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Abstract. The abstract model-theoretic concepts of compactness and Löwenheim–Skolem
properties are investigated in the “softer” framework of pre-institutions [18]. Two compactness
results are presented in this paper: a more informative reformulation of the compactness theorem
for pre-institution transformations, and a theorem on natural equivalences with an abstract
form of the first-order pre-institution. These results rely on notions of compact transformation,
which are introduced as arrow-oriented generalizations of the classical, object-oriented notions of
compactness. Furthermore, a notion of cardinal pre-institution is introduced, and a Löwenheim–
Skolem preservation theorem for cardinal pre-institutions is presented.

1. Introduction. In [18] we introduced the notion of pre-institution as an
abstract notion of logical system, together with a notion of pre-institution trans-
formation, which enables the transfer of logical reasoning, model-theoretic results
and computing tools from one pre-institution to another.

The original target of our investigation was the notion of institution, which
was introduced in [9] as a vehicle for the application of abstract model theory
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to computer science. Motivation for the choice of that target was the experience
gained in [14], relating to the translation of a number of logics into equational type
logic [13, 12]. We detected a striking commonality over the different translations,
concerning representation of models, translation of sentences, and structure of
completeness proofs. The search for a more general framework, where that com-
monality could be factored out, was just as natural. For such an aim, the category
of institutions seemed to offer the obvious framework to work with. Two facts,
however, indicated that this choice was not entirely obvious.

In the first place, the way in which the expressiveness results in [14] were
obtained led us to observe that pointwise translation of sentences and models is
not always easy to work with. More generally, we need to translate presentations
(i.e. sets of sentences) to presentations, and to associate a class of models in
the target logic with each model of the source logic. The notion of institution
morphism proposed in [9] thus deserves generalization.

In the second place, we observed that not every feature of the institution
concept had some rôle to play in the trial applications of our interest. The softness
of the satisfaction condition, in particular, does not seem to have been weighed
on sufficiently accurate scales.

The putting together of the two facts that occurred to our observation moti-
vated thus the introduction of the less restrictive, albeit structurally weaker notion
of pre-institution, together with an easier-to-use notion of morphism, which we
called pre-institution transformation.

Now, in this paper we investigate a few most relevant concepts of abstract
model theory, viz. compactness and Löwenheim–Skolem properties, in the even
“softer” pre-institutions framework. In particular, we study the inheritance of
these properties along pre-institution transformations.

Concerning compactness, the result in [18] is refined by introducing a notion
of compact transformation, whereby the classical concept of compactness of a
logical system, once formulated for the soft framework of pre-institutions, is, so
to say, “stretched” along the transformation arrow, relating validity in the target
to finiteness in the source.

Moreover, we show the contravariant inheritance of a general form of the
Löwenheim–Skolem properties by “suitable” pre-institution transformations. To
this purpose, the notion of pre-institution with cardinal numbers, or cardinal pre-
institution, is introduced, since Löwenheim–Skolem properties make reference to
the cardinality of models (and of symbol sets as well, in the more general forms
of those properties).

Both in the case of compactness and in that of Löwenheim–Skolem properties,
inheritance is “contravariant” in the sense that, if T : I → I ′ is a “suitable” pre-
institution transformation and I ′ has the property under consideration, then I
has that property as well. The pre-institution transformation is to be “suitable” in
the sense that it may have to fulfil certain requirements—such as (full) adequacy,
finitarity, etc.—depending on the property under consideration. Essentially, thus,
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we are in the presence of a generalization of the well-known “reduction scheme”
from abstract model theory that is outlined in [5].

A central place in the analysis developed in this paper is given to a result on
the equivalence with an abstract form of the first-order pre-institution, i.e. the
pre-institution arising from first-order logic. This result generalizes a key lemma
in the proof of the first Lindström theorem that is given in [6].

The organization of the rest of this paper is as follows. First, for the sake of
self-containedness, we recall from [18] the needed definitions and facts, in Sections
2 and 3 respectively, but with new arguments and motivations in Section 2, tak-
ing the target of the present work into account. In Section 4, notions of compact
transformation are introduced, and the compactness theorem from [18] (recalled
in Section 3), is then refined to a more informative theorem, linking compactness
of a transformation with compactness of its source and target pre-institutions.
In Section 5, two new concepts are introduced, viz. that of pre-institution with
abstract sentences, or abstract pre-institution, and that of expansion-adequate
transformation. These concepts, together with the results on compact transfor-
mations, play an essential rôle in the statement and proof of a theorem on the
equivalence with the abstract, first-order pre-institution—the main result pre-
sented in Section 6. The notion of cardinal pre-institution is then introduced in
Section 7, leading to a general form of Löwenheim–Skolem preservation theorem
for cardinal pre-institutions, as worked out in this section. Finally, connections
with related work are discussed in Section 8, and Section 9 closes the paper with
an outline of topics for further investigation.

2. Basic notions and notations. A preliminary word about foundations. In
this paper we use the term “set” in a rather comprehensive meaning, that gener-
ally includes proper classes. Whenever a need arises to exclude proper classes, we
talk of “small sets”. Set is thus actually a “metacategory” (1), according to [10].

Definition 2.1. A pre-institution is a 4-tuple I = (Sig, Sen, Mod, �), with:

(i) Sig a category, whose objects are called signatures,
(ii) Sen : Sig→ Set a functor, sending each signature Σ to the set Sen(Σ) of

Σ-sentences, and each signature morphism τ : Σ → Σ′ to the mapping Sen(τ) :
Sen(Σ)→ Sen(Σ′) that translates Σ-sentences to Σ′-sentences,

(iii) Mod : Sigop → Set a functor, sending each signature Σ to the set Mod(Σ)
ofΣ-models, and each signature morphism τ : Σ → Σ′ to the τ -reduction function
Mod(τ) : Mod(Σ′)→ Mod(Σ),

(iv) � : |Sig|→‖Rel‖ a function (2), yielding a binary relation �Σ ⊆Mod(Σ)×
Sen(Σ) for each signature Σ, viz. the satisfaction relation between Σ-models and
Σ-sentences.

(1) Resting at some floor of “palais Grothendieck”.
(2) REL is the category of sets with binary relations as morphisms; ‖C‖ is the set of mor-

phisms of the category C.
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By a slight notational abuse, we will write Σ ∈ Sig instead of Σ ∈ |Sig|, and
τ : Σ → Σ′ ∈ Sig instead of τ : Σ → Σ′ ∈ ‖Sig‖.
Definition 2.2. Let I = (Sig,Sen,Mod,�) be a pre-institution, τ : Σ → Σ′ a

signature morphism in Sig, ϕ a Σ-sentence and M ′ a Σ′-model. With henceforth
adoption of the abbreviations: τϕ for Sen(τ)(ϕ), and M ′τ for Mod(τ)(M ′), we
say that

(i) reduction preserves satisfaction in I, or that I has the rps property (or
that I is rps, for short), iff I meets the following requirement:

(†) ∀τ : Σ → Σ′ ∈ Sig,∀ϕ ∈ Sen(Σ),∀M ′ ∈ Mod(Σ′) :
M ′ �Σ′ τϕ ⇒ M ′τ �Σ ϕ .

(ii) expansion preserves satisfaction in I, or that I has the eps property (or
that I is eps, for short), iff I meets the following requirement:

(‡) ∀τ : Σ → Σ′ ∈ Sig,∀ϕ ∈ Sen(Σ),∀M ′ ∈ Mod(Σ′) :
M ′τ �Σ ϕ ⇒ M ′ �Σ′ τϕ .

(iii) I preserves satisfaction, or that I has the ps property (or that I is ps,
for short), iff I is both rps and eps.

An institution [8] is thus a pre-institution that preserves satisfaction and where
model sets and reduction have categorial structure, that is, an institution rather
has a functor Mod : Sigop → Cat, sending each signature Σ to the category
Mod(Σ) ofΣ-models, and each signature morphism τ : Σ → Σ′ to the τ -reduction
functor Mod(τ) : Mod(Σ′) → Mod(Σ). It seems interesting to investigate which
properties of institutions do actually depend on requirements (†) and/or (‡) of
Definition 2.2, and/or on the categorial structure of model sets and reduction,
and which do not, thus holding for pre-institutions as well.

According to the motivation proposed in [18], we are interested in general tools
for lifting results from one pre-institution to another pre-institution. Pointwise
translation of sentences and models is not always easy to use for this purpose.
For example, to recover and possibly further extend the results obtained in [14], we
need to translate presentations to presentations, and to associate a set of models
(in the target pre-institution) with each model of the source pre-institution. A
suitable notion of pre-institution morphism serves this purpose, for which a few
preliminaries are needed.

We recall that the powerset functor ℘ : Set → Set sends every set to the
collection of its subsets (3), and every function f : S → S′ to the function yielding
the f -image of each subset of S. The functor ℘+ is analogously defined, except
that the empty set is excluded from the collection ℘+(S), for all sets S.

In every pre-institution I = (Sig,Sen,Mod,�) we thus define Pre = ℘ ◦ Sen :
Sig → Set as the corresponding functor that sends each signature Σ to the

(3) ℘ lives in the elevator of “palais Grothendieck”, thus, lifting its argument up one floor.
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set Pre(Σ) of Σ-presentations, and each signature morphism τ : Σ → Σ′ to
the mapping Pre(τ) : Pre(Σ) → Pre(Σ′) that translates Σ-presentations to Σ′-
presentations. For convenience, we often write I = (Sig,Pre,Mod,�) instead of
the more customary notation introduced in Definition 2.1.

