
ALGEBRAIC METHODS IN LOGIC AND IN COMPUTER SCIENCE

BANACH CENTER PUBLICATIONS, VOLUME 28

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 1993

ON THE DETECTION OF SOME PERIODIC LOOPS

DURING THE EXECUTION OF PROLOG PROGRAMS

DIMITER SKORDEV

Department of Mathematics, Sofia University

Blvd. J. Bourchier 5, 1126 Sofia, Bulgaria

1. Introduction. As is well known, the usual Prolog inference-strategy may
easily lead to infinite loops in the execution of programs, and sometimes even in
cases when a systematic search would give a result after a small number of steps.
Therefore the problem how to detect such loops has a practical significance, and
a number of authors have studied this problem (cf., for example, [3, 4, 5, 10,
12, 13, 16, 1, 2, 7, 11, 6]). Unfortunately, it is not possible to give a general
effective solution of the problem, due to undecidability results of the Theory of
Computability. So, any proposed solution can only be partial, and no best solution
could be expected to exist in any absolute sense.

The present paper treats the problem of detection of periodic loops during
the execution of programs. We use a variation of the approach from our ab-
stract [15], and attention is now also paid to more details concerning the de-
tection algorithm (in the case of propositional Prolog programs, the approach
from [15], attacking the loop detection problem for deterministic recursive al-
gorithms in the sense of [9], can be used without modification, but the expo-
sition of part of the mentioned algorithmic details is not superfluous even in
that case). Using this approach we proceed in a direction whose characteristic
feature is looking for repetition of situations during the execution of the pro-
grams and detecting the loops on the base of the observed repetitions (previous
work of other authors in this direction is presented, for example, in [3, 4, 5,
16, 1]).

1991 Mathematics Subject Classification: 68N17, 68N05.
Research partially supported by the Bulgarian Ministry of Science and Higher Education,

Contracts Nos. 56/1990, 43/1991.
The paper is in final form and no version of it will be published elsewhere.

[151]

152 D. SKORDEV

2. Formulation of the problem. A Prolog program is a finite sequence of
program clauses and operates on queries. The process of execution of a Prolog
program on a given query is called evaluation of the query on the base of the

program and, roughly speaking, consists in consecutive generation of goals by ap-
plication of SLD-resolution. We restrict ourselves to the case when the program
clauses and the queries are built only from atomic formulas of some first order
language (1) (thus we do not allow, for example, cut operators to occur in pro-
gram clauses or queries). The reader is expected to be familiar with such Prolog
programs and with the basic notions concerning their execution. We shall assume
that during a depth-first search all applications of resolution are done upon the
leftmost subgoal of the current goal and use the first program clause whose head
is unifiable with this subgoal. Such an application of resolution will be called a
canonical resolution step. It is a single-valued partial operation up to renaming
variables.

At the beginning of a depth-first search, the program starts its job having
some goal for evaluation. If a canonical resolution step is applicable to this goal
then the given goal is replaced by the result of such a step. The same is done
with the new goal, and so on as long as possible. A loop arises in the considered
depth-first search if the described process goes forever. Since the detection of such
loops is not effectively possible in the general case, we shall study the following
problem: define a reasonable notion of periodic loop in such a way that each such
loop could be effectively detected after generating finitely many members of the
mentioned sequence of goals.

An unsatisfactory solution is to consider only the case when the sequence of
the generated goals is ultimately periodic up to renaming variables in its mem-
bers. Loops of this sort can be detected by an algorithm using information about
only two of the generated goals (the last generated goal being one of them). One
could, for example, use a method proposed (for arbitrary iterative programs) by
R. P. Brent or its modification and generalization (again for that case) by the
present author (cf. [8, Section 3.1, Exercise 7] and [14], respectively, or Section 6
of the present paper) (2). The so-called tortoise-and-hare technique (cf. [16]) can
also be used, but for comparing the complete goals instead of comparing only their
first subgoals as in [16] (3). The great disadvantage of a restriction only to this

(1) We shall use notations which are usual for a certain dialect of Prolog: the constants, the
functional symbols and the propositional and predicate symbols will be strings beginning with
small letters from the Roman alphabet, and the variables will be strings beginning with capital
letters from the same alphabet.

