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In this note we remark upon some relationships between the ideas of an ap-
proximation space and rough sets due to Pawlak ([9] and [10]) and algebras related
to the study of algebraic logic — namely, cylindric algebras, relation algebras, and
Stone algebras.

The paper consists of three separate observations. The first deals with the fam-
ily of approximation spaces induced by the indiscernability relation for different
sets of attributes of an information system. In [3] the family of closure operators
defining these approximation spaces is abstractly characterized as a certain type
of Boolean algebra with operators. An alternate formulation in terms of a general
class of diagonal-free cylindric algebras is given in 1.6. The second observation
concerns the lattice theoretic approach to the study of rough sets suggested by
Iwiński [6] and the result by J. Pomyka la and J. A. Pomyka la [11] that the col-
lection of rough sets of an approximation space forms a Stone algebra. Namely,
in 2.4 it is shown that every regular double Stone algebra is embeddable into the
algebra of all rough subsets of an approximation space. Finally, a notion of rough
relation algebra is formulated in Section 3 and a few connections with the study
of ordinary relation algebras are established.

1. Approximation algebras associated with information systems. An
information system in the sense of Pawlak [9] is a 4-tuple S = 〈U,Ω, V, f〉 where U
is a set, Ω is a finite set, V is a function with DomV = Ω and f : U →

∏
a∈Ω Va.
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Each set P ⊆ Ω determines an equivalence relation θP on U , the indiscernibility
relation for P , defined for x, y ∈ U by

xθP y ⇔ ∀a ∈ P (fx)a = (fy)a .

The relation θP induces a natural closure operation P on subsets of U by

P (A) =
⋃
{θPx : x ∈ A} for A ⊆ U .

P (A) is called the P -upper approximation of A. Using these closure operations
we form a Boolean algebra with operations

BS = 〈SbU,∪,∩,∼, ∅, U, P 〉P⊆Ω
called in [3] the knowledge approximation algebra of type Ω derived from the
information system S. The following definition was proposed in [3] to axiomatize
the class of algebras BS .

Definition 1.1. An algebra B = 〈B,+, ·,−, 0, 1, κP 〉P⊆Ω is a knowledge ap-
proximation algebra of type Ω if κP ∈ BB for each P ⊆ Ω and the following
axioms hold for all x, y ∈ B and P,Q ⊆ Ω:

(A0) 〈B,+, ·,−, 0, 1〉 is a complete atomic Boolean algebra,
(A1) κP 0 = 0,
(A2) κPx ≥ x,
(A3) κP (x · κP y) = κPx · κP y,
(A4) x 6= 0 implies κ∅x = 1,
(A5) κP∪Qx = (κPx) · (κQx) if x is an atom of B.

B is called reduced if κΩx = x for all x ∈ B. Note that BS is reduced if and
only if f is one-one.

The following result establishes a representation for knowledge approximation
algebras which shows the axioms in Definition 1.1 characterize the class of algebras
derived from information systems.

Theorem 1.2 ([3], Theorem 11). If B is a reduced knowledge approximation
algebra of type Ω with Ω finite, then B ∼= BS for some information system S.

Because the elements of BS can be interpreted as sets of Ω-sequences and
the operators P act like cylindrifications it has been suggested that Theorem 1.2
could be formulated in the language of cylindric algebras. The formulation below
was worked out with assistance and prompting by Don Pigozzi.

To formulate the result we need to generalize the notion of diagonal-free cylin-
dric algebra from 1.1.2 of HMT [5]. A complication arises because we need the gen-
eralized cylindrifications c(Γ ). However, since we drop the cylindric axiom (C4)
the usual definition of a generalized cylindrification does not give a well-defined
operation. For this reason the similarity type of our algebras includes an operation
for each subset of Ω.



INFORMATION SYSTEMS AND ROUGH SETS 119

Definition 1.3. An algebra B = 〈B,+, ·,−, 0, 1, cΓ 〉Γ⊆Ω is a strong noncom-
mutative diagonal-free CAΩ , strong NCDf Ω for short, if for all x, y ∈ B and for
all Γ ⊆ Ω,

(C0) 〈B,+, ·,−, 0, 1〉 is a Boolean algebra,
(C1) cΓ 0 = 0,
(C2) cΓx ≥ x,
(C3) cΓ (x · cΓ y) = cΓx · cΓ y,
(C′) c∅x = x.

In analogy with the representation theory for cylindric algebras we introduce
non-commutative diagonal-free set algebras by modifying 1.1.5 of HMT[5].