Definition 2.3. A pre-institution transformation T : I → I ′, where I =
(Sig,Pre,Mod,�) and I ′ = (Sig′,Pre′,Mod′,�′) are pre-institutions, is a 3-tuple
T = (SiT ,PrT ,MoT ), with:

(i) SiT : Sig→ Sig′ a functor—we shall henceforth write ΣT for SiT (Σ), and
τT for SiT (τ),

(ii) PrT : Pre → Pre′ ◦SiT a natural transformation, i.e. for each Σ ∈ Sig
a function PrTΣ : Pre(Σ) → Pre′(ΣT ) sending Σ-presentations to ΣT -presenta-
tions, such that for every signature morphism τ : Σ1 → Σ2 in Sig the following
diagram commutes:

Pre(Σ1)
PrTΣ1−−−−−−→ Pre′(Σ1T )

Pre(τ)

y yPre′(τT )

Pre(Σ2)
PrTΣ2−−−−−−→ Pre′(Σ2T )

(iii) MoT : Mod→ ℘+ ◦Mod′ ◦ SiT a natural transformation, i.e. for each Σ ∈
Sig a map MoTΣ : Mod(Σ)→ ℘+(Mod′(ΣT )) assigning a nonempty set MoTΣ (M)
of ΣT -models to each Σ-model M , such that for every signature morphism τ :
Σ1 → Σ2 in Sig the following diagram commutes:

Mod(Σ2)
MoTΣ2−−−−−−→ ℘+(Mod′(Σ2T ))

Mod(τ)

y y℘+◦Mod′(τT )

Mod(Σ1)
MoTΣ1−−−−−−→ ℘+(Mod′(Σ1T ))

and such that the following satisfaction invariant holds:

∀Σ ∈ Sig,∀E ∈ Pre(Σ),∀M ∈ Mod(Σ) : M � E ⇔ MT �′ ET

where satisfaction is extended to presentations and model sets in the usual way (4),
and with henceforth adoption of the following abbreviations:

(a) ET for PrTΣ (E),
(b) ϕT for {ϕ}T , for a one-sentence presentation {ϕ},
(c) MT for MoTΣ (M),
(d) � for �Σ and �′ for �′ΣT (and even � for �′, if no ambiguity arises).

(4) That is, M � E iff ∀ϕ ∈ E: M � ϕ, M � E iff ∀M ∈M: M � E.
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It may seem strange that presentation transformation is allowed not to respect
the set-theoretic structure of presentations, that is, it need not to be constructed
elementwise. Our design principle, in this paper as well as in its predecessor [18],
is that requirements restrict generality, hence there must be sufficient evidence of
their necessity to set them a priori rather than introducing them as properties a
posteriori. As an instance of the classical “Ockham’s razor”, we have adopted the
rule: leges non sunt multiplicanda præter necessitatem.

By our own rule we are thus compelled to argue the necessity of the require-
ments which form Definition 2.2. Now, requiring functoriality of the signature
translation and naturality of the presentation and model transformations is an
obvious feature of good structure design by category-theoretic principles. But Def-
inition 2.3 states two further requirements, whose necessity is argued on intuitive
grounds as follows.

The intuitive reason for the non-emptiness requirement on MoTΣ (M) is that
the existence of a pre-institution transformation is intended to entail the “repre-
sentability” of every source model by some target model.

The reason for the requirement expressed by the satisfaction invariant is the
soundness of consequence in the image of the transformation with respect to
consequence in the source. This fact is apparent from Proposition 3.3(i), or, more
precisely, from the fact that its (very simple, almost immediate) proof requires
both directions of the double implication by which the satisfaction invariant is
formulated.

The next definition introduces a notion of equivalence between models that
reflects their indiscernibility by the logical means that is available “inside the
pre-institution”, viz. the notion of elementary equivalence. The second part of
the definition formalizes logical equivalence of sentences inside a pre-institution,
viz. their indiscernibility by validity in models, which fact justifies the overloading
of the equivalence symbol.

Definition 2.4. Let I = (Sig,Pre,Mod,�) be a pre-institution, and Σ a
signature in Sig.

1. Any two Σ-models M1, M2 are I-equivalent, written M1 ≡I M2, iff for
every Σ-presentation E:

M1 � E ⇔ M2 � E .

2. Any two Σ-sentences ϕ, ψ are I-equivalent, written ϕ ≡I ψ, iff for every
Σ-model M :

M � ϕ ⇔ M � ψ .

Additional requirements characterize certain classes of pre-institution trans-
formations, and will prove very useful in the rest of this paper.

Definition 2.5. Let T : I → I ′ be a pre-institution transformation, with I,
I ′ as in Definition 2.3.
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(i) T is adequate iff it meets the following requirement:

∀Σ ∈ Sig,∀E ∈ Pre(Σ),∀M ′ ∈ Mod′(ΣT ) :
M ′ �′ ET ⇒ ∃M ∈ Mod(Σ) : M ′ ∈MT ∧M � E .

(ii) T is fully adequate iff it meets the following requirement: ∀Σ ∈ Sig,∀M ′ ∈
Mod′(ΣT ), for all indexed families {Ej}j∈J of Σ-presentations:

M ′ �′
⋃
j∈J

(Ej)T ⇒ ∃M ∈ Mod(Σ) : M ′ ∈MT ∧M �
⋃
j∈J

Ej .

As we shall see in the next section, adequacy ensures completeness of the trans-
formation with respect to consequence. Full adequacy is just a stronger form of
adequacy (clearly, every fully adequate transformation is adequate as well), which
proves connected to compactness of pre-institutions, as mentioned in Section 3
and further analysed in Section 4. A useful sufficient criterion for full adequacy
is as follows.

Lemma 2.6. Let T : I → I ′ be a pre-institution transformation, with I, I ′ as
in Definition 2.3. If T is adequate and meets the following condition:

∀Σ ∈ Sig,∀M1,M2 ∈ Mod(Σ) : (M ′ ∈M1T ∧M ′ ∈M2T ) ⇒ M1T = M2T ,

then T is fully adequate.

A first use of our notions of adequacy is found in the following definition.

Definition 2.7. Let I and I ′ be two pre-institutions.

(i) I ′ is adequately expressive for I, written I � I ′, iff there exists an ade-
quate pre-institution transformation T : I → I ′.

(ii) I ′ is fully expressive for I, written I v I ′, iff there exists a fully adequate
pre-institution transformation T : I → I ′ .

Clearly, � and v are pre-orders, which fact justifies the following

Definition 2.8. Let I and I ′ be two pre-institutions.

(i) I and I ′ have equivalent expressiveness iff I � I ′ and I ′ � I.
(ii) I and I ′ have fully equivalent expressiveness iff I v I ′ and I ′ v I .
The formal notions of relative expressiveness introduced above are first ap-

proximations to an appropriate generalization of classical notions of relative ex-
pressiveness of logical systems in the sense of abstract model theory (see [6]).
These systems have the limitation of being based on first-order models; as a conse-
quence, also the category of (first-order) signatures is fixed for all logical systems.
Our notions are more liberal in that only a functor is required between the signa-
ture categories, and model-independence is achieved in a most general manner.
To clarify this comparison, we show how a most classical notion of relative expres-
siveness between logical systems can be captured by a particular transformation
of the corresponding pre-institutions.
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Example 2.9. If L is a logical system in the sense of abstract model theory,
a corresponding pre-institution IL = (Sig,Sen,Mod,�) is defined as follows: Sig
is the category of first-order signatures having only renamings (5) as morphisms;
Sen gives for every Σ ∈ Sig the set of Σ-sentences in L, and for every renaming τ :
Σ1 → Σ2 ∈ Sig the corresponding translation of Σ1-sentences into Σ2-sentences;
Mod gives for every Σ ∈ Sig the class of first-order Σ-models, and for every
renaming τ : Σ1 → Σ2 ∈ Sig the corresponding first-order reduction map, which
turns each Σ2-model into a Σ1-model; finally, satisfaction in IL coincides with
satisfaction in L.

Now, let L, L′ be logical systems in the sense of abstract model theory. Ac-
cording to [6] (p. 194, Definition 1.2), and [5] (p. 27, Definition 1.1.1), L′ is at
least as strong as L, which is written L ≤ L′, iff for every first-order signature Σ,
for every Σ-sentence ϕ in L there is some Σ-sentence ψ ∈ L′ that has the same
models. Let IL, IL′ be the pre-institutions that respectively correspond to L, L′.
A transformation T : IL → IL′ which captures the classical notion of relative
expressiveness mentioned above is as follows: whenever L ≤ L′, define

ΣT = Σ, ET = {ψ | ∃ϕ ∈ E : Mod(ϕ) = Mod′(ψ)}, MT = {M} .

It is easy to see (using Lemma 2.6) that T is a fully adequate transformation.

Besides serving an illustrative purpose, the example also points at the afore-
mentioned target of our present investigation, that is, an appropriate generaliza-
tion of classical notions of relative expressiveness of logical systems in the sense
of abstract model theory.

The classical notion recalled above has classical generalizations that have great
methodological importance, and thus high relevance to our investigation. We re-
call (see Section 3.1 in [5]) that the above notion can also be stated as follows:
L ≤ L′ iff every elementary class in L is elementary in L′ (where a model class is
elementary in L iff it consists of the models of a sentence in L).