(2) No previous work on loop detection is quoted in our paper [14], due to the lack of
information in this respect at the moment of writing the paper. For a similar reason, no citation
of Brent’s method is given in the abstract [15] (only the first edition of the book [8] was at our
disposal until recently).

(3) A repetition of the first subgoal is not sufficient, in general, for being sure that the
evaluation process is non-terminating, and therefore the method proposed in [16] is incorrect
(cf. footnote to Example 7 of the present paper).

DETECTION OF PERIODIC LOOPS 153

sort of loops is that such loops are not typical for the execution of Prolog programs
and therefore it would be very insufficient to be able to detect only them.

We shall consider a larger class of loops with some periodic features, to be
described further. An algorithm will be proposed which can be based, in essential,
on some of the first two methods mentioned above and which will have almost
the same complexity characteristics as in the previous restricted case.

3. Towards a more abstract treatment of the problem. As we noted
in the previous section, a canonical resolution step is a single-valued operation
up to renaming variables. In general, it is not single-valued in the ordinary sense.
One usually does not care very much about this and does not distinguish between
two goals which are equal up to renaming variables. There is, however, one un-
pleasant problem which requires more carefulness in this respect. The problem
is that, when considering finite sequences, one is inclined to think in terms of
concatenation, but concatenation, unfortunately, does not preserve equality up
to renaming variables. Therefore, when we do the mentioned identification, we
shall avoid using concatenation of sequences of formulas.

From now on, we shall consider objects called abstract goals. These will be
the equivalence classes of goals with respect to equality up to renaming vari-
ables. The set of all abstract goals (in the given first order language) will be
denoted by G. In this set a correct definition is possible of the partial opera-
tion of deleting the last subgoal. Namely, let G ∈ G, and let the ordinary goal
:− A1, . . . , Am belong to G. If m>0 then the result of applying the operation in
question to G will be the equivalence class of the ordinary (possibly empty) goal
:− A1, . . . , Am−1; this equivalence class will be called the predecessor of G and
will be denoted by π(G). If m = 0 then application of the operation to G is not
possible, and π(G) is not defined. The correctness of this definition follows from
the fact that if two ordinary goals are equal up to renaming variables, and one
of them is non-empty, then so is the other, and the results of deleting the last
subgoals of the given goals are again equal up to renaming variables.

Lemma 1. For each G in G, there is some natural number k such that G 6∈
dom(πk).

P r o o f. If G ∈ G and :− A1, . . . , Am belongs to G then G 6∈ dom(πm+1).

Now the main point is that a canonical resolution step can be represented by
a single-valued partial unary operation ̺ in G. To define ̺(G), where G is a given
element of G, we proceed as follows: we take an ordinary goal from the equivalence
class G and try to do a canonical resolution step with it; if the step gives some
result then we take ̺(G) to be its equivalence class, otherwise we consider ̺(G)
not defined. To prove the correctness of this definition, one has to prove two
facts: independence from the choice of a result of the canonical resolution step,
and independence from the choice of an ordinary goal from G. The first of these
facts is equivalent to the statement that the result of a canonical resolution step,

154 D. SKORDEV

if any, is unique up to renaming variables. The second statement follows from the
fact that if the canonical resolution step gives some result on an ordinary goal,
then the same result can be obtained from any other goal equal to the first one
up to renaming variables.

Adopting the convention that ϕψ = λG.ϕ(ψ(G)) for any two partial mappings
ϕ and ψ of G into G and using ϕ ⊆ ψ to denote that ϕ is a restriction of ψ, we
have two more lemmas.

Lemma 2. The inclusion ̺π ⊆ π̺ holds.

P r o o f. Let the application of ̺π to some element G of G give the result H.
Then G ∈ domπ and ̺(π(G)) = H. Consider an arbitrary element :− A1, . . . , Am

of G. Then m > 0 and :− A1, . . . , Am−1 is an element of π(G). Thanks to the
equality ̺(π(G)) = H, a canonical resolution step can be done with the goal
:− A1, . . . , Am−1 (hence m > 1) and the result belongs to H. Let A :− B1, . . . , Bn

be the first clause in P such that canonical application of resolution is possi-
ble to it and to :− A1, . . . , Am−1. Let A′ :− B′

