp. (3.10) if ν = 1/2). Likewise, (2.5) and (3.3), (3.4) give

(4.2)
∞∑
k=1

(−1)k−1 kν−1

(k + a)m
=

∞∫
0

t−νϕ(t) · tgm−1(t; a, ν) dt ,

with ϕ defined in (2.6). Since gm−1 is a smooth function of t — indeed an entire
function — it makes sense to evaluate the integrals in (4.1) and (4.2) by Gaus-
sian quadrature relative to the weight functions t−νε(t) and t−νϕ(t), respectively.
Although these are “nonclassical” weight functions, and the corresponding orthog-
onal polynomials therefore unknown, the required Gaussian quadrature rules can
be generated numerically by known methods (cf. [10]). For ν = 1/2, auxiliary
tables of recursion coefficients for the respective orthogonal polynomials can be
found in the Appendix to [11].

It is now easy to incorporate a shift in the summation index of the series (4.1),
(4.2). Indeed, a well-known property of the Laplace transform tells us that to a
translation k 7→ k + b in the variable k there corresponds a multiplication by an
exponential, f(t) 7→ e−btf(t), in the function f . Therefore, if we denote b+ a in
the denominator of the “shifted” series (4.1), (4.2) again by a, and adjust the
second parameter in gm−1 accordingly, we obtain

∞∑
k=1

(k + b)ν−1

(k + a)m
=

∞∫
0

t−νε(t) · e−btgm−1(t; a− b, ν) dt ,(4.1′)

∞∑
k=1

(−1)k−1 (k + b)ν−1

(k + a)m
=

∞∫
0

t−νϕ(t) · te−btgm−1(t; a− b, ν) dt .(4.2′)
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The first of these series, when ν = 1/2 and a = α+ 1, b = α, m = 1, becomes the
series in (1.5), so that

∞∑
k=1

1
(k + α)3/2 + (k + α)1/2

=
∞∫
0

t−1/2ε(t) · e−αtg0
(
t; 1,

1
2

)
dt(4.3)

=
2√
π

∞∫
0

t−1/2ε(t)e−αt
F (
√
t)√
t

dt ,

where (3.10) has been used to get the last expression. Integration with respect
to α, as required in (1.5), is now easily accomplished by integrating under the
integral sign in (4.3),

(4.4)
α∫

0

∞∑
k=1

1
(k + α)3/2 + (k + α)1/2

dα =
2α√
π

∞∫
0

t−1/2ε(t)
1− e−αt

αt

F (
√
t)√
t

dt .

The integral on the right is equally amenable to Gaussian quadrature as all the
integrals before, requiring only a little extra care in evaluating the third factor in
the integrand when αt is small.

5. Examples

Example 5.1. S0 =
∑∞
k=1 k

−1/2/(k + a)m, a > 0. For this series we apply
Gauss quadrature with weight function t−1/2ε(t) to the integral on the right
of (4.1) (where ν = 1/2) and use (3.10) together with (3.6) to evaluate gm−1.
Dawson’s integral F in (3.10) can be computed to up to 20 decimal places with
the help of known rational approximations [4]. It is found, for m = 1, that 20
correct decimal digits can be obtained, when a = .5, 1., 2., if one applies n-point
quadrature with respectively n = 15, 25, 35. As a increases, convergence slows
down; with n = 40, for example, one gets only about 12 correct digits for a = 4.,
and 7 for a = 8. Similar results are observed for m > 1.

The slowdown of convergence with increasing a has its reason in the behavior
of the function g0(t; a, 1/2) in (3.10), which as a→∞ approaches the discontin-
uous function equal to 2/

√
π at t = 0, and 0 for t > 0. It is possible, however,

to regain fast convergence, even for large values of a, if the series is “layered”
as follows. Let a0 = bac be the largest integer ≤ a, so that a = a0 + a1, where
0 ≤ a1 < 1. Then put k = λ + κa0 and carry out the summation by summing
over all κ = 0, 1, 2, . . . for each λ = 1, 2, . . . , a0. Thus,

(5.1) S0 =
a0∑
λ=1

∞∑
κ=0

(λ+ κa0)−1/2

(λ+ κa0 + a0 + a1)m

= a
−(m+1/2)
0

a0∑
λ=1

{ ∞∑
κ=1

(κ+ λ/a0)−1/2

(κ+ 1 + (λ+ a1)/a0)m
+

(λ/a0)−1/2

(1 + (λ+ a1)/a0)m

}
.