Definition 1.4. An algebra B = 〈B,∪,∩,∼, 0, 1, C(Γ )〉Γ⊆Ω is a strong NCDf Ω
set algebra if there exists a sequence of sets V = 〈Va : a ∈ Ω〉 such that B is a
nonempty subset of Sb(

∏
a∈Ω Va) which is closed under the Boolean operations,

contains 0 = ∅ and 1 =
∏
a∈Ω Va, and is closed under the generalized cylindrifi-

cation C(Γ ) for each Γ ⊆ Ω where

C(Γ )X =
{
y ∈

∏
a∈Ω

Va : ∃x ∈ X x|(Ω∼Γ ) = y|(Ω∼Γ )

}
.

Let B[Ω, V ] denote the full set algebra with universe Sb(
∏
a∈Ω Va) determined by

Ω and V .

Two other notions from HMT are needed — the notion of a relativized algebra
(cf. 2.2.1 of [5]) and the notion of a rectangular element (cf. 1.10.6 of [5]).

If B = 〈B,+, ·,−, 0, 1, cΓ 〉Γ⊆Ω is a strong NCDf Ω and b ∈ B, the relativized
algebra obtained from B and b is the algebra RlbB = 〈B′,+′, ·′,−′, 0′, 1′, c′x〉Γ⊆Ω
where B′ = {x · b : x ∈ B} and for x, y ∈ B, x +′ y = x + y, x ·′ y = x · y,
−′x = b · −x, 0′ = 0, 1′ = b, and c′xx = b · cΓx. In a similar way relativized
algebras of other types of systems can be defined.

The following example indicates the connection between a relativized set al-
gebra and the approximation algebra BS derived from an information system S.

Example 1.5. Suppose S=〈U,Ω, V, f〉 is an information system where f is a
one-one function. Let b = f(U) (= {fx : x ∈ U}). ThenRlbB[Ω, V ] is isomorphic
to Rd%BS , the %-reduct of BS , where the operation C(Γ ) corresponds to Ω ∼ Γ
(cf. 2.6.1 of HMT[5]).

An element x in a strong NCDf Ω B is rectangular if cΓx · c∆x = cΓ∩∆x
for all Γ,∆ ⊆ Ω. With the terminology above we can give a cylindric algebra
version of Theorem 1.2.

Theorem 1.6. Every simple, complete atomic strong NCDf Ω with rectangular
atoms is isomorphic to a relativized , strong NCDf Ω set algebra.
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P r o o f. Suppose B is a strong NCDf Ω as in the hypothesis. Let B∗ = RdσB,
the σ-reduct of B, where the operation κP corresponds to cΩ∼P . (Note that σ is
the inverse of % in 1.5.)

Claim. B∗ is a reduced knowledge approximation algebra.

Condition (C′) implies that B∗ is reduced, (A0)–(A3) are direct translates
of (C0)–(C3) and (A5) holds because the atoms of B are rectangular elements.
Condition (A4) is a consequence of B being simple. To see this we need two facts:
(1) an ideal in a strong NCDf Ω B is a Boolean ideal that is closed under cΓ for
all Γ ⊆ Ω, and (2) cΓx/leqc∆x whenever Γ ⊆ ∆. [(2) follows from the rectangular
atom condition.] By (1) and (2) it follows that if B is simple then cΩx = 1 for all
0 6= x ∈ B; thus, (A4) holds for B∗ and the claim holds.

By 1.2, B∗ ∼= BS for some information system S and the construction gives f
one-one. Hence, B = Rd%B∗ ∼= Rd%BS ∼= RlbB[Ω, V ] by 1.5 as desired.

R e m a r k 1.7. Recently, Andras Simon has axiomatized the class of all subdir-
ect products of relativized strong NCDf Ω set algebras by a simple finite axiom
schema of equations. For a detailed formulation of this equational generalization
of 1.6 see the survey [8] by Németi (Theorem 8.1, Section 4).

2. Algebras of rough sets. In this section we follow the approach to rough
sets formulated in [6] and [11]. A pair U = 〈U, θ〉 that consists of an equivalence
relation θ on a nonempty set U is called an approximation space. Every X ⊆ U
has an upper approximation X and a lower approximation X in terms of the
θ-classes. Namely,

X =
⋃
{θx : x ∈ X} X =

⋃
{θx : θx ⊆ X} .

A rough subset of U is a pair 〈X,X〉 where X ⊆ U . We denote the collection of
all rough subsets of U by SbR(U) and let PR(U) = 〈SbR(U),∨,∧, ∗,+, 0, 1〉 where
0 = 〈∅, ∅〉, 1 = 〈U,U〉,

〈X,X〉 ∨ 〈Y, Y 〉 = 〈X ∪ Y,X ∪ Y 〉 ,
〈X,X〉 ∧ 〈Y, Y 〉 = 〈X ∩ Y,X ∩ Y 〉 ,

〈X,X〉∗ = 〈U ∼ X,U ∼ X〉 ,
〈X,X〉+ = 〈U ∼ X,U ∼ X〉 .