1, . . . , B
′
n be a clause equal to

A :− B1, . . . , Bn up to renaming variables, but having no common variables with
the goal :− A1, . . . , Am−1, Am. Then A′ and A1 are unifiable. Denote by Θ a most
general unifier of A′ and A1. It is clear that B′

1Θ, . . . , B
′
nΘ,A2Θ, . . . , Am−1Θ will

be a result of a canonical resolution step with :− A1, . . . , Am−1, and it is easy to
verify that :− B′

1Θ, . . . , B
′
nΘ,A2Θ, . . . , Am−1Θ,AmΘ will be a result of a canon-

ical resolution step with :− A1, . . . , Am−1, Am. Since :− B′
1Θ, . . . , B

′
nΘ,A2Θ, . . . ,

Am−1Θ belongs to H, and :− B′
1Θ, . . . , B

′
nΘ,A2Θ, . . . , Am−1Θ,AmΘ belongs to

̺(G), we see that H = π(̺(G)), i.e. the application of π̺ to G also gives the
result H.

Lemma 3. The inclusions dom ̺ ⊆ domπ, dom ̺ ∩ dom(π2) ⊆ dom(̺π) hold.

P r o o f. Let G ∈ dom ̺, and let :− A1, . . . , Am belong to G. Then a canonical
resolution step can be performed with :− A1, . . . , Am. Hence m > 0 and therefore
:− A1, . . . , Am belongs to domπ. Suppose now that G belongs also to dom(π2).
Then π(G) ∈ domπ, and since :− A1, . . . , Am−1 belongs to π(G), we may be sure
that m > 1. Thus :− A1, . . . , Am−1 will have the first subgoal A1 which is the
same as the first subgoal of :− A1, . . . , Am. Hence a canonical resolution step can
also be performed with :− A1, . . . , Am−1, and this shows that π(G) ∈ dom ̺, i.e.
G ∈ dom(̺π).

In the next sections, we shall use the properties stated in the above three
lemmas to define a more convenient notion of periodic loop during depth-first
search than the one described in Section 2 and to give a method for detection of
such loops.

4. Goal spaces and their partial ordering. From this section on, we
shall proceed in an axiomatic way. Namely, we shall consider an arbitrary set G
together with two partial unary operations π and ̺ in it having the properties

DETECTION OF PERIODIC LOOPS 155

from Lemmas 1–3. The triple 〈G, π, ̺〉 will then be called a goal space. The reader
who is not interested in this level of generality may simply think that G, π, ̺ have
the same meaning as in the previous section (however, he or she must then skip
the application to deterministic Mazurkiewicz algorithms at the end of Section 6).
Accordingly, we shall use notations and terminology which are in consonance with
the above interpretation of G, π, ̺ (in particular, the elements of G will sometimes
be called goals). For the other readers, we give two examples of goal spaces not
of the above kind—an artificial example and a natural one.

Example 1. Let G be the set of all positive integers, domπ be the set of the
even ones, dom ̺ be the set of positive integers divisible by 10, and the actions of
π and ̺ be multiplication by 3

2
and 1

5
, respectively. Then 〈G, π, ̺〉 is a goal space.

Example 2. This example is connected with a deterministic case of recursive
algorithms in the sense of [9] (this case, mentioned above, is considered in [15]
from the point of view of loop detection). Let E and M be some sets (the set of
labels and the set of memory states). An E-instruction over M is, by definition,
a triple (λ, f,w), where λ ∈ E, f is a partial mapping of M into M , and w ∈ E∗

(i.e. w is a string of labels). Suppose a set R of E-instructions over M is given
such that dom f1∩dom f2 = ∅ whenever (λ, f1, w1) and (λ, f2, w2) are two distinct
elements of R. Let ̺ be the least defined partial mapping of E∗ ×M into itself
such that ̺(vλ, x) = (vw, f(x)) whenever v ∈ E∗, (λ, f,w) ∈ R, and x ∈ dom f

(this partial mapping is denoted by S in [15]). Let π be the least defined partial
mapping of E∗×M into itself such that π(λv, x) = (v, x) whenever λ ∈ E, v ∈ E∗,
x ∈M . Then 〈E∗ ×M,π, ̺〉 is a goal space.

