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Abstract. Weak direct products of arbitrary universal algebras are introduced. The usual
notion for groups and rings is a special case. Some universal algebraic properties are proved and
applications to cylindric and polyadic algebras are considered.

1. Introduction. The universal algebraic notions of weak direct products
introduced in the literature so far ([10, Def. 1, p. 139], [11, p. 104]) are not really
universal algebraic because of the following. In any similarity class K of algebras,
the weak direct products as defined in Grätzer [10] or in [11] do not exist, except
in the trivial case when the similarity type of K consists of a single constant
symbol only. As it is explained in [10, Ex. 45, p. 156], neither rings with unit
element nor Boolean algebras have weak direct products in the sense of [10] or
[11]. At the same time, weak direct products have been introduced (“locally”,
that is, in a non-universal algebraic fashion) in the literature, for many of those
classes of algebras for which the version of the concept introduced in [10] or [11]
does not exist. These weak direct products do play an important rôle in the recent
literature (see e.g. several sections of [16] or [9]).

Here we suggest an improved (generalized) version of the concept introduced
in [10] or [11]. This version of a weak direct product exists in most cases.

(In passing we note that weak direct products are used in algebra not only
for obtaining structure theorems as it might be the case in group theory. Weak
direct products play an important rôle in algebraic logic, e.g. in Boolean algebra
theory—and for Boolean algebras, no structure theorem holds with weak direct
products.)
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2. New concept of a weak direct product. Throughout the paper, t
stands for a similarity type such that in the similarity class Algt of all algebras
of type t, every algebra has a minimal (i.e. smallest) subalgebra. (There are two
ways of achieving this: either t contains at least one constant symbol, or else the
empty algebra is not excluded from Algt. Here we do not care which one is the
case.)

Let Ai ∈ Algt for each i ∈ I, for some set I. Then P
i∈I

Ai denotes the direct

product of these algebras in the usual sense (cf. [10] or [11, Def. 0.3.1]).
Definition 1 below generalizes [11, Remark 0.3.60, p. 104]. It is also a gen-

eralization of [10, p. 139]. Note that the Boolean algebras do not have infinite
weak direct products in the sense of [10] or [11], but they do in the sense of our
Definition 1. Weak direct products of Boolean algebras proved to be rather useful
(see e.g. [16]). The same applies to relation algebras (cf. [9]). Also note that the
usual notion for groups and rings is still a special case of the weak direct product
in the sense of Definition 1.

Definition 1. Let 〈Ai : i ∈ I〉 be a system of (similar) algebras of similarity
type t. The weak direct product Pw

i∈I
Ai of 〈Ai : i ∈ I〉 is defined as follows.

Let M denote the universe of the minimal subalgebra of P
i∈I

Ai. Then

Pw

i∈I
Ai

def=
{
f ∈ P

i∈I
Ai : (∃g ∈M)({i ∈ I : f(i) 6= g(i)} is finite)} .

Pw

i∈I
Ai is defined to be the subalgebra of P

i∈I
Ai with universe Pw

i∈I
Ai.

Clearly, Pw

i∈I
Ai is unique.

Proposition 1. (i) Definition 1 is correct in the sense that Pw

i∈I
Ai is a sub-

universe of P
i∈I

Ai.

(ii) Pw

i∈I
Ai is a subdirect product if the minimal subalgebra M of Pw

i∈I
Ai is

nonempty , e.g. if t contains a constant symbol.

The proof is left to the reader.

R e m a r k 1. We could generalize Definition 1 so that it could have any fixed
filter F on I as its parameter. Then the last part of the formula would read as
{i ∈ I : f(i) = g(i)} ∈ F .

3. Universal algebraic and model theoretic results. Let K⊆Algt. That
is, K is a class of algebras of similarity type t. PwK denotes the class of (isomorphic
copies of) all weak products of possibly infinite families of algebras in K:

PwK def= I{Pw

i∈I
Ai : {Ai : i ∈ I} is a subset of K} ,

where I is the operator of taking isomorphic copies. PowK denotes the class of
weak powers of elements of K. We shall use the notations HK (homomorphic
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images of algebras in K), SK (subalgebras of algebras in K), PK (products of
algebras from K) as defined in [10] or [11]. UpK denotes the class of ultraproducts
of elements of K (see [11]). All these are meant up to isomorphisms.