A classical generalization of the aforementioned notion of relative expressive-
ness is the following: L ≤RPC L′ iff every relativized projective class in L is a
relativized projective class in L′ (where a model class is a relativized projective
class in L iff it consists of the relativized τ -reducts of the models of an elementary
class in L, for some signature inclusion morphism τ (6)).

Now, the main methodological import of the ≤RPC notion lies not so much
in its technical definition as in the reduction scheme that comes along with it,
meaning: downward inheritance of model-theoretic properties along the expres-
siveness ordering. Under the ≤RPC ordering, the scheme holds for a great vari-
ety of model-theoretic properties, including compactness and Löwenheim–Skolem
properties—to which we restrict our attention in the present paper.

(5) That is, bijective arity-preserving maps.
(6) If τ : Σ1 ↪→ Σ2 is a first-order signature inclusion morphism and M is a first-order

Σ2-structure, a relativized τ -reduct of M is any Σ1-substructure of a τ -reduct of M .



PRE-INSTITUTIONS 75

We are thus in presence of a criterion to measure the “appropriateness” of
generalizations of classical notions of relative expressiveness to our framework,
viz. the extent to which reductions generalize. To be applicable, this criterion
preliminarily requires, for each model-theoretic property under consideration, the
reformulation of that property within our conceptual framework. Now, in the
case of Löwenheim–Skolem properties, we defer this task to Section 7 (as we
mentioned in Section 1, a structural enrichment of the notion of pre-institution is
necessary). On the contrary, the reformulation of compactness for pre-institutions
is fairly obvious, as it appears from the next definition.

Definition 2.10 (Compactness). Let I = (Sig,Sen,Mod,�) be a pre-institu-
tion, with Pre = ℘ ◦ Sen : Sig→ Set.

(i) I is compact iff ∀Σ ∈ Sig,∀E ∈ Pre(Σ): E satisfiable ⇔ E finitely satisfi-
able.

(ii) I is consequence-compact iff ∀Σ ∈ Sig,∀E ∈ Pre(Σ),∀ϕ ∈ Sen(Σ):

E � ϕ ⇒ ∃F ⊆ E : F finite ∧ F � ϕ .

R e m a r k. The two notions of compactness are equivalent for pre-institutions
that are closed under negation (see [6], p. 196, Lemma 2.1), where I is closed
under negation whenever ∀Σ ∈ Sig, ∀ϕ ∈ Sen(Σ), ∃ψ ∈ Sen(Σ): ∀M ∈ Mod(Σ):
M � ϕ iff not M � ψ.

Since finiteness of (sub-)presentations plays an essential rôle in both notions of
compactness, one may expect that “suitable” pre-institution transformations for
such notions ought to preserve that finiteness somehow. The basic, most intuitive
idea is that every sentence should be transformed into a finite set of sentences.
This idea is affected by too much of “syntax”, though, in the following sense.

If one accepts the abstract model-theoretic purpose proposed in [11], that is
“to get away from the syntactic aspects of logic completely and to study classes of
structures more in the spirit of universal algebra” then two softenings of the basic
idea are in place. First, “finiteness” of the transform ϕT of any sentence ϕ should
be measured excluding the “tautological” part of ϕT (“tautological” relative to T ,
in a sense made precise below), since model classes are insensitive to tautologies.
Second, and more generally in fact, “finiteness” of sentence transformation should
only be “up to logical equivalence” in the target pre-institution, since logically
equivalent sentences specify identical model classes.

The following definition tells, for a given pre-institution transformation, which
sentences of the target pre-institution are “viewed as tautologies” in the source
pre-institution; we are thus considering a sort of “stretching” of the classical
notion of tautology along the transformation arrow. The subsequent definition,
then, formalizes the two “soft” forms of the property we are looking for, according
to the rationale given above.
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Definition 2.11. Let T : I → I ′ be a pre-institution transformation, with I,
I ′ as in Definition 2.3. Then, for every Σ ∈ Sig:

(i) a ΣT -sentence ψ is a T -tautology iff ∀M ∈ Mod(Σ),∀M ′ ∈MT : M ′ �′ ψ,
(ii) TautT (Σ) is the set of T -tautologies in Sen(ΣT ).

Clearly, every ΣT -tautology (in the classical sense) is in TautT (Σ). This may
contain more sentences, however; e.g. if ∅Σ is the “empty” Σ-presentation, then
clearly (∅Σ)T ⊆ TautT (Σ), and the sentences in (∅Σ)T need not be ΣT - tautolo-
gies.

Definition 2.12. Let T : I → I ′ be a pre-institution transformation, with I,
I ′ as in Definition 2.3.

(i) T is finitary iff ∀Σ ∈ Sig,∀ϕ ∈ Sen(Σ): ϕT − TautT (Σ) finite.
(ii) T is quasi-finitary iff ∀Σ ∈ Sig,∀ϕ ∈ Sen(Σ): (ϕT − TautT (Σ))/≡I′

finite.

The difference between finitarity and quasi-finitarity is illustrated by the trans-
formation in Example 2.9, which is quasi-finitary but not necessarily finitary.

Finally, our last definition relates to equivalence of expressiveness between pre-
institutions. If two pre-institutions enjoy equivalent expressiveness, it is sensible to
wonder whether the transformations that establish the equivalence are “inverse”
to each other in some sense. Among the several possibilities for such a sense,
we formalize a notion of equivalence that requires the transformation of logical
theories to be the identity; more precisely, the presentation obtained by applying
such a transformation and then its inverse to any given presentation is required to
have exactly the same consequences as the original presentation. As usual, if E is
a Σ-presentation, Th(E) denotes the closure of E under consequence, whereas if
M is a Σ-model, then Th(M) denotes the largest Σ-presentation that is satisfied
by M .

Definition 2.13. Let T : I → I ′ be a pre-institution transformation, with I,
I ′ as in Definition 2.3. T is invertible if there exists a pre-institution transforma-
tion R : I ′ → I such that for every presentation E in I: Th(E) = Th((ET )R), in
which case R is termed an inverse of T , and the two pre-institutions I, I ′ have
exactly equivalent expressiveness.

As a simple illustration, with reference to Example 2.9, it is easily seen that
if L ≤ L′ and L′ ≤ L, then the transformation T : IL → IL′ is invertible (in
fact, it has a fully adequate inverse), i.e. IL and IL′ have exactly equivalent
expressiveness.

3. Basic facts. In this section, we recall a number of facts and results
from [18], which complete the background needed for the further analysis and
results presented in this paper. The interested reader is referred to Sections 3 and
4 of [18] for the proofs of the facts recalled here.
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First, noting that we introduced pre-institution transformations as “mor-
phisms”, we recall a proposition that justifies that terminology.

Proposition 3.1 (Pre-institution categories). (i) The identity transformation
EI : I → I (where ΣEI = Σ, EEI = E, MEI = {M}) meets the satisfaction
invariant , and is fully adequate.

(ii) If T : I → I ′ and T ′ : I ′ → I ′′ are pre-institution transformations, then
so is their composition T ′ ◦ T : I → I ′′, where:

ΣT ′◦T = (ΣT )T ′ ,
τT ′◦T = (τT )T ′ ,
ET ′◦T = (ET )T ′ ,

MT ′◦T =
⋃

M ′∈MT

M ′T ′ .

(iii) T ′ ◦ T is adequate if both T and T ′ are adequate.
(iv) T ′ ◦ T is fully adequate if both T and T ′ are fully adequate.
(v) Pre-institutions, together with transformations as morphisms, form a cat-

egory PT, of which a subcategory APT is obtained by taking only adequate trans-
formations as morphisms, of which a subcategory FAPT is obtained by taking only
fully adequate transformations as morphisms.

The following fact shows that pre-institution transformations ensure “con-
travariant” inheritance of the rps and eps properties. This fact seems to be only
the first phenomenon of a wealthy situation; the compactness theorem (see below)
is another such case. Inheritance is “contravariant” in the sense that, if T : I → I ′
is a pre-institution transformation and I ′ has the property under consideration,
then I has that property as well.

These results demonstrate the usefulness of our notion of transformation, in
that they support interesting proof techniques. For example, if a proof of a certain
theorem in a pre-institution I is sought, and the theorem is known to hold in a
pre-institution I ′, it will suffice to find a transformation T : I → I ′, since this
allows the transfer of the known result back to I.

Another, perhaps more interesting application of these results is concerned
with negative results on comparing the expressiveness of pre-institutions, in the
sense of Definition 2.7. The proof technique, which has a “contrapositive” flavour,
simply consists in showing that some of the properties whose contravariant in-
heritance is ensured by (possibly “suitable”) pre-institution transformations is
enjoyed by I ′ but not by I. In such a case, then, one can infer that no (“suit-
able”) pre-institution transformation T : I → I ′ exists (where “suitable” means:
with some additional property, such as adequacy). An application of this proof
method is presented in Section 5.1 of [18].

Proposition 3.2. Let T : I → I ′ be a pre-institution transformation, with
I, I ′ as in Definition 2.3.
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(i) If I ′ is rps, then I is rps.
(ii) If I ′ is eps, then I is eps.
(iii) If I ′ is ps, then I is ps.

The reason why (full) adequacy of the transformation is required as a criterion
for (full) expressiveness is apparent from the following fact, where � denotes
logical consequence, defined in the usual semantical way.