Definition 1. Let G′, G ∈ G. We shall say that G′ is a beginning of G iff
G′ = πp(G) for some non-negative integer p. We shall then write G′ ≤ G.

R e m a r k 1. This terminology is appropriate for a “standard” example of
goal space, as mentioned in the first paragraph of this section. In the case of a
goal space of the kind considered in Example 2, the term “end” would be more
appropriate than “beginning”.

From the above definition, reflexivity and transitivity of≤ follow immediately.
The definition also implies that any two beginnings of an abstract goal are com-
parable in the sense that one of them is a beginning of the other. To prove that
≤ is a partial ordering in G, it is sufficient to prove that p = 0 is the only case
when G ∈ dom(πp) and πp(G) = G (this obviously implies the anti-symmetry of
≤). The proof is straightforward: if G ∈ dom(πp) and πp(G) = G then an easy in-
duction shows that, for each natural number n, G ∈ dom(πnp) and πnp(G) = G,
and, due to the property from Lemma 1, this is possible only if p = 0. Note
that the statement just proved also implies the following property of π: when-
ever G ∈ dom(πk), G ∈ dom(πl) and πk(G) = πl(G), then k = l. So there is a
one-to-one correspondence between the set of all beginnings of a given element G
of G and the set of all natural numbers p satisfying G ∈ dom(πp).

156 D. SKORDEV

Proposition 1. Let k and l be non-negative integers, and let G ∈ dom(πk),
G ∈ dom(πl). Then πk(G) ≤ πl(G) iff k ≥ l.

P r o o f. If πk(G)≤πl(G) then πk(G) = πp(πl(G)) = πp+l(G) for some natural
number p, hence k= p + l and therefore k≥ l. Conversely, if k≥ l then πk(G) =
πk−l(πl(G)) ≤ πl(G).

Of course, each element of G belongs to dom(π0), and whenever G 6∈ dom(πk),
then G 6∈ dom(πi) for all i > k. Hence, for each goal G, there is a greatest non-
negative integer i with G ∈ dom(πi).

Definition 2. If G ∈ G then the greatest non-negative integer i satisfying
G ∈ dom(πi) will be called the length of G and denoted by |G|.

This definition immediately yields

Proposition 2. For all G in dom(πp), |πp(G)| = |G| − p.

Corollary 1. Let G′ and G′′ be beginnings of one and the same goal. Then

G′′ ≤ G′ iff |G′′| ≤ |G′|.

So, if a goal G has length l, then, assigning to each beginning of G its length,
we get an order preserving one-to-one correspondence between the set of all be-
ginnings of G and the set {0, 1, . . . , l}. Therefore, we may use without ambiguity
phrases like “the shortest beginning of G such that . . .” in all cases when there is
at least one beginning of G with the considered property.

Using the inclusion ̺π ⊆ π̺, one easily proves (by induction) that ̺rπp ⊆ πp̺r

for all natural numbers r and p. Hence we get the following proposition.

Proposition 3. Let r be a natural number , G′ ∈ dom(̺r) and G′ ≤ G. Then:
(i) G ∈ dom(̺r) and ̺r(G′) ≤ ̺r(G); (ii) |̺r(G)| − |̺r(G′)| = |G| − |G′| and

(iii) if G ≤ ̺r(G) then G′ ≤ ̺r(G′).

P r o o f. Let p be a natural number such that G′ = πp(G). Then ̺r(G′) =
̺rπp(G). Therefore G ∈ dom(πp̺r), hence G ∈ dom(̺r), and ̺r(G′) = πp̺r(G)
= πp(̺r(G)) ≤ ̺r(G). By Proposition 2, we get |G′| = |G| − p, |̺r(G′)| =
|̺r(G)| − p. From these equalities we see that |̺r(G)| − |̺r(G′)| = |G| − |G′| = p.
Suppose now that G ≤ ̺r(G). Then G = πq(̺r(G)) for some natural number q.
Hence G′ = πp(πq(̺r(G))) = πq(πp(̺r(G))) = πq(̺r(G′)) ≤ ̺r(G′).

R e m a r k 2. The statement (i) follows easily (by induction) from its special
case when r = 1.