We shall consider H, S, P, Up, Pw, and Pow as operators on the class Algt
of all universal algebras of some fixed similarity type t (see [19], [11, p. 89, above
Thm. 0.3.17], [4], [14, p. 387], or [10, p. 152, §23]). Namely, with any class K⊆Algt,
the operator H correlates another class HK ⊆ Algt. Juxtaposition of names of
operators denotes composition. For example, HSP is the operator correlating
with each K ⊆ Algt the class HSPK (see [11, p. 109] or [10]). The statement
“HH = H” means that for every similarity type t and every class K ⊆ Algt we
claim HHK = HK (cf. [11, Thm. 0.2.23]). On the other hand, SH 6= HS means
that there exists a similarity type t and a class K ⊆ Algt such that SHK 6= HSK
(cf. [11, 0.2.19] and [19]).

Recall from e.g. [14], [13] or [18, Thm. 3] that HSP and SPUp are the closure
operators of generating the smallest variety and generating the smallest subvariety
respectively. That is, HSPK and SPUpK are the smallest classes containing K
and axiomatizable by equations and equational implications, respectively.

Proposition 2. (0) P 6= Pw.
(i) HSUpPw = HSP = HSUpP, SUpPw = SPUp = SUpP.
(ii) HSPwUp 6= HSP, SPwUp 6= SPUp.

(iii) HSPwK is not first order axiomatizable, for some K ⊆ Algt.
(iv) HSPw, SPw, HPw, Pw, HSPwUp, SPwUp are n o t closure operators,

though HSUpPw and SUpPw are.
(v) HSPow preserves the formulas of the following shape:∨

i<α

( ∧
i≤j<α

ej

)
,

where α is an arbitrary ordinal , and {ej : j < α} is a set of equations which
contains a finite set of variables only (i.e., let β be a formula of the above shape;
then K � β implies HSPowK � β).

(vi) SPow preserves all the formulas of the following shape:∧
x∈X

ex →
∨
i<α

( ∧
i≤j<α

ej

)
,

where X is an arbitrary set ; α is an ordinal ; ex, ej are equations (of type t); and
{e : e is ex for some x ∈ X or ej for some j < α} contains a finite set of variables
only.

P r o o f. Notation: If Q, Q1 are operators, then Q ⊆ Q1 means that QK ⊆
Q1K for every K (cf. [19]).

Proof of (i). It is known that HSP = HSUpP (see e.g. [11, Thm. 0.4.64]).
To prove SUpPw = SUpP = SPUp we shall use the following lemma.
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Lemma 2.1. Let Pf and Pr denote the operators of taking all finite products
and all reduced products respectively. Let Q be an operator such that Pf ⊆ Q ⊆
SPr. Then

SUpQ = SPUp .

P r o o f. Some notation: Let K ⊆ Algt. Then

Univ K def=
{(∧

i∈I
ei →

∨
j∈J

pj

)
: K �

(∧
i∈I

ei →
∨
j∈J

pj

)
and

{ei : i ∈ I} ∪ {pj : j ∈ J} is a finite set of equations of type t
}
,

Qeq K def=
{(∧

i∈I
ei → p

)
:
(∧
i∈I

ei → p
)
∈ Univ K

}
.

If Σ is a set of formulas, then Mod(Σ) denotes the class of all models of Σ.
Now, SUpQK = Mod Univ QK, by [11, Thm. 0.3.83] and [18, Thm. 3(v)].
It is not hard to prove that

(∗)
(
PfK �

(∧
i∈I

ei →
∨
j∈J

pj

)
and J is finite

)
⇒ (∃j ∈ J)K �

(∧
i∈I

ei → pj

)
(see e.g. [18, Lemma 5]).

Now (∗), Pf ⊆ Q ⊆ SPr, and the fact that SPr preserves quasi-equations
(i.e. elements of Qeq ∅) imply that

Mod Univ QK = Mod Qeq K .

It is known that Mod Qeq K = SPUpK (see e.g. [13], [18, Thm. 3(vi)]). Lemma
2.1 is proved.

Since Pf ⊆ P ⊆ SPr and Pf ⊆ Pw ⊆ SPr, Lemma 2.1 implies SUpPw =
SUpP = SPUp. Thus (i) is proved.

Proof of (0), (ii), and (iv). To prove (0), (ii), and (iv) it is enough to prove

HSPwUp + P and HSPwUp + PwPw .

We shall fix a class K of algebras for which

HSPwUpK + PK and HSPwUpK + PwPwK .

Let the similarity type t be t def= {(0, 0), (1, 0), (fi, 1), (gi, 1) : i ∈ ω}. Now

K def= {A ∈ Mod t :
A = {0, 1} and for every i ∈ ω, A � fi0 = 0 and A � gi1 = 1} .