Proposition 3.3. Let T : I → I ′ be a pre-institution transformation, with I,
I ′ as in Definition 2.3. Then ∀ϕ ∈ Sen(Σ), ∀ψ ∈ Sen′(ΣT ), ∀E, Ej ∈ Pre(Σ):

(i) ET � ϕT ⇒ E � ϕ,
(ii) E � ϕ ⇒ ET � ϕT if T is adequate.
(iii)

⋃
j∈J(Ej)T � ψ ⇒ (

⋃
j∈J Ej)T � ψ if T is adequate.

(iv) (
⋃
j∈J Ej)T � ψ ⇒

⋃
j∈J(Ej)T � ψ if T is fully adequate.

Furthermore, the following fact (7) tells that, with respect to consequence,
T -tautologies behave as tautologies relative to presentation transforms, if the
transformation T is adequate.

Proposition 3.4. Let T : I → I ′ be an adequate pre-institution transfor-
mation, with I, I ′ as in Definition 2.3. Then ∀Σ ∈ Sig,∀E ∈ Pre(Σ): ET �
TautT (Σ).

P r o o f. Let E∈Pre(Σ),M ′∈Mod′(ΣT ), and assume M ′ �′ ET . By adequacy
of T , there exists M ∈ Mod(Σ) such that M � E and M ′ ∈ MT . Then M ′ �′ ψ
for every ψ ∈ TautT (Σ), according to Definition 2.11. We conclude that ET �
TautT (Σ).

The Galois connection nature of invertible pre-institution transformations is
revealed by the following characterization.

Proposition 3.5. Let T : I → I ′ and R : I ′ → I be two pre-institution
transformations, with I, I ′ as in Definition 2.3. The following conditions are
equivalent :

(a) R is an inverse of T ,
(b) T is an inverse of R,
(c) ∀Σ ∈ Sig,∀E ∈ Pre(Σ),∀M ′ ∈ Mod(ΣT ): M ′ �′ ET ⇔ (M ′)R � E,
(d) ∀Σ′ ∈ Sig′,∀E′ ∈ Pre′(Σ′),∀M ∈ Mod(Σ′R): M � E′R ⇔ MT �′ E′.

Sufficient conditions for exactly equivalent expressiveness may be of help in
the construction of such equivalences. Of the two conditions given below, the
second one is stronger, but may turn out to be more useful in practice.

Proposition 3.6. Let T : I → I ′ and R : I ′ → I be two pre-institution
transformations, with I, I ′ as in Definition 2.3. The following conditions are
sufficient for R to be an inverse of T :

(7) Of which we give the proof here, since this fact was not made explicit in [18].
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(i) ∀Σ ∈ Sig,∀M ∈ Mod(Σ),∀E′ ∈ Pre(ΣT ): M ∈ (MT )R ∧ (M � E′R ⇒
MT �′ E′),

(ii) ∀Σ ∈ Sig,∀M ∈ Mod(Σ): M ∈ (MT )R ∧ (MT )R ⊆ Mod(Th(M)).

The conditions in the previous proposition also ensure full adequacy of the
inverse transformation, as shown by the following

Proposition 3.7. If R : I ′ → I is an inverse of T : I → I ′ such that
M ∈ (MT )R holds for every model M in I, then

(i) R is fully adequate,
(ii) R ◦ T is fully adequate.

Finally, the following result shows the contravariant inheritance of (two forms
of) compactness by suitable pre-institution transformations.

Theorem 3.8 (Compactness). Let T : I → I ′ be a fully adequate pre-institu-
tion transformation, with I, I ′ as in Definition 2.3.

(i) I ′ compact ⇒ I compact.
(ii) (I ′ consequence-compact ∧ T quasi-finitary) ⇒ I consequence-com-

pact.

4. Compact transformations. Roughly, a notion of compact transformation
is obtained by taking a notion of compactness as introduced for pre-institutions,
and “stretching it along the arrow”. Thus, compactness (for satisfaction) of a
transformation relates satisfiability of a translated presentation to satisfiabil-
ity of the translation of every finite subpresentation. Similarly, consequence-
compactness of a transformation relates consequence from a translated presen-
tation to consequence from the translation of some finite subpresentation. More
precisely, we propose the following

Definition 4.1 (Transformation compactness). Let T : I → I ′ be a pre-
institution transformation, with I, I ′ as in Definition 2.3.

(i) T is compact iff ∀Σ ∈ Sig,∀E ∈ Pre(Σ): (∀F ⊆ E: F finite ⇒
FT satisfiable) ⇒ ET satisfiable.

(ii) T is consequence-compact iff ∀Σ ∈ Sig,∀E ∈ Pre(Σ),∀ϕ ∈ Sen′(ΣT ):

ET � ϕ ⇒ ∃F ⊆ E : F finite ∧ FT � ϕ .

A number of relationships link compactness of (fully) adequate transforma-
tions to compactness of their source and target pre-institutions. These relation-
ships are collected in the following theorem, which subsumes and refines Theo-
rem 3.8.

Theorem 4.2 (Transformation compactness). Let T : I → I ′ be an adequate
pre-institution transformation, with I, I ′ as in Definition 2.3.

(i) T compact ⇔ I compact.
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(ii) (T fully adequate ∧ I ′ compact) ⇒ T compact.
(iii) (T quasi-finitary ∧ T consequence-compact) ⇒ I consequence-compact.
(iv) (T fully adequate ∧ I ′ consequence-compact) ⇒ T consequence-compact.

P r o o f. (i) (⇒) Let E be a finitely satisfiable Σ-presentation in I, thus for
every finite F ⊆ E there is a Σ-model MF such that MF � F ; then the non-empty
(MF )T �′ FT by the satisfaction invariant, thus compactness of T entails that
ET is satisfiable, whence satisfiability of E follows from the adequacy of T .

(⇐) Let E be a Σ-presentation in I, with FT satisfiable for every finite F ⊆
E; then adequacy of T entails F satisfiable for every finite F ⊆ E, whence E
satisfiable follows from compactness of I, and therefore ET is satisfiable, by the
satisfaction invariant.

(ii) Immediate consequence of (i) and Theorem 3.8(i).
(iii) Let Σ ∈ Sig, ϕ ∈ Sen(Σ), and E ∈ Pre(Σ), with E � ϕ. Let F ′ be a set

consisting of one representative per equivalence class in (ϕT − TautT (Σ))/≡I′ ;
thus F ′ is finite, since T is quasi-finitary. Then ET �′ F ′, since ET �′ ϕT , which
follows from Proposition 3.3(ii) and adequacy of T . Moreover, consequence-com-
pactness of T entails that for each ψ ∈ F ′ there is a finite Fψ ⊆ E such that
(Fψ)T �′ ψ, thus

⋃
ψ∈F ′((Fψ)T ) �′ F ′, whence (

⋃
ψ∈F ′ Fψ)T �′ F ′ follows from

Proposition 3.3(iii) and adequacy of T .
Let then F =

⋃
ψ∈F ′ Fψ. Since ϕT ≡I′ TautT (Σ) ∪ F ′, and FT �′ TautT (Σ)

by Proposition 3.4 and adequacy of T , we infer FT �′ ϕT , whence F � ϕ follows
from Proposition 3.3(i). Since F ⊆ E and F is finite, we conclude that I is
consequence-compact.

(iv) Let Σ ∈ Sig, ψ ∈ Sen′(ΣT ), and E ∈ Pre(Σ), with ET �′ ψ. Since T is
fully adequate, Proposition 3.3(iv) entails

⋃
ϕ∈E ϕT �′ ψ. Since I ′ is consequence-

compact, there is a finite F ′⊆
⋃
ϕ∈E ϕT such that F ′ �′ ψ. Now, for each ξ∈F ′

pick a ϕξ ∈ E such that ξ ∈ (ϕξ)T . Then F ′ ⊆
⋃
ξ∈F ′(ϕξ)T . Let F = {ϕξ | ξ ∈

F ′}. Clearly, F ⊆E and F finite, and F ′ ⊆
⋃
ϕξ∈F (ϕξ)T , hence

⋃
ϕξ∈F (ϕξ)T �′ ψ.

Then, by adequacy of T , Proposition 3.3(iii) entails FT �′ ψ.

Corollary 4.3. Theorem 3.8(ii) is an immediate consequence of Theorem
4.2(iii) and (iv).

Theorem 4.2 thus refines Theorem 3.8 in that it splits the backward inheri-
tance, or “reduction” of compactness, “in two halves”: a “source half”, whereby
the source pre-institution inherits compactness from the transformation, and a
“target half”, whereby the transformation inherits compactness from the target
pre-institution.

The refinement is informative, in that it gives appropriate place to the hy-
potheses that appear in Theorem 3.8, viz.: 1) the target half of the reduction
to full adequacy, for both notions of compactness, and 2) the source half of the
reduction to adequacy, for both notions of compactness, and to quasi-finitarity
for consequence-compactness.
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The refinement will prove useful in Theorem 6.6, precisely, in Lemma 6.6.12
therein.

5. Abstract sentences, expansion adequacy. We are going to introduce a
notion of abstract pre-institution that seems consistent with the abstract model-
theoretic purpose proposed in [11], that we quoted in Section 2 above. Abstraction,
in the sense of the following definition, essentially applies to logically equivalent
sentences, in the sense that no distinction is drawn between sentences that have
exactly the same models.