To the inner series we can now apply (4.1′) with the effective parameter in gm−1

being a− b = 1 + (λ+ a1)/a0 − λ/a0 = 1 + a1/a0 ≈ 1, and the parameter in the
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exponential, b = λ/a0 ≤ 1. Gauss quadrature now converges rapidly for each λ,
and it only remains to execute the finite summation over λ.

Example 5.2. S1 =
∑∞
k=1(−1)k−1k−1/2/(k + iα), α>0. Here, a = iα, ν = 1

2
and m = 1 in (4.2), and a simple computation gives

(5.2) g0

(
t; iα,

1
2

)
=

√
2
αt
e−iα

2t2
[
C

(√
2αt
π

)
+ iS

(√
2αt
π

)]
,

where C, S are the Fresnel integrals. They, too, can be computed to high accuracy
from rational approximations [3]. As is to be expected, Gauss quadrature in (4.2),
with weight function t−1/2ϕ(t), converges rapidly for α relatively small, but has
difficulty in converging when α becomes large. A device of stratified summation,
similar to the one in (5.1), however, is again applicable to restore fast convergence
for large α (for details, see [11]).

It should be pointed out that convergence acceleration algorithms, such as
the ε-algorithm, can be applied successfully to the series S1, but are ineffective
in the case of the series S0. An explanation for this [7] can be given on the basis
of Theorem 1 in [15, p. 127].

6. Series occurring in the theory of plates. The mathematical treatment
of contact problems for laterally loaded, unilaterally constrained square plates has
recently led to another class of series [6],

(6.1) Rp(z) =
∞∑
k=0

z2k+1

(2k + 1)p
, z ∈ C , |z| ≤ 1 , p = 2 or 3 ,

which are also slowly convergent when |z| is close, or equal, to 1. Since Rp(−z) =
−Rp(z) and Rp(z̄) = Rp(z), it suffices to consider the case where z is in the first
quadrant of the complex plane. The corresponding alternating series,

(6.2) Sp(z) =
∞∑
k=0

(−1)k
z2k+1

(2k + 1)p
, z ∈ C , |z| ≤ 1 , p = 2 or 3 ,

no longer gives anything new, since clearly

(6.3) Sp(z) = iRp(−iz) .

Values of z that are of particular interest in applications are

(6.4) z = A , 0 < A ≤ 1 and z = eiα , α ∈ R .

To the series in (6.1) we can again apply the technique of §2, with the slight
twist, however, that only the coefficient of the general term is expressed as a
Laplace transform, and the power of the variable is left as is. In other words, we
write

1
(k + 1/2)p

= (Lf)(k) , f(t) =
1

(p− 1)!
tp−1e−t/2 ,
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and transform Rp as follows:

Rp(z) =
z

2p

∞∑
k=0

z2k

(k + 1/2)p
=

z

2p

∞∑
k=0

z2k
∞∫
0

e−kt · t
p−1e−t/2

(p− 1)!
dt

=
z

2p(p− 1)!

∞∫
0

∞∑
k=0

(z2e−t)k · tp−1e−t/2 dt

=
z

2p(p− 1)!

∞∫
0

1
1− z2e−t

tp−1e−t/2 dt ,

that is,

(6.5) Rp(z) =
z

2p(p− 1)!

∞∫
0

tp−1et/2

et − z2
dt .

In the case z=1, there again emerges Einstein’s function ε(t) (cf. (2.3)), since

(6.6) Rp(1) =
1

2p(p− 1)!

∞∫
0

ε(t) · tp−2et/2 dt .

It is simpler, however, to make use of the known relationship with the Riemann
zeta function,

(6.6′) Rp(1) = (1− 2−p)ζ(p) .

More interesting is the case z 6= 1. The integral in (6.5), in this case, can
no longer be easily evaluated numerically, when |z| is close to 1, even if the
weight function ε(t) is pulled out, because a steep boundary layer near t = 0
prevents numerical integration from being effective. We instead make the change
of variables e−t 7→ t, and thus write Rp in the form

(6.7) Rp(z) =
1

2p(p− 1)!z

1∫
0

wp(t)
z−2 − t

dt ,

where

(6.8) wp(t) =
[ln(1/t)]p−1

√
t

, 0 < t ≤ 1 .