5. Cyclic elements and periodic loops in goal spaces. We again suppose
that a goal space 〈G, π, ̺〉 is given. Now we shall try to define a convenient notion
of a cyclic element of G, having in mind an element which in some sense reproduces
itself after application of some function ̺r with a positive r (the period of the
considered cyclic element). The simplest solution would be to call an element G of
G cyclic with period r iff G ∈ dom(̺r) and ̺r(G) = G. This, however, would not

DETECTION OF PERIODIC LOOPS 157

be a convenient definition, for the reasons mentioned in Section 2. Nevertheless,
to have a term for this notion, we shall call any such element G perfectly cyclic

with period r.
An essential property of perfectly cyclic elements with period r is that they

all belong to dom ̺ and are transformed by ̺ again into such elements. Let us
call a subset E of G invariant with respect to ̺ iff E ⊆ dom ̺ and ̺(G) ∈ E
for each G from E . Then the above property of perfectly cyclic elements can be
expressed by the statement that, for any positive integer r, the set of perfectly
cyclic elements of G with period r is invariant with respect to ̺. It is desirable
that a similar statement holds for the better notion of cyclic element which we
want to introduce. Namely, it is clear that in this case obtaining a cyclic goal
in the process of execution of a Prolog program will imply non-termination of
the execution: whenever E is a subset of G invariant with respect to ̺, then
E ⊆ dom(̺i) for each natural number i.

A better notion of cyclic element is given by the following definition.

Definition 3. Let r be a positive integer. An element G of G will be called
strongly cyclic with period r iff G ∈ dom(̺r) and G ≤ ̺r(G).

The state of affairs considered in the above definition can be visualized by
Fig. 1.

Fig. 1. A strongly cyclic element G with period r

R e m a r k 3. The reflexivity of the relation ≤ ensures that all perfectly cyclic
elements with period r are strongly cyclic with period r.

Proposition 4. For each positive integer r, the set of strongly cyclic elements

of G with period r is invariant with respect to ̺.

P r o o f. Let r be a positive integer, and let G be an element of G strongly
cyclic with period r. Clearly (since G ∈ dom(̺r)), G ∈ dom ̺. Using this fact,
the inequality G ≤ ̺r(G) and Proposition 3(i), we conclude that ̺r(G) ∈ dom ̺

and ̺(G) ≤ ̺(̺r(G)) = ̺r(̺(G)). Hence ̺(G) is again a strongly cyclic element
with period r.

In the Prolog interpretation of what we are now doing, an abstract goal G
is strongly cyclic with period r if it has the following property: starting from
an ordinary goal belonging to G, we can do r consecutive canonical resolution
steps, and after doing them we shall have an ordinary goal with a beginning

158 D. SKORDEV

equal to the initial ordinary goal up to renaming variables. This situation is more
frequently encountered than the complete repetition of the goal up to renaming
variables. However, we can further enlarge the applicability of our considerations
by introducing a further, more general notion of a cyclic element.

Definition 4. Let r be a positive integer. An element G of G will be called
cyclic with period r iff some beginning of G is strongly cyclic with period r.

The state of affairs considered in this definition can be visualized by Fig. 2.

Fig. 2. A cyclic element G with period r and a strongly cyclic beginning G′ of G

R e m a r k 4. The reflexivity of the relation ≤ ensures that all strongly cyclic
elements with period r are cyclic with period r.

Proposition 5. For each positive integer r, the set of cyclic elements of G
with period r is invariant with respect to ̺.

P r o o f. Let G be cyclic with period r. Then some beginningG′ of G is strongly
cyclic with period r. By Proposition 4, G′∈dom ̺ and ̺(G′) is also strongly cyclic
with period r. By Proposition 3(i), G∈dom ̺ and ̺(G′) ≤ ̺(G). Hence ̺(G) has
a beginning which is strongly cyclic with period r.

We are now ready to say which kind of loops will be considered.

Definition 5. An element G of G is called cyclic iff there is a positive integer
r such that G is cyclic with period r.

From this definition and Proposition 5 we get the following corollary.

Corollary 2. If G is a cyclic element of G then G ∈ dom(̺i) for each

natural number i.

Definition 6. A ̺-path in G is a finite or infinite sequence {Gt}t∈I of elements
of G, where I is some finite initial segment of the set N = {0, 1, 2, . . .} or I = N ,
and the following condition is satisfied: for each t in I, the number t+ 1 belongs
to I iff Gt ∈ dom ̺, in this case the equality Gt+1 = ̺(Gt) being valid.