Definition 5.1 (Abstract pre-institution). A pre-institution I = (Sig,Sen,
Mod,�) has abstract sentences, or is abstract, iff it meets the following require-
ment: ∀Σ ∈ Sig,∀ϕ,ψ ∈ Sen(Σ): Mod(ϕ) = Mod(ψ) ⇒ ϕ = ψ.

Abstraction can be applied to every pre-institution that has the ps property
by the obvious quotient construction. To each ps pre-institution an abstract form
of it corresponds, thus. This is formalized as follows.

Definition 5.2. For each ps pre-institution I = (Sig,Sen,Mod,�), the ab-
stract pre-institution Î = (Sig,Sen ,̂Mod,�̂) is defined as having the same cat-
egory of signatures and model functor, and:

(i) ∀Σ ∈ Sig: Sen (̂Σ) = {[ϕ]≡I |ϕ ∈ Sen(Σ)},
(ii) ∀τ : Σ1 → Σ2 ∈ Sig,∀ϕ ∈ Sen(Σ1): Sen (̂τ)[ϕ]≡I = [Sen(τ)ϕ]≡I ,
(iii) ∀Σ ∈ Sig,∀ϕ ∈ Sen(Σ),∀M ∈ Mod(Σ): M �̂ [ϕ]≡I ⇔ M � ϕ.

Clearly, satisfaction in Î is well defined; indeed, satisfaction is invariant under
the correspondence established by the previous definition. This entails that the
abstraction made by the quotient as in Definition 5.2 gives no loss of information
about models, in the sense that elementary equivalence of models is invariant as
well.

Fact 5.3. Let I be a ps pre-institution, with Î the corresponding abstract
pre-institution according to Definition 5.2. Then for all models M1, M2 in I (as
well as in Î): M1 ≡Î M2 ⇔ M1 ≡I M2 .

As an example, we define the abstract, first-order pre-institution, which is rele-
vant to the theorem presented in the next section. The first-order pre-institution is
defined according to Example 2.9, except that all first-order signature morphisms
are taken, not just the renamings.

Example 5.4 (Abstract first-order pre-institution). Let I = (SigI ,SenI ,
ModI ,�I) be the first-order pre-institution, with all first-order signature mor-
phisms in SigI . The abstract first-order pre-institution Î = (SigÎ ,SenÎ ,ModÎ ,�Î)
is defined by SigÎ = SigI , ModÎ = ModI , and

(i) ∀Σ ∈ SigI : SenÎ(Σ) = {[ϕ]≡I |ϕ ∈ SenI(Σ)},
(ii) ∀τ : Σ1 → Σ2 ∈ SigI ,∀ϕ ∈ SenI(Σ1): SenÎ(τ)[ϕ]≡I = [SenI(τ)ϕ]≡I ,
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(iii) ∀Σ ∈ SigI ,∀ϕ ∈ SenI(Σ),∀M ∈ ModI(Σ): M �Î [ϕ]≡I ⇔ M �I ϕ.

Further, for notational convenience, we extend the use of propositional connectives
to the abstract sentences of Î by the following convention:

¬[ϕ]≡I = [¬ϕ]≡I , [ϕ]≡I ∧ [ψ]≡I = [ϕ ∧ ψ]≡I , [ϕ]≡I ∨ [ψ]≡I = [ϕ ∨ ψ]≡I .

As one should expect from Definition 2.12, turning sentences into abstract
ones has the effect of turning quasi-finitary pre-institution transformations into
finitary ones.

Fact 5.5. If T : I → I ′ is a quasi-finitary pre-institution transformation,
with I, I ′ as in Definition 2.3, then T̂ : I → Î ′ defined by

(i) ∀Σ ∈ Sig: ΣT̂ = ΣT ,
(ii) ∀Σ ∈ Sig,∀E ∈ Pre(Σ): ET̂ = {[ϕ]≡I′ |ϕ ∈ ET },
(iii) ∀Σ ∈ Sig,∀M ∈ Mod(Σ): MT̂ = MT

is a finitary pre-institution transformation.

The identification of sentences up to logical equivalence has some technical
convenience, which will surface in the proof of the theorem presented in the next
section. In the formulation of that theorem, yet another property of pre-institution
transformations is needed, which mirrors the notion of adequacy, but applied to
model expansions rather than to models.

Definition 5.6 (Expansion adequacy). Let T : I → I ′ be a pre-institution
transformation, with I, I ′ as in Definition 2.3. T is expansion-adequate iff ∀τ :
Σ1 → Σ2 ∈ Sig,∀M1 ∈ Mod(Σ1),∀M ′2 ∈ Mod

′(Σ2T ):

M ′2τT ∈M1T ⇒ ∃M2 ∈ Mod(Σ2) : M2τ = M1 ∧M ′2 ∈M2T .

In other words, T is expansion-adequate whenever every τT -expansion of a
transform of any given model is a transform of a τ -expansion of that model, for
all signature morphisms τ in the source pre-institution.

6. Equivalence with the abstract, first-order pre-institution. We start
with a couple of general definitions and propositions, relating to discernibility
of models that are transforms of the same model, along a given pre-institution
transformation.

Definition 6.1. Let T : I → I ′ be a pre-institution transformation, with I,
I ′ as in Definition 2.3. T is ≡I-limited iff ∀Σ ∈ Sig, ∀ϕ ∈ Sen(Σ), ∀M ∈ Mod(Σ),
∀M ′1,M ′2 ∈MT : M ′1 �′ ϕT ⇔ M ′2 �′ ϕT .

Definition 6.2. Let T : I→I ′ be a pre-institution transformation, with I, I ′
as in Definition 2.3. T is ≡I′ -limited iff ∀Σ ∈ Sig, ∀M ∈ Mod(Σ), ∀M ′1,M ′2∈MT :
M ′1 ≡I′ M ′2.

Of the two properties introduced above, the latter entails the former, whilst
models that are transforms of the same model along a ≡I-limited transformation
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T : I → I ′ may well be discernible by sentences of the target pre-institution—
albeit not by translations of sentences of the source pre-institution.

Fact 6.3. If T : I → I ′ is a ≡I′-limited pre-institution transformation, then
it is ≡I-limited.

P r o o f. Immediate.

Both of the following facts play a rôle in the subsequent, main theorem.

Proposition 6.4. If the pre-institution I is closed under negation, then every
fully adequate transformation T : I → I ′ is ≡I-limited.

P r o o f. By contradiction, assume that for some Σ-sentence ϕ and Σ-model
M in I there exist M ′1 and M ′2, both in MT , such that M ′1 �′ ϕT and not
M ′2 �′ ϕT . Then not MT �′ ϕT , thus not M � ϕ by the satisfaction invariant,
that is M � ¬ϕ, whence M ′1 �′ (¬ϕ)T ; therefore M ′1 �′ ϕT ∪ (¬ϕ)T , whence by
full adequacy of T , ∃M1: M ′1 ∈ M1T ∧M1 � {ϕ} ∪ {¬ϕ}, i.e. M1 � ϕ and not
M1 � ϕ, which is absurd.

Proposition 6.5. Let T : I → I ′ be a pre-institution transformation. If T
is ≡I-limited , then M1T ∩M2T 6= {} ⇒ M1 ≡I M2 holds for all models M1,
M2 in I.

P r o o f. For all sentences ϕ and models M in I, Definition 6.1 and the satis-
faction invariant entail that ∀M ′ ∈ MT : M ′ �′ ϕT ⇔ MT �′ ϕT ⇔ M � ϕ.
Thus M ′ ∈ M1T ∩M2T implies that for every sentence ϕ in I: M ′ �′ ϕT ⇔
M1 � ϕ ⇔ M2 � ϕ, i.e. M1 ≡I M2.

The idea for the following theorem comes from Lemma XII.2.3 of [6], which
plays a significant rôle in the proof of the first Lindström theorem as presented
in [6]. The lemma says the following. Let LI be the first-order logical system (in
the sense of abstract model theory), and L a compact regular (8) logical system
such that LI ≤ L. If M1 ≡LI M2 ⇒ M1 ≡L M2 holds for all first-order models
M1, M2, then L ≤ LI . Now, the following theorem gives a similar result in our
abstract framework, but without asking any regularity condition. On the other
hand, the theorem is not—properly speaking—a generalization of the recalled
lemma, for only one reason: it only applies to abstract pre-institutions. However,
as we argue at the end of this section, a slight variant of the theorem holds that
is a proper generalization of the recalled lemma.

Theorem 6.6 (Equivalence with the abstract first-order pre-institution). Let
Î be the abstract first-order pre-institution, with Î=(SigÎ , SenÎ , ModÎ , �Î) ac-
cording to Example 5.4, and L = (SigL,SenL,ModL,�L) an abstract pre-institu-

(8) This means that L is closed under propositional connectives, permits relativization, and
allows elimination of function symbols and constants—see Definition XII.1.3 in [6] for further
details.
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tion that is consequence-compact and has the ps property. If there exists a trans-
formation T : Î → L such that :

(i) SiT : SigÎ → SigL is an isomorphism of categories;
(ii) T is fully adequate and expansion-adequate;
(iii) ∀Σ ∈ SigÎ , ∀M ′ ∈ ModL(ΣT ): ∃M ∈ ModÎ(Σ): M ′ ∈MT ;
(iv) ∀Σ ∈ SigÎ , ∀M1,M2 ∈ ModÎ(Σ), ∀M ′1 ∈ M1T , ∀M ′2 ∈ M2T : M1 ≡Î M2

⇒ M ′1 ≡L M ′2,

then T has a fully adequate, expansion-adequate and finitary inverse.