This expresses Rp(z) as a Stieltjes transform (evaluated at z−2) of the weight
function wp in (6.8). For Sp(z) in (6.2), the analogous result follows by using
(6.7) in (6.3),

(6.9) Sp(z) =
1

2p(p− 1)!z

1∫
0

wp(t)
z−2 + t

dt .

In effect, −Sp(z) is the Stieltjes transform of wp evaluated at −z−2. Since under
the assumption |z| ≤ 1, z 6= 1, both z−2 and −z−2 lie outside the interval [0, 1] on
which wp is supported, we can avail ourselves of powerful methods for evaluating
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the Stieltjes transform outside the support interval. These will be described in
the next section. Before doing so, however, we mention an alternative method of
computing Rp(z).

Boersma and Dempsey [2] recently observed that Rp(z) in (6.1) is Legendre’s
chi-function of order p and can be expanded in powers of log z. Specifically, for
p = 2, they obtain

R2(z) =
π2

8
+
∞∑
k=0

1− 2−(2k+1)

k + 1
(22kB2k+2)

(log z)2k+3

(2k + 3)!
(6.10)

+
1
2

log z [1 + log 2− log(− log z)] ,

where B2k+2 are the Bernoulli numbers. The series in (6.10) converges uniformly
for |log z| ≤ π, since

22kB2k+2 = O

(
(2k + 2)!
π2k+2

)
, k →∞ .

In particular, we have convergence for the first choice of z in (6.4) if

(6.11) e−π ≤ A ≤ 1 .

For the second choice, z = eiα, the real and imaginary parts of (6.10) yield, for
|α| ≤ π,

ReR2(eiα) =
π2

8
− π

4
|α| ,

ImR2(eiα) = −
∞∑
k=0

(−1)k
1− 2−(2k+1)

k + 1
(22kB2k+2)

α2k+3

(2k + 3)!
(6.12)

+
1
2
α(1 + log 2− log |α|) .

These expansions are particularly useful in the immediate neighborhood of z = 1
(cf. §8). Similar expansions hold for p=3, and indeed for arbitrary integers p ≥ 2
(cf. [2, Eqs. (2.4), (3.2)]).

7.Backward recurrence algorithm for Stieltjes transforms. Let w be
a positive weight function on [0, 1] (such as w = wp in (6.8)) and πn( · ;w) be
the (monic) nth-degree orthogonal polynomial relative to the weight function w.
It is well known that there exist constants αk = αk(w) ∈ R, βk = βk(w) > 0,
depending on the weight function w, such that {πk(z;w)} is a solution of the
three-term recurrence relation

(7.1) yk+1 = (z − αk)yk − βkyk−1 , k = 0, 1, 2, . . . ,

with initial values y0 = 1, y−1 = 0. Another solution is known to be

(7.2) %−1(z) = 1 , %k(z) =
1∫

0

πk(t;w)
z − t

w(t) dt , k = 0, 1, 2, . . .
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This indeed is a minimal solution of (7.1) if z is outside the interval [0, 1], i.e. (cf.
[8]),

(7.3) lim
k→∞

%k(z)
yk

= 0 , z ∈ C\[0, 1] ,

for any solution {yk} linearly independent of {%k(z)}. As minimal solution, the
%k are uniquely determined by one starting value, for example, %−1 = 1. Indeed,
to compute %n(z) for 0 ≤ n ≤ N , one has the following algorithm [8]: For any
ν > N , let

(7.4) r[ν]ν (z) = 0 , r
[ν]
n−1(z) =

βn

z − αn − r[ν]n (z)
, n = ν, ν − 1, . . . , 0 ,

where αn, βn are the coefficients in (7.1). Define

(7.5) %
[ν]
−1(z) = 1 , %[ν]

n (z) = r
[ν]
n−1(z)%[ν]

n−1(z) , n = 0, 1, . . . , N .

Then

(7.6) lim
ν→∞

%[ν]
n (z) = %n(z) , n = 0, 1, . . . , N , z ∈ C\[0, 1].