Definition 7. Let {Gt}t∈I be a ̺-path in G. We say that a periodic loop

(with period r) is present in this ̺-path iff there is a cyclic element (with period r)
among its members Gt.

Proposition 6. If a periodic loop with period r is present in the ̺-path

{Gt}t∈I then I = N and all Gt from some t on are cyclic with period r.

DETECTION OF PERIODIC LOOPS 159

P r o o f. By Proposition 5 and Definition 6, if t ∈ I and Gt is a cyclic element
with period r, then t+ 1 ∈ I and Gt+1 is a cyclic element with period r, too.

Here is a simple example of a periodic loop of the above kind, arising in the
execution of a Prolog program.

Example 3. Let the following propositional Prolog program be given:

p :− q.

q.

r :− p, r, q.

s :− p, r, s.

Assume that the query ?− q, s must be evaluated. Since no variables are present
in the program clauses and in the query, we shall use ordinary goals instead of
abstract ones as elements of the goal space G (the definitions of π and ̺ are, of
course, easier in this case). The first six members of the ̺-path generated in the
evaluation process are:

G0 :− q, s. G3 :− q, r, s.

G1 :− s. G4 :− r, s.

G2 :− p, r, s. G5 :− p, r, q, s.

They are sufficient to see that a periodic loop with period 3 is present in this
̺-path: although G2 is not a beginning of G5, the beginning :− p, r of G2 goes
into the goal :− p, r, q after three canonical resolution steps (in some sense, the
additional subgoal s plays no essential role and remains passive during the corre-
sponding three canonical resolution steps starting with the whole G2). Note that
the beginning :− p of G2 is “too short” for it being possible to do three canonical
resolution steps starting with it.

Our next task will be to give a convenient means for checking whether an
element of a goal space is a cyclic goal with a period not exceeding some given
upper bound.

According to Definition 4, to check whether a given element G of G is cyclic
with a given period r, we ought to check all beginnings of G whether they are
strongly cyclic with this period. Fortunately, there is a much better strategy.
Namely, Proposition 3 implies the following statements: (i) if an element of G is
cyclic with period r then it belongs to dom(̺r); (ii) whenever an element G′ of G
is strongly cyclic with period r, then each beginning of G′ belonging to dom(̺r)
is also strongly cyclic with period r. Of course, if an element G of G belongs to
dom(̺r) then there is a shortest beginning of G belonging to dom(̺r). This leads
to the following conclusion:

Proposition 7. Let r be a positive integer. An element G of G is cyclic with

period r iff G ∈ dom(̺r) and the shortest beginning of G belonging to dom(̺r)
is strongly cyclic with period r.

160 D. SKORDEV

A further simplification of the checking procedure is possible.

Proposition 8. Let r be a positive integer , G′, G ∈ dom(̺r), G′ ≤ G, G′ ≤
̺r(G) and |G| ≤ |̺r(G)|. Then G′ is strongly cyclic with period r, and hence G

is cyclic with period r.

P r o o f. By Proposition 3(iii),

(1) |̺r(G)| − |G| = |̺r(G′)| − |G ′| .

Hence |G′| ≤ |̺r(G′)|. But bothG′ and ̺r(G′) are beginnings of ̺r(G). Therefore
(by Corollary 1), G′ ≤ ̺r(G′), i.e. G′ is strongly cyclic with period r.

Theorem 1. Let G be an arbitrary element of G. Then G is cyclic with

period r iff G ∈ dom(̺r), |G| ≤ |̺r(G)| and the shortest beginning of G belonging

to dom(̺r) is a beginning of ̺r(G).

P r o o f. Suppose G is cyclic with period r. Then, by Proposition 6, G ∈
dom(̺r) and, denoting byG′ the shortest beginning ofG belonging to dom(̺r), we
have G′ ≤ ̺r(G′). Since ̺r(G′)≤̺r(G), we get G′≤̺r(G). By Proposition 3(iii),
we also have (1). Since |G′| ≤ |̺r(G′)|, we get |G| ≤ |̺r(G)|.

The converse follows from Proposition 8.