P r o o f. For the sake of conciseness and modularity, the proof is structured
into a number of local definitions and lemmas, which are to be understood under
the assumptions and with the notation that are introduced by the hypotheses of
the theorem (we contribute this somewhat unusual proof style to the investigation
on the engineering of mathematical arguments—cf. [8]).

Definition 6.6.1. SiR : SigL → SigÎ
def= (SiT )−1.

Definition 6.6.2. (i) If M ′ ∈ ModL(Σ′) for some Σ′ ∈ SigL, then M ′R
def=

{M |M ′ ∈MT }.
(ii) If M′ ⊆ ModL(Σ′) for some Σ′ ∈ SigL, then M′R

def=
⋃
M ′∈M′M ′R.

Lemma 6.6.3. (M ′)R 6= {} for every model M ′ in L.

P r o o f. By hypothesis (iii), thanks to Definition 6.6.2(i).

Lemma 6.6.4. M ′ ∈ (M ′R)T for every model M ′ in L.

P r o o f. Definition 6.6.2(i) entails ∀M ∈ M ′R: M ′ ∈ MT , and according to
Lemma 6.6.3, ∃M ∈ M ′R; thus ∃M ∈ M ′R : M ′ ∈ MT , which is equivalent to
M ′ ∈ (M ′R)T .

Lemma 6.6.5. M ∈ (MT )R for every model M in Î.

P r o o f. Definition 6.6.2(i) entails ∀M ′ ∈MT : M ∈ (M ′)R, and by hypothesis
∃M ′ ∈ MT (since T is a pre-institution transformation); thus ∃M ′ ∈ MT : M ∈
(M ′)R, i.e. M ∈ (MT )R, by Definition 6.6.2(ii).

Lemma 6.6.6. T is ≡L-limited.

P r o o f. Follows from hypothesis (iv) and Definition 6.2, since M ≡Î M for
all first-order models M .

Lemma 6.6.7. ∀M1,M2 ∈M ′R: M1 ≡Î M2, for every model M ′ in L.

P r o o f. If both M1 and M2 are in M ′R, then M ′ ∈M1T ∩M2T by Definition
6.6.2(i), thus M1T ∩M2T 6= {}, whence M1 ≡Î M2 follows from Lemma 6.6.6,
Fact 6.3 and Proposition 6.5.

As a standard consequence of the elementary equivalence of all models in M ′R
we obtain
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Corollary 6.6.8. ThI(M ′R) is a complete first-order theory , for every model
M ′ in L .

Lemma 6.6.9. ∀τ ′ : Σ′1 → Σ′2 ∈ SigL, ∀M ′ ∈ ModL(Σ′2): M ′Rτ
′
R = (M ′τ ′)R.

P r o o f. We show that (a) M ′Rτ
′
R ⊆ (M ′τ ′)R, and (b) (M ′τ ′)R ⊆M ′Rτ ′R.

(a) Let M1 ∈ M ′Rτ
′
R. Then ∃M2 ∈ M ′R: M1 = M2τ

′
R, hence ∃M2: M1 =

M2τ
′
R ∧ M ′ ∈ M2T , by Definition 6.6.2(i). Then M ′τ ′ ∈ M2T τ

′ = (M2τ
′
R)T

by naturality of model transformation in T and hypothesis (i), and since M1 =
M2τ

′
R, we can infer M ′τ ′ ∈M1T , whence M1 ∈ (M ′τ ′)R by Definition 6.6.2(i).
(b) Let M1 ∈ (M ′τ ′)R. Then M ′τ ′ ∈ M1T by Definition 6.6.2(i), whence

hypothesis (i) and expansion-adequacy of T ensure that ∃M2: M1 = M2τ
′
R ∧

M ′ ∈ M2T . Definition 6.6.2(i) then entails M2 ∈ M ′R, thus M2τ
′
R ∈ M ′Rτ ′R, i.e.

M1 ∈M ′Rτ ′R.

Lemma 6.6.10. ∀Σ ∈ SigÎ , ∀ϕ ∈ SenÎ(Σ), ∀M ′ ∈ ModL(ΣT ): M ′R �Î ϕ ⇔
M ′ �L ϕT .

P r o o f. Let Σ ∈ SigÎ , ϕ ∈ SenÎ(Σ), and M ′ ∈ ModL(ΣT ). Then

M ′R �Î ϕ

⇔ ∀M ∈M ′R : M �Î ϕ

⇔ ∀M ∈ ModÎ(Σ) : M ′ ∈MT ⇒ M �Î ϕ (by Definition 6.6.2(i))

⇔ ∀M ∈ ModÎ(Σ) : M ′ ∈MT ⇒ MT �L ϕT (by the satisfaction invariant)

⇔ M ′ �L ϕT (by Lemma 6.6.6 and Definition 6.2).

Lemma 6.6.11. ∀Σ′ ∈ SigL, ∀ψ ∈ SenL(Σ′), ∀M ′ ∈ ModL(Σ′): M ′ �L ψ ⇒
(ThÎ(M

′
R))T �L ψ.

P r o o f. Assume M ′ �L ψ, and let N ′ �L (ThÎ(M
′
R))T . By adequacy of

T , ∃M ∈ ModÎ(Σ′R): N ′ ∈ MT ∧M �Î ThÎ(M
′
R). Then ThÎ(M

′
R) = ThÎ(M)

by Corollary 6.6.8, and M ∈ N ′R by Definition 6.6.2(i). Therefore ThÎ(N
′
R) =

ThÎ(M
′
R) by Lemma 6.6.7, whence ∀M ∈ M ′R, ∀N ∈ N ′R: M ≡Î N . Then

hypothesis (iv) and Definition 6.6.2(i) entail M ′ ≡L N ′, whence N ′ �L ψ follows
from the assumption.

Lemma 6.6.12. ∀Σ′ ∈ SigL, ∀ψ ∈ SenL(Σ′), ∀M ′ ∈ ModL(Σ′):

M ′ �L ψ ⇒ ∃ϕ ∈ SenÎ : M ′R �Î ϕ ∧ ϕT �L ψ .

P r o o f. If M ′�L ψ, then (ThÎ(M
′
R))T �L ψ by Lemma 6.6.11. Moreover, T is

consequence-compact by Theorem 4.2(iv), since by hypothesis L is consequence-
compact and T is fully adequate. There exists thus a finite F = {ϕ̂1, . . . , ϕ̂n} ⊆
ThÎ(M

′
R) such that FT �L ψ, where ϕ1, . . . , ϕn are first-order sentences; let then

ϕ = [ϕ1 ∧ . . .∧ϕn]≡I . Clearly F ≡Î {ϕ}, hence FT ≡L ϕT by adequacy of T and
Proposition 3.3(ii), whence ϕT �L ψ.
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Lemma 6.6.13. If Σ′ ∈ SigL and ψ ∈ SenL(Σ′), for each M ′ ∈ ModL(ψ)
let ϕM ′ be some sentence in SenÎ(Σ

′
R) such that M ′R �Î ϕM ′ ∧ (ϕM ′)T �L ψ

(such a sentence exists according to Lemma 6.6.12). Then we have ModL(ψ) =⋃
M ′∈ModL(ψ)

ModL((ϕM ′)T ).

P r o o f. If M ′∈ModL(ψ), then M ′R �Î ϕM ′ by hypothesis, hence (M ′R)T �L
(ϕM ′)T by the satisfaction invariant, whence M ′ �L (ϕM ′)T follows from Lemma
6.6.4.

Conversely, if M ′ �L (ϕN ′)T for some N ′ ∈ ModL(ψ), then M ′ �L ψ follows
from Lemma 6.6.12, since (ϕN ′)T �L ψ.

Lemma 6.6.14. If Σ′ ∈ SigL and ψ ∈ SenL(Σ′), for each M ′ ∈ ModL(ψ) let
ϕM ′ be as in Lemma 6.6.13. Then there exists a finite M′ ⊆ ModL(ψ) such that
ModL(ψ) =

⋃
M ′∈M′ ModL((ϕM ′)T ).

P r o o f. Assume, by contradiction, that for every finite M′⊆ModL(ψ) there
exists N ′ ∈ ModL(ψ) such that ∀M ′ ∈ M′: not N ′ �L (ϕM ′)T , thus also
N ′R �Î ¬ϕM ′ by Lemma 6.6.10 and Corollary 6.6.8, therefore N ′ �L {ψ} ∪⋃
M ′∈M′((¬ϕM ′)T ) by the satisfaction invariant and Lemma 6.6.4. This entails

that, for every finite F ⊆ {¬ϕM ′ |M ′ ∈ ModL(ψ)}, the set {ψ} ∪
⋃
ϕ∈F ϕT

is satisfiable. From this fact, satisfiability of every finite F ′ ⊆ {ψ} ∪⋃
M ′∈ModL(ψ)

((¬ϕM ′)T ) can be inferred as follows. For each χ ∈ F ′ − {ψ},
pick an M ′χ such that χ ∈ (¬ϕM ′

χ
)T . Let G′ = {ψ} ∪

⋃
χ∈F ′−{ψ}((¬ϕM ′

χ
)T ).