Lemma 2.2. For every element “a” of an arbitrary algebra A ∈ HSPwUpK,
either {fia : i ∈ ω} is finite or {gia : i ∈ ω} is finite.

P r o o f. It is enough to prove the lemma for every A ∈ PwK, since the op-
erator HS “preserves” the above property, and UpK = K. Let A = Pw

i∈I
Ai and
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{Ai : i ∈ I} ⊆ K. Let a ∈ A, a = 〈ai : i ∈ I〉. Now, either {i ∈ I : ai 6= 0} is finite
or {i ∈ I : ai 6= 1} is finite. Now, K � {fi0 = 0, gi1 = 1 : i ∈ ω} completes the
proof of Lemma 2.2.

Next we define a system 〈Ai : i ∈ ω+ ω〉 of algebras of K. Let i, j ∈ ω. In the
algebra Ai we define the operations fj and gj as follows:

fj(1) =
{

0 if j ≤ i,
1 otherwise, gj = Identity .

In Aω+i we define fj and gj as follows:

gj(0) =
{

1 if j ≤ i,
0 otherwise, fj = Identity .

Let A′ = P
i∈ω+ω

Ai and A′1 = Pw

i∈ω
Ai × Pw

i∈ω
Aω+i. Then A′ ∈ PK, A′1 ∈ PwPwK,

and A′1 ⊆ A′. For the element a′ = 〈0, 0, . . . , 1, 1, . . .〉 = A′1 neither {fia′ : i ∈ ω}
nor {gia′ : i ∈ ω} is finite (both in A′1 and A′). Thus, by Lemma 2.2, neither A′

nor A′1 is in HSPwUpK, proving HSPwUp + P and HSPwUp + PwPw. So,
(0), (ii), and (iv) are proved.

Proof of (iii). Recall from [11] that Lfω denotes the class of all locally finite-
dimensional cylindric algebras. HSPwLfω = Lfω but Lfω is not axiomatizable.

Proof of (vi). Let β = (
∧
x∈X

ex →
∨
i<α

(
∧

i≤j<α
ej)) be a formula of the required

shape, and let {v1, . . . , vm} be the set of variables occurring in β. Let A � β. We
have to prove

Pw

i∈I
Ai = A′ � β ,

where Ai is A for every i ∈ I. Suppose that

Pw

i∈I
Ai �

( ∧
x∈X

ex

)
[a1, . . . , am] .

For every projection function pji, we denote pji(ar) by ar(i). We then have A�
(
∧
x∈X

ex)[a1(i), . . . , am(i)]. Then, since A � β, we have

A �
∨
z∈α

( ∧
zi≤j<α

)
[a1(i), . . . , am(i)] .

Thus for every i ∈ I, there exists zi ∈ α such that

A �
( ∧
zi≤j<α

ej

)
[a1(i), . . . , am(i)] ,

that is, such that

A � {ej : zi ≤ j < α}[a1(i), . . . , am(i)] .
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Since Ai is A for every i ∈ I and a1, . . . , am ∈ Pw

i∈I
Ai, there is a finite J ⊆ I such

that
{〈a1(i), . . . , am(i)〉 : i ∈ I} ⊆ {〈a1(i), . . . , am(i)〉 : i ∈ J} .

Let r be the greatest element of {zi : i ∈ I} (it exists since J is finite). Then

A � {ej : r ≤ j < α}[a1(i), . . . , am(i)] ,

for every j ∈ J , and therefore also for every i ∈ I. This implies

Pw

i∈I
Ai � {ej : r ≤ j < α}[a1, . . . , am] ,

since subalgebras and direct products preserve equations and Pw⊆SP. Therefore

Pw

i∈I
Ai �

( ∧
x∈X

ex →
∨
z<α

( ∧
z≤j<α

ej

))
[a1, . . . , am] .

Since a1, . . . , am were arbitrary, (vi) is proved.

Proof of (v). This is a consequence of (vi) and the fact that H preserves
positive formulas even if they are infinitary.

The proof of Proposition 2 is complete.

R e m a r k 2. Properties of the operator HSPf were investigated in [7] and
[20].

Recall that if K contains finite algebras only, then PK contains no countable
algebras.

Proposition 3. Let t contain a constant symbol. Let α′ be an infinite cardinal
such that (∃A ∈ K) 1 < |A| ≤ α′. Then PwK contains an algebra of cardinality α′.

P r o o f. Let A ∈ K be such that 1 < |A| ≤ α′. Let A′ = Pw

i∈α
A. Now, |A′| = α′,

because |A| ≥ 2 and α′ · α′ = α′ (since α′ is infinite).