Theorem 1 reduces the check whether a given element G of G is periodic with
a given period r to checking whether G ∈ dom(̺r) and, in case this condition is
satisfied, to finding ̺r(G) and the shortest beginning of G belonging to dom(̺r)
(in the Prolog interpretation of the present considerations, the other things which
must be done cause no difficulties, and we shall consider them “easy” also in the
general case). Checking whether an element belongs to dom(̺r) and finding ̺r(G)
in such a case cause no additional troubles if proceeding without loop detecting
activities requires generating consecutively ̺i(G) for all i such that G ∈ dom(̺i).
So the problem is how to find efficiently the shortest beginning of G belonging to
dom(̺r) (in case G ∈ dom(̺r)). To make steps in this direction, we shall also use
the property from Lemma 3.

Proposition 9. Let G ∈ dom ̺. Then the shortest beginning of G belonging

to dom ̺ has length 1.

P r o o f. Since G ∈ dom ̺, the first inclusion from Lemma 3 shows that G ∈
domπ and hence |G| ≥ 1. If p is a non-negative integer such that p ≤ |G|− 2 and
πp(G) ∈ dom ̺ then, using the second inclusion from Lemma 3 and the fact that
πp(G) ∈ dom(π2), we get πp(G) ∈ dom(̺π), which implies πp+1(G) ∈ dom ̺.
Since π0(G) = G ∈ dom ̺ the above remark shows that πp(G) ∈ dom ̺ for
all non-negative integers p satisfying p ≤ |G| − 1. In particular, this is true for
p = |G|−1. On the other hand, π|G|(G) 6∈ domπ and hence π|G|(G) 6∈ dom ̺. By
Definition 1 and Proposition 1, π|G|−1(G) is the shortest beginning of G belonging
to dom ̺, and, by Proposition 2, its length is 1.

DETECTION OF PERIODIC LOOPS 161

Theorem 2. Let G ∈ dom(̺r). For i = 0, 1 . . . , r, let li denote |̺i(G)| and

pi be the greatest non-negative integer p not exceeding |G| such that πp(G) ∈
dom(̺i). Then p0 = |G| and pi+1 = min{pi, li − 1} for i = 0, 1, . . . , r − 1.

P r o o f. The equality p0 = |G| follows from the fact that πp(G) ∈ dom(̺0)
for all non-negative integers p ≤ |G|. Suppose now i is a non-negative integer less
than r. Then G ∈ dom(̺i+1), i.e. G ∈ dom(̺i) and ̺i(G) ∈ dom ̺. Let p be a
non-negative integer not exceeding |G|, and let G′ = πp(G). In order to have G′ ∈
dom(̺i+1), it is necessary and sufficient to have G′ ∈ dom(̺i) and ̺i(G′) ∈ dom ̺.
The condition G′ ∈ dom(̺i) is equivalent to p ≤ pi. Since ̺i(G′) ≤ ̺i(G)∈dom ̺,
application of Propositions 9 and 3 shows that ̺i(G′) ∈ dom ̺ iff |̺i(G′)| ≥ 1. If
G′ ∈ dom(̺i) then, by Proposition 3(iii), |̺i(G′)| = |̺i(G)|− (|G|− |G′ |) = li −p.
Hence the inequality |̺i(G′)| ≥ 1 in the above necessary and sufficient condition
can be replaced by p ≤ li − 1. Therefore G′ ∈ dom(̺i+1) iff p ≤ min{pi, li − 1}.
Since pi ≤ |G| the equality pi+1 = min{pi, li − 1} is thus established.

Theorems 1 and 2 give the following method for checking whether a given
element G of G is cyclic with period r, where r is a given positive integer. We
generate consecutively the elements ̺i(G) for i = 1, . . . , r, and calculate the
corresponding numbers pi using the equalities from Theorem 2. If some of these
̺i(G) turns out to be undefined, then surely G will not be cyclic. Suppose all of
them, including ̺r(G), are defined. Then the shortest beginning of G belonging
to dom(̺r) will be G′ = πp(G) with p = pr, and we check whether |G| ≤ |̺r(G)|
and whether G′ ≤ ̺r(G). By Theorem 1, the element G will be cyclic with period
r iff both these conditions are satisfied.