Since the set G = {¬ϕM ′
χ
| χ ∈ F ′ − {ψ}} is finite, and moreover G ⊆ {¬ϕM ′ |

M ′ ∈ ModL(ψ)}, the set G′ is satisfiable, as shown above, hence so is every
finite subset of G′. Since every finite F ′ as above is a subset of some such
G′, it follows that every such F ′ is satisfiable as well. From compactness of L
we then infer satisfiability of {ψ} ∪

⋃
M ′∈ModL(ψ)

((¬ϕM ′)T ), i.e. existence of
an M ′ ∈ ModL(ψ) such that M ′ �L (¬ϕM ′)T , which implies M ′R �Î ¬ϕM ′

by Lemma 6.6.10, hence not M ′R �Î ϕM ′ , by Corollary 6.6.8, contrary to the
hypothesis.

Lemma 6.6.15. ∀Σ ∈ SigÎ , ∀ψ ∈ SenL(ΣT ), ∃ψR∈SenÎ(Σ): ∀M ∈ ModÎ(Σ):
M �Î ψR ⇔ MT �L ψ.

P r o o f. Let M′ψ = {M ′1, . . . ,M ′n} ⊆ Mod
′(ψ) such that

(∗) Mod′(ψ) =
⋃

i∈{1,...,n}

ModL((ϕ̂M ′
i
)T )

according to Lemma 6.6.14, with ϕM ′
1
, . . . , ϕM ′

n
first-order sentences. Let ψR =

[ϕM ′
1
∨ . . . ∨ ϕM ′

n
]≡I . Then

M �Î ψR
⇔ M �Î ϕ̂M ′

i
for some i ∈ {1, . . . , n}
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⇔ MT �L ϕ̂M ′
i
T for some i ∈ {1, . . . , n}, by the satisfaction invariant,

⇔ MT �L ψ, according to (∗) above, and since all models in MT

are L-equivalent, according to Lemma 6.6.6.

Lemma 6.6.16. With the notation of Lemma 6.6.15, ∀M ′ ∈ ModL(ΣT ): M ′ �L
ψ ⇔ M ′R �Î ψR.

P r o o f.

M ′ �L ψ ⇔ (M ′R)T �L ψ (by Lemmas 6.6.4, 6.6.6 and 6.6.7)
⇔ M ′R �Î ψR (by Lemma 6.6.15).

Lemma 6.6.17. For every Σ ∈ SigÎ , for every mapping −R : SenL(ΣT ) →
SenÎ(Σ) : ψ 7→ ψR (according to Lemma 6.6.15), the corresponding mapping
−R : PreL(ΣT ) → PreÎ(Σ) : E′ 7→ E′R defined by E′R = {ψR | ψ ∈ E′} satisfies:
∀E′ ∈ PreL(ΣT ): ∀M ′ ∈ ModL(ΣT ): M ′ �L E′ ⇔ M ′R �Î E

′
R.

P r o o f. Immediate consequence of Lemma 6.6.16 and of the elementwise con-
struction of E′R.

Lemma 6.6.18. ∀τ ′ : Σ′1 → Σ′2 ∈ SigL, ∀E′ ∈ PreL(Σ′2): τ ′RE
′
R = (τ ′E′)R,

with E′R as in Lemma 6.6.17.

P r o o f. Because of the elementwise construction of E′R, it is sufficient to
show that τ ′RψR = (τ ′ψ)R for every ψ ∈ SenL(Σ′2), with ψR as in Lemma 6.6.15.
Since Î is abstract, by Definition 5.1 it is sufficient to show that ModÎ(τ

′
RψR) =

ModÎ((τ
′ψ)R). This has the following proof. If M ∈ ModÎ(Σ′2R), then

M �Î τ
′
RψR

⇔ Mτ ′R �Î ψR (by the ps property of Î)

⇔ (Mτ ′R)T �L ψ (by Lemma 6.6.15)

⇔ MT τ
′ �L ψ

(naturality of model transformation in T and Definition 6.6.1)

⇔ MT �L τ
′ψ (by the ps property of L)

⇔ M �Î (τ ′ψ)R (by Lemma 6.6.15).

We proceed to complete the proof of the theorem, as follows.
R : L→ Î according to Definition 6.6.1, the mapping of models as in Definition

6.6.2(i) and the mapping of presentations as in Lemma 6.6.17, is a pre-institu-
tion transformation, since Lemma 6.6.9 ensures naturality of model transforma-
tion, Lemma 6.6.18 ensures naturality of presentation transformation, and Lemma
6.6.17 shows validity of the satisfaction invariant.
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That R is an inverse of T follows from Proposition 3.5, Lemma 6.6.15, and
the construction of the mapping of presentations as in Lemma 6.6.17.

Full adequacy of R follows from Proposition 3.7 and Lemma 6.6.5.
Expansion-adequacy of R is shown as follows: ∀τ ′ : Σ′1 → Σ′2 ∈ SigL,∀M2 ∈

ModÎ(Σ
′
2R),∀M ′1 ∈ ModL(Σ′1):

M2τ
′
R ∈M ′1R
⇒ M ′1 ∈ (M2τ

′
R)T (by Definition 6.6.2(i))

⇒ M ′1 ∈M2T τ
′

(naturality of model transformation in T and Definition 6.6.1)

⇒ ∃M ′2 ∈ ModL(Σ′2) : M ′1 = M ′2τ
′ ∧M ′2 ∈M2T

⇒ ∃M ′2 ∈ ModL(Σ′2) : M ′1 = M ′2τ
′ ∧M2 ∈M ′2R (by Definition 6.6.2(i)).

Finitarity of R is an immediate consequence of Lemma 6.6.15 and of the
construction of the mapping of presentations as in Lemma 6.6.7.

As we mentioned above, Theorem 6.6 does not generalize the recalled lemma
from [6] because it only applies to abstract pre-institutions. A proper generaliza-
tion of the recalled lemma does exist, however, and is as follows.

In the first place, the hypothesis that L is abstract plays no rôle in the proof
of Theorem 6.6, thus it can be removed.

In the second place, we note that the only place where the abstractness of Î
is made use of in the proof of Theorem 6.6 is Lemma 6.6.18, which shows the
naturality of presentation transformation by R.

Now, consider the variant of Theorem 6.6 that is obtained by replacing Î with
ILI , the first-order pre-institution with only renamings as signature morphisms—
according to Example 2.9, and by relaxing finitarity of R to quasi-finitarity. This
variant of Theorem 6.6 holds as well, as we are going to argue by a simple proof
adaptation, and it is easy to see that it properly generalizes the recalled lemma
from [6].

The required proof adaptation is as follows.
Starting from Lemma 6.6.15, the abstract first-order sentence ψR is now to

be seen as a first-order presentation. Then the definition of E′R in Lemma 6.6.17
becomes E′R =

⋃
ψ∈E′ ψR, which clearly makes R meet quasi-finitarity. Finally,

consider Lemma 6.6.18. ψR is now a first-order presentation; more precisely, it is
the elementary equivalence class of a first-order sentence. So is τ ′RψR, since τ ′R
is a first-order signature isomorphism. And obviously, so is (τ ′ψ)R as well. Since
the presentations τ ′RψR and (τ ′ψ)R have exactly the same models, by a proof
analogous to that of Lemma 6.6.18, and since both presentations are elementary
equivalence classes of a first-order sentence, they must consist of the same sen-
tences, i.e. they coincide. The identity τ ′RE

′
R = (τ ′E′)R then follows from the

elementwise construction of E′R.
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7. Cardinal pre-institutions and Löwenheim–Skolem properties. To
begin with, we note that the properties expressed in the Löwenheim–Skolem theo-
rems (both Downward and Upward, see e.g. [4]) refer to the cardinality of models;
moreover, the cardinality of symbol sets (generalized by signatures, in our context)
play a rôle in generalizations of these theorems, such as the Löwenheim–Skolem–
Tarski theorem.

In pre-institutions, models as well as signatures are viewed as “points” in the
general case, that is, abstraction is made from any internal structure they may
have. The treatment of (general forms of) the Löwenheim–Skolem properties thus
requires the following concept.

Definition 7.1. A pre-institution with cardinal numbers, K = (I,#), or car-
dinal pre-institution for short, is a pre-institution I as in Definition 2.1 together
with a function # that assigns a cardinal number #Σ to each signature Σ, as
well as a cardinal number #M to each model M , also called the power of Σ or M
respectively, and that meets the following conditions, for all signature morphisms
τ : Σ1 → Σ2 and Σ2-models M :

1. if τ is monic then #Σ1 ≤ #Σ2,
2. if τ is epic then #Σ1 ≥ #Σ2,
3. #M ≥ #Mτ .

In abstract model theory, Löwenheim numbers tell the strength of downward
Löwenheim–Skolem theorems. The transfer of their definition to pre-institutions
is straightforward (cf. Def. 6.2.1 in [5]).

Definition 7.2. Let K be a cardinal pre-institution and κ a cardinal. lκ(K) is
the least cardinal µ such that every satisfiable set of sentences of power ≤ κ has
a model of power ≤ µ, provided there is such a cardinal; otherwise, lκ(K) =∞.

l(K) def= l1(K) is called the Löwenheim number of K.

The Löwenheim number of a cardinal pre-institution is thus the least cardinal
µ such that every satisfiable sentence has a model of power at most µ, provided
such a cardinal exists. Then, not unlike an abstract logic, a cardinal pre-institution
K has the Löwenheim–Skolem property down to λ iff l(K) ≤ λ.