In [11] it is shown that PR(U) is a Stone algebra. Even more is true.
A double Stone algebra is an algebra L = 〈L,+, ·, ∗,+, 0, 1〉 such that

〈L,+, ·, 0, 1〉 is a bounded distributive lattice, ∗ is a pseudocomplement (i.e.,
x/leqa∗ ⇔ x ·a = 0), Stone’s law holds (i.e., a∗+a∗∗ = 1), + is a dual pseudocom-
plement (i.e., x ≥ a+ ⇔ x + a = 1), and the dual Stone law (i.e., a+ · a++ = 0)
holds. A double Stone algebra is regular if a+ = b+ and a∗ = b∗ imply a = b.
See Grätzer [4], Beazer [1], and Katriňák [7] for basic facts about (double) Stone
algebras.
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An easy extension of the calculations in Theorem 1 of [11] shows

Theorem 2.1. PR(U) is a regular Stone algebra for every approximation
space U .

The main observation of this section is that the converse holds — every regular
double Stone algebra has a representation as an algebra of rough subsets of an
approximation space. First, we develop some notation and terminology.

If L is a double Stone algebra, let C(L) = {x ∈ L : x∗∗ = x} denote the center
of L. C(L) is a Boolean subalgebra of L on which ∗ and + agree and are the
Boolean complement. It is known that the congruence lattice Con(L) is distribu-
tive and that the congruences on a regular double Stone algebra correspond to
normal filters of L — thus, the congruences commute (cf. [1]). These facts imply
that

(I) the factor congruences on a double Stone algebra L form a sublattice of
Con(L) that is a Boolean algebra (isomorphic to C(L)), and

(II) the congrunce generated by a proper filter on C(L) is a proper congruence.

Let S2, S3, and S4 denote the 2-, 3-, and 4-element chains, respectively, con-
sidered as a double Stone algebra, i.e., e∗ = f∗ = 0 and e+ = f+ = 1 in the
appropriate Si.

1 ◦∣∣∣
0 ◦

1 ◦∣∣∣
e ◦∣∣∣
0 ◦

1 ◦∣∣∣
e ◦∣∣∣
f ◦∣∣∣
0 ◦

S2 S3 S4

In [7] Katriňák showed that S2, S3, and S4 are the only nontrivial subdirectly
irreducible double Stone algebras. Note that S2 and S3 are regular, but S4 is not.

The following result may be known.

Theorem 2.2. Every regular double Stone algebra is a subdirect product of S2

and S3.

P r o o f. Let L be a regular double Stone algebra. Because of (I) and (II) above,
L is isomorphic to the algebra Γ (X,T ) of continuous sections of a reduced sheaf
T over the Boolean space X of ultrafilters of C(L) (cf. [2] or Section 3 of [12]).
It follows that L is a subdirect product of the stalks Tx (x ∈ X). We claim that
each Tx is isomorphic to either S2 or S3. To prove this, first recall that from
the construction of the representation (cf. [2]) the algebra Tx is directly inde-
composable, i.e., C(Tx) = {0x, 1x}. Also recall that in a directly indecomposable
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double Stone algebra, 0 is ∧-irreducible and 1 is ∨-irreducible. Let T ′x denote the
distributive lattice Tx ∼ {0x, 1x}. We show that |T ′x|/leq1. Suppose |T ′x| ≥ 2 for
some x. Then Tx contains a subalgebra isomorphic to S4. Choose σ, τ ∈ Γ (X,T )
so that {0x, τ(x), σ(x), 1x} is a subalgebra of Tx isomorphic to S4. Since X is a
Boolean space and the elements of Γ (X,T ) are continuous there exists a clopen
neighborhood N of x such that {0y, τ(y), σ(y), 1y} is isomorphic to S4 for all
y ∈ N . Extend σ|N and τ |N to µ, ν ∈ Γ (X,T ) such that µ 6= ν, µ∗ = ν∗, and
µ+ = ν+ (e.g., let µ|(X∼N) = ν|(X∼N) = 0|(X∼N)). This contradicts the regular-
ity of L (∼= Γ (X,T )). Thus, |T ′x|/leq1 for all x ∈ X from which it follows that Tx
is isomorphic to S2 or S3.

Now we turn to the representation using algebras of rough sets.

Theorem 2.3. For sets I and J , SI2 × SJ3 is isomorphic to PR(U) for some
approximation space U .

P r o o f. Given I and J , set U = I∪(J×2) and let θ be an equivalence relation
on U with θ-classes {i} for i ∈ I and {(j, 0), (j, 1)} for j ∈ J . The rough subset
a = 〈I, I〉 belongs to C(PR(U)). Thus, PR(U) ∼= RlaPR(U)×Rl∗aPR(U) and it is
easy to verify that the relativized algebras RlaPR(U) ∼= SI2 and Rl∗aPR(U) ∼= SJ3 .