Now observe that

(7.7) %0(z) =
1∫

0

w(t)
z − t

dt

is the Stieltjes transform of w. It can therefore be computed by putting N = 0 in
(7.5), (7.6), i.e.,

(7.8) %0(z) = r
[∞]
−1 (z) = lim

ν→∞
r
[ν]
−1(z),

where r[ν]−1(z), for any ν, is obtained by backward recursion as in (7.4). The pro-
cedure is readily applied to Rp(z) in (6.7) and Sp(z) in (6.9). The argument z,
then, has to be replaced by z−2 and −z−2, respectively. For the z-values in (6.4)
of interest in applications, practical guidelines have been developed for choosing
ν in such a way that r[ν]−1(z−2) sufficiently approximates r[∞]

−1 (z−2) (cf. [12, §4]).

8.Numerical considerations. In the important case where z = A, 0 <
A ≤ 1 (cf. (6.4)), neither the backward recurrence algorithm (7.4), (7.8) applied
to (6.7), nor the series expansion (6.10) and similar expansions for p> 2, allow us
to evaluateRp(z) in the entire range of interest. The former method fails in the im-
mediate neighborhood of A = 1, the latter when A < e−π (cf. (6.11)). Combining
both methods, however, has the potential of yielding an effective procedure appli-
cable over the whole interval 0 < A ≤ 1, especially if a suitable separation point
A0 can be found such that backward recurrence is advantageous for 0 < A ≤ A0,
and series expansion for A0 < A ≤ 1. The experimental determination of such an
A0 is the subject of this section.
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We base our determination of the separation point A0 on the computational
work required to evaluate Rp(z) to a prescribed accuracy. More precisely, in
the case of the backward recurrence algorithm, for given ε > 0 and z, we first
determine the smallest integer ν such that |r[ν]−1(z−2)−r[ν−1]

−1 (z−2)| ≤ ε|r[ν]−1(z−2)|,
and then count the number of arithmetic operations required to evaluate Rp(z) ≈
r
[ν]
−1(z−2)/(2p(p − 1)!z) (cf. (6.7)) for this particular ν. We do the same for the

series in (6.10) (and the analogous series for p = 3), determining the smallest n
such that |sn(z)− sn−1(z)| ≤ ε|sn(z)|, where sn(z) is the partial sum from k = 0
to k = n. We consider one method preferable over the other if the computational
work so determined is less.

It is seen from (7.4) and (6.7) that backward recursion (with prescribed ν)
requires 3ν+6 operations (additions + multiplications). The nth partial sum sn(z)
for the series in (6.10), assuming that all required coefficients are precomputed
and Horner’s scheme is used to evaluate the sum, involves 2n+ 8 operations plus
2 logarithms. For the analogous series with p = 3, the count is 2n + 10 plus
2 logarithms.

For selected values of A, Table 8.1 illustrates the work required to obtain three
accuracy levels: relative errors ε of .5 × 10−12, .5 × 10−16 and .5 × 10−20. The
smallest integers ν and n (in the above discussion) achieving these accuracies
are shown in the columns headed “ν” and “n”, respectively. Next to them are
shown the corresponding number of arithmetic operations, where one logarithm
is assessed respectively 14, 16, 20 operations for the above three accuracy levels
(corresponding to standard rational approximations). It can be seen that for both
p = 2 and p = 3, backward recursion is about equally expensive as series expansion
when A = exp(−.05π), more expensive for larger values of A, and less expensive

Table 8.1. Computational work: backward recursion vs. series expansion

p = 2 p = 3
A

ν op n op ν op n op

e−.01π 25 81 2 40 21 69 1 40
34 108 3 46 30 96 2 46
43 135 4 56 39 123 3 56

e−.03π 15 51 3 42 13 45 2 42
20 66 4 48 19 63 3 48
26 84 5 58 24 78 4 58

e−.05π 12 42 3 42 11 39 3 44
16 54 5 50 15 51 4 50
20 66 6 60 19 63 5 60

e−.1π 9 33 4 44 8 30 4 46
11 39 6 52 11 39 6 54
14 48 8 64 13 45 7 64

e−.5π 4 18 16 68 3 15 14 66
5 21 22 84 4 18 20 82
6 24 26 100 5 21 25 100
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for smaller values of A, by a factor of about 4–5 when A = exp(−.5π). Thus, the
switchover point is A0 ≈ exp(−.05π) = .855.

For z = eiα, 0 ≤ α ≤ π/2, the partial sums of the series (6.12) and the
analogous series for p = 3 (again summed by Horner’s scheme with precomputed
coefficients) turn out to be more efficient, even away from α = 0, than backward
recursion (7.4), since the latter involves complex arithmetic.
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