Hanf numbers are the upward counterpart of Löwenheim numbers.

Definition 7.3. Let K be a cardinal pre-institution and κ a cardinal. hκ(K)
is the least cardinal µ such that every set of sentences of power ≤ κ has models
of arbitrarily large cardinality if it has a model of power ≥ µ, provided there is
such a cardinal; otherwise, hκ(K) =∞.

h(K) def= h1(K) is called the Hanf number of K.

The Hanf number of a cardinal pre-institution is thus the least cardinal µ
such that every sentence satisfiable by a model of power at least µ has models of
arbitrarily larger power, provided such a cardinal exists.
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A classical result in abstract model theory, viz. the Hanf theorem (1960) (see
e.g. Thm. 6.1.4 in [5]), guarantees existence of Hanf numbers for abstract logics
under certain “smallness” conditions. The same conditions guarantee existence of
Löwenheim numbers as well, by a similar argument (see e.g. Prop. 2.5.2 in [4]).
The formulation of analogous conditions for pre-institutions requires the following
notion.

Definition 7.4. Let I be a pre-institution as in Definition 2.1. A renaming in
I is an isomorphism % : Σ1 ' Σ2 in Sig. Moreover, we say that any two signatures
Σ1, Σ2 ∈ Sig are renaming-equivalent in I, written Σ1 ' Σ2, iff there exists a
renaming % : Σ1 ' Σ2 in Sig. As a matter of notation, if Σ ∈ Sig, [Σ] denotes
the renaming-equivalence class that contains Σ.

For cardinal pre-institutions, the following is hardly surprising.

Lemma 7.5. If % : Σ1 ' Σ2 is a renaming in a cardinal pre-institution K as
in Definition 7.1, then #Σ1 = #Σ2, #M2 = #M2%, and #M1 = #M1%

−1, for
all M1 ∈ Mod(Σ1) and M2 ∈ Mod(Σ2).

P r o o f. Immediate consequence of Definitions 7.1 and 7.4.

We are now ready to formulate smallness conditions for pre-institutions, that
will permit us to lift the Hanf theorem to our framework.

Definition 7.6 (small pre-institution). A pre-institution I is small iff it meets
the following conditions:

(i) the renaming equivalence of signatures in I has a small set of equivalence
classes,

(ii) for every signature Σ in I the set of Σ-sentences is small.

Smallness of a cardinal pre-institution K = (I,#) is just smallness of the
underlying pre-institution I, thus independent of the size of signatures or of
models that is defined by #.

Finally, the following property is a weaker form of the ps property (see Defini-
tion 2.2), since it requires satisfaction invariance only for renamings; this closely
reflects the renaming property of general logics, in the sense of [5].

Definition 7.7. Let I be a pre-institution as in Definition 2.1; I has the
renaming property iff it meets the following requirement:

∀% : Σ1 ' Σ2 ∈ Sig : ∀ϕ ∈ Sen(Σ1),∀M ∈ Mod(Σ2) : M% � ϕ ⇔ M � %ϕ.

The lifting of the Hanf theorem to pre-institutions now follows. The set-theore-
tic axiom of replacement plays a key rôle, as in the proof of the classical Hanf
theorem.

Proposition 7.8. Let K be a cardinal pre-institution as in Definition 7.1. If
K has the renaming property and is small , then both its Löwenheim number and
its Hanf number exist.
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P r o o f. Let K be a cardinal pre-institution as in the hypothesis. By the axiom
of choice, a small set H of signatures exists such that ∀Σ ∈ Sig: [Σ]∩H is a sin-
gleton. We note that the renaming property of K has the following consequence:
if Σ ' Σ1, then a renaming % : Σ → Σ1 exists, and by Lemma 7.5 and Defini-
tion 7.7 a power-preserving bijection between the models of ϕ and those of %ϕ
exists, for every ϕ ∈ Sen(Σ). Now, for each Σ ∈ H and ϕ ∈ Sen(Σ), let αϕ be ∞
if ϕ has no model, or otherwise the least cardinal µ such that µ = #M for some
model M of ϕ. By the axiom of replacement, the set {αϕ |ϕ ∈ Sen(Σ), Σ ∈ H}
is small, thus its least upper bound exists, and this is the Löwenheim number of
K thanks to the aforementioned consequence of the renaming property of K.

The existence of the Hanf number of K has a similar proof.

For the applicability of our form of the “reduction scheme” to Löwenheim–
Skolem properties along pre-institution transformations, these need the following
property. We say that a transformation on cardinal pre-institutions preserves
model power if model power never decreases along the transformation. More pre-
cisely:

Definition 7.9. Let T : K → K′ be a transformation on cardinal pre-institu-
tions K = (I,#), K′ = (I ′,#′), with T : I → I ′ as in Definition 2.3. We say that
T : K → K′ preserves model power iff ∀Σ ∈ Sig, ∀M ∈ Mod(Σ), ∀M ′ ∈ MT :
#M ≤ #′M ′.

By way of notation, if S is a small set, let |S| denote its cardinality. We
conclude with the following reduction theorem for downward Löwenheim–Skolem
properties.

Theorem 7.10. Let K, K′ be cardinal pre-institutions as in Definition 7.9. If
there exists an adequate transformation T : K → K′ that preserves model power
and meets the following condition for cardinals µ, ν: ∀Σ ∈ Sig, ∀E ∈ Pre(Σ):
|E| ≤ µ ⇒ |(ET − TautT (Σ))/≡I′ | ≤ ν, then lν(K) ≤ lν(K′).

P r o o f. Let Σ ∈ Sig, E ∈ Pre(Σ), with |E| ≤ µ, E satisfiable. If M � E,
then MT �′ ET by the satisfaction invariant, and MT is non-empty. Thus ET
is satisfiable, and |(ET − Taut T (Σ))/≡I′| ≤ ν by the hypothesis. Now, let E′

consist of one sentence for each equivalence class in (ET − TautT (Σ))/≡I′ , thus
|E′| ≤ ν. Clearly, E′ is satisfiable iff so is ET −TautT (Σ); moreover, the adequacy
of T entails that ET � TautT (Σ), by Proposition 3.4. Therefore E′ is satisfiable
because so is ET ; the fact that |E′| ≤ ν further entails that E′ has a model M ′

with #′M ′≤ lν(K′). Then, by the construction of E′ and since ET � TautT (Σ),
M ′ is a model of ET as well, hence the adequacy of T entails the existence of
a model N of E such that M ′ ∈ NT . Since T preserves model power, we infer
#N ≤ #′M ′≤ lν(K′). Thus every satisfiable E of power at most µ has a model
of power at most lν(K′), which is what we had to prove.
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8. Related work (9). This work shares with [2] the motivation for fo-
cussing on the morphisms of institution categories more than on their objects.
Clearly, a reason for this is the interest that institution-independent specifica-
tion [19] and general logics [5, 15] naturally find in computer science. It may
be source of some surprise, thus, that so far no general agreement has been
reached on the most convenient notion of institution morphism. A careful analy-
sis and comparison of several, quite distinct such notions can be found in [2]. To
that, we wish to add the following, necessarily quick and preliminary considera-
tions.

In comparison with the notions of institution morphism proposed in [9, 15,
2], our notion is the only one where the three arrows (respectively relating to
signatures, sentences, models) are all covariant. Of those three notions, the one
which seems closest to ours is that of basic simulation [2], which essentially differs
from ours in two respects: 1) it sends sentences to sentences, whereas ours sends
presentations to presentations, and 2) model transformation is contravariant, but
by a surjective, partial natural transformation. The latter could thus be turned
into a covariant, total natural transformation, sending models to sets of models,
like in our case. Of course, the model sets ought to be disjoint; this condition,
arising from well-definedness of the model transformation as defined for basic sim-
ulations, closely corresponds to the sufficient condition for full adequacy given in
Lemma 2.6 above—modulo some equivalence of models in the source institution,
however.

Although we are more interested in the morphisms than in the objects, the less
restrictive definition of the objects in our framework also contributes to widen-
ing the applicability of abstract model-theoretic tools in algebraic specification.
Most of the specification frameworks studied so far fit the institutions scheme,
yet not all of them do. Cases where (at least the eps half of) the satisfaction
condition is known to fail include equational type logic with non-standard reduc-
tion (as exemplified in Section 5 of [18]) and, most notably, behavioural seman-
tics [3, 16, 17]. These frameworks fit the pre-institutions scheme, as well as the
drastically general scheme proposed in [7]—where hardly anything of the abstract
model-theoretic approach underlying the theory of institutions can be recognized,
however.

9. Future work. We conclude with a list of topics that currently attract our
interest, and which seem to deserve further investigation along, and as a test of,
the approach presented in this paper.

• Generalization of compactness notions and results to (κ, λ)-compactness
[11], which is of interest in the study of infinitary logics.

(9) In this paper, we confine ourselves to the comparison proposed in Section 6 of [18].
In future work of ours we intend to offer a more extensive comparison with related work [1],
together with an exploration of connections with other topics in the field of algebraic logic.
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• Investigation of the applicability of the reduction scheme, as generalized
here, to other properties such as: Beth definability, Craig interpolation, Robinson
property, Karp property, freeness, initiality, etc.

• Lindström theorems.

• Expressiveness applications.
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