3. Examples and applications to cylindric algebras

Examples. 1. Weak direct products of Boolean algebras have been studied
recently in [16], [15], see also [6, p. 20, above Question 50].

2. In discussions of various special classes of algebras, in particular in the
theories of groups and rings, weak products actually play a more important rôle
than ordinary direct products (cf. e.g. [11, p. 105]).

3. Pw is specially important for cylindric algebras, because PwLfα = Lfα,
moreover, HSPwLfα = Lfα, and the class Lfα is the class of all first order theories
when considered as algebras (see [2, Thm. 5.3] and [1, V.5, VI.5]).

Proposition 4. PwLfα = Lfα.

P r o o f. Let Ai∈Lfα for every i∈I. Let f ∈Pw

i∈I
Ai be arbitrary. By Definition

1, there is a g ∈ M ⊆ P
i∈I

Ai, where M is the minimal subalgebra of P
i∈I

Ai,

such that f and g differ only at finitely many places, that is, {i ∈ I : f(i) 6=
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g(i)} is finite. By [11, Thm. 2.4.2], we have ∆f =
⋃
{∆f(i) : i ∈ I}. Also,

(∀i ∈ I)∆g(i) ⊆ ∆g and ∆g is finite by [11, Thm. 2.1.16]. Since (∀i ∈ I)[∆f(i)
is finite] by Ai ∈ Lfα, we can conclude that also ∆f is finite.

Problem 1 (cf. [11]). Let SiLf denote the class of simple elements of Lfω.
Obviously, HSPwSiLf ⊆ Lfω. Is HSPwSiLf = Lfω also true?

The importance and basic properties of the class SiLf were discussed in [1],
[2], [3], [12], and in [17].

Continuation ofExamples. 4. Weak direct sum of vector spaces is a special
case of weak direct product Pw as defined here (see [5, p. 42]).

5. Direct sums of modules are also a special case of weak direct products, as
are direct sums of Abelian groups (see e.g. [8]).

Recall that for groups, rings, semigroups with zero (annihilator), PwPw = Pw

(see also Proposition 5(i) below).

Proposition 5. (i) Let V = PwV be a class of algebras in which the one-
element algebra is initial (that is, every algebra in V contains a minimal subal-
gebra and the minimal subalgebra has exactly one element). Then in V we have
PwPw = Pw, that is, for every K ⊆ V we have PwPwK = PwK.

(ii) For Boolean algebras, Pw, SPw, SPwUp, PwUp are n o t closure oper-
ators.

(iii) For rings 〈R; +, ·, 0, 1〉 with u n i t , (ii) holds.

P r o o f. The proof of (i) is left to the reader.

Proof of (ii). Let 2 = 〈2;∩,∪,r〉 denote the two-element Boolean algebra,
and K = {2}. Let A′ ∈ SPwK be arbitrary. Then (∀a′ ∈ A′)[{x ∈ A′ : x > a′}
is finite or {x ∈ A′ : x < a′} is finite]. But this is not true for elements of
PwPwK: Let A′ = Pw

i∈ω
2; then (∃a′ ∈ A′ × A′)[{x ∈ A′ × A′ : x > a′} is infinite

and {x ∈ A′ × A′ : x < a′} is infinite]. (Of course, < is understood in A′ × A′.)
Clearly, K = UpK and thus SPwUpK = SPwK.

Proof of (iii). Let 2 = 〈{0, 1}; +, · , 0, 1〉 be the ring with unit 1 defined by
1 + 1 = 0 (this is the two-element Boolean ring). Let ≤ be defined as: x ≤ y iff
x · y = x. Then the proof given for (ii) works by taking K = {2}.

Problem 2. Find a category theoretic characterization of weak direct prod-
ucts.
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[10] G. Gr ä tzer, Universal Algebra, second ed., Springer, Berlin 1979.
[11] L. Henkin, J. D. Monk and A. Tarsk i, Cylindric Algebras, North-Holland, Amsterdam

1971 and 1985.
[12] L. Henkin, J. D. Monk, A. Tarsk i, H. Andr éka and I. N émet i, Cylindric Set Algebras,
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[18] I. N émet i and I. Sa in, Cone-implicational subcategories and some Birkhoff-type theorems,
in: Universal Algebra (Proc. Coll. Esztergom 1977), Colloq. Math. Soc. J. Bolyai 29, North-
Holland, Amsterdam 1982, 535–578.

[19] D. Pigozz i, On some operations on classes of algebras, Algebra Universalis 2 (1972),
346–353.
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