Theorems 2.2 and 2.3 yield

Corollary 2.4. Every regular double Stone algebra is isomorphic to a subal-
gebra of PR(U) for some approximation space U .

3. Algebras of rough relations. In this section we propose a set of ax-
ioms for the notion of a rough relation algebra. Basically the idea is to replace
the Boolean condition in Tarski’s axioms for relation algebras (cf. Section 5.3 of
HMT[5]) with the axioms for a regular double Stone algebra. However, there are
consequences of the Tarski axioms which hold in the standard model of rough
relations, but whose derivation from the relation algebra axioms use the Boolean
complement. For this reason additional axioms must be added to the modified
Tarski list.

First, the standard model of an algebra of rough relations is described. If
U = 〈U, θ〉 is an approximation space, observe that U2 = 〈U2, θ2〉 is also an
approximation space.

Definition 3.1. A rough relation on (an approximation space) U is a rough
subset of U2. The double Stone operations ∨,∧, ∗, and + introduced in Section
2 apply to the elements of SbR(U2). In addition, SbR(U2) contains the special
element 1′ = 〈θ, θ〉 and the usual relational operations ; and ∪ on SbR(U2) are
defined coordinatewise, i.e., 〈R,R〉;〈S, S〉 = 〈R ;S,R ;S〉 and 〈R,R〉∪ = 〈R∪, R∪〉.
The standard model 〈SbR(U2),∨,∧, ∗,+, 0, 1, ; , ∪, 1′〉 is denoted by RU . Subalge-
bras of an algebra RU are called algebras of rough relations.
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An abstract notion of rough relation algebra is introduced below. The proposed
set of axioms should be regarded as tentative. As additional properties of the
algebras RU are discovered it may be desirable to augment the list.

Definition 3.2. A rough relation algebra, a R2A for short, is an algebra A =
〈A,+, ·, ∗,+, 0, 1, ; , ∪, 1′〉 which satisfies the following axioms:

(i) 〈A,+, ·, ∗,+, 0, 1〉 is a regular double Stone algebra,
(ii) (x ; y) ; z = x ; (y ; z),

(iii) (x+ y) ; z = x ; z + y ; z and z ; (x+ y) = z ; x+ z ; y,
(iv) x ; 1′ = x = 1′ ; x,
(v) x∪∪ = x,
(vi) (x+ y)∪ = x∪ + y∪,
(vii) (x ; y)∪ = y∪ ; x∪,

(viii) (x∪ ; (x ; y)∗) · y = 0,
(ix) (x ; y) · z/leqx ; x∪ ; z,
(x) x∗∪ = x∪∗ and x+∪ = x∪+,
(xi) (x∗ ; y∗)∗∗ = x∗ ; y∗,
(xii) 1′∗∗ = 1′.

A rough relation algebra is called representable if it is isomorphic to a subdir-
ect product of algebras of rough relations.

The first observation concerning rough relation algebras deals with whether
or not an ordinary relation algebra can be representable as a R2A without be-
ing representable as a RA. For a set U , let Re(U) denote the relation algebra
of all binary relations on U . Actually, Re(U) is isomorphic to RU where the
approximation space 〈U, θ〉 has θ as the identity relation.

Lemma 3.3. (i) Every algebra of rough relations is a R2A,
(ii) The center C(A) of a R2A A is a relation algebra that is a subalgebra

of A,
(iii) C(RU ) ∼= Re(U/θ) for every approximation space U = 〈U, θ〉.

P r o o f. (i) and (iii) are routine; (ii) follows from 3.2(x)–(xii) and the fact that
C(A) is a Boolean subalgebra of A.

Theorem 3.4. Every simple relation algebra that is representable as a R2A is
representable as a RA.

P r o o f. If a simple relation algebra A is representable as a R2A we may
assume that A is isomorphic to a subalgebra of RU for some approximation
space U = 〈U, θ〉. Since every x ∈ A has a unique complement the image of A is
a subalgebra of C(RU ) which is isomorphic to Re(U/θ) by 3.3(iii).

Finally we observe that a construction for Stone algebras from [4] can be
adapted to show that every relation algebra can be the center of a R2A which
properly extends it.
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For a relation algebra A define A[2] = 〈A[2],+, ·, ∗,+, 0, 1, ; , ∪, 1′〉 where A[2] =
{〈a, b〉 ∈ A2 : a/leqb}, 0 = 〈0, 0〉, 1 = 〈1, 1〉, 1′ = 〈1′, 1′〉, +, ·, ; and ∪ are defined
coordinatewise, 〈a, b〉∗ = 〈− b,− b〉, and 〈a, b〉+ = 〈−a,−a〉.

It is straightforward to verify

Theorem 3.5. A[2] is a rough relation algebra and C(A[2]) ∼= A for every
relation algebra A.
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