Only a small modification of the above method is needed to make it applicable
for checking whether an element G of G is periodic with period not exceeding
a positive integer r. The modification is the following: when some ̺i(G) with
1 ≤ i ≤ r turns out to be defined, we check whether |G| ≤ |̺i(G)| and whether
πp(G) ≤ ̺i(G) for p = pi.

Example 4. In the situation of Example 3, we shall use the above method for
checking whether G = G2 is cyclic with period not exceeding 3. To do this, we
must generate ̺(G) = G3, ̺

2(G) = G4, ̺
3(G) = G5 and calculate the numbers

p1, p2, p3 (p1 = 2, p2 = 2, p3 = 1). Since π2(G2) is not a beginning of G3, and
|G2| > |G4|, it is clear that G is not cyclic with period 1 or 2. On the other hand,
|G2| < |G5|, and π1(G2) is a beginning of G5. Hence G is cyclic with period 3.

6. Detection of periodic loops in goal spaces. We again assume that a
goal space 〈G, π, ̺〉 is fixed. Now we also suppose that a ̺-path {Gt}t∈I in G is
given. The problem to be considered is how to detect a possible periodic loop in
this ̺-path.

By Proposition 6, if a periodic loop with period r is present in {Gt}t∈I , then
I = N and all Gt from some t on are cyclic elements of G with period r. This fact

162 D. SKORDEV

allows one to detect loops of the considered kind by some methods proposed ear-
lier for detection of loops with complete repetitions of the computational states.
Convenient methods are, for example, R. P. Brent’s method described in [8, Sec-
tion 3.1, Exercise 7] and a similar method proposed in [14]. Each of them uses,
so to say, temporary recording of the computational states at moments which are
members of a fixed increasing sequence of natural numbers. For Brent’s method,
this is the sequence 0, 1, 3, 8, 15, 31, 63, . . . of numbers of the form 2n − 1; for the
other method the sequence is 0, 1, 3, 8, 21, 55, 144, . . . , the Fibonacci numbers with
even indices. More generally, we have (compare with Lemma 2 in [14]).

Theorem 3. Let τ0, τ1, τ2, . . . be a strictly increasing infinite sequence of nat-

ural numbers such that the sequence {τn+1−τn}
∞
n=0 is unbounded. Then the pres-

ence of a periodic loop in {Gt}t∈I is equivalent to the existence of a natural number

n with the following properties: (i) τn ∈ I; (ii) the element Gτn
of G is cyclic with

period not exceeding τn+1 − τn.

P r o o f. We only have to prove that the presence of a periodic loop in {Gt}t∈I

implies the existence of a natural number n with the properties (i) and (ii).
Suppose there is a periodic loop with period r in {Gt}t∈I . Then τn ∈ I for all n,
and all Gτn

from some n on are cyclic with period r. On the other hand, there
are infinitely many n such that τn+1 − τn ≥ r. Hence there is an n satisfying
all three conditions just formulated: τn ∈ I, Gτn

is cyclic with period r, and
τn+1 − τn ≥ r.

The practical application of this theorem is as follows: in the process of gen-
erating the goals G0, G1, G2 . . . , whenever some Gτn

is reached without a loop
being detected, this goal is recorded temporarily, and the process of generating
the goals Gt with τn < t ≤ τn+1 is accompanied with checking whether Gτn

is
cyclic with period not exceeding τn+1 − τn (it was shown in the previous section
how this checking can be done). Two examples follow, where τ0 = 0, τ1 = 1,
τ2 = 3, τ3 = 8 (further τn are not used in these examples).

Example 5. Let P be the Prolog program

r(f(X),Y) :− r (X,U), r(U,V), r(V,Y).

r(c, f(c)).

r(f(c), f(c)).

Let the query to be evaluated be ?− r(f(c), f(Z)) (writing this query and writ-
ing other goals further, we shall have in mind the corresponding abstract goals).
Then an execution of the program leads to the following infinite sequence of
goals:

G0 :− r(f(c), f(Z)).

G1 :− r(c,U), r(U,V), r(V, f(Z)).

G2 :− r(f(c),V), r(V, f(Z)).

DETECTION OF PERIODIC LOOPS 163

G3 :− r(c,U1), r(U1,V1), r(V1,V), r(V, f(Z)).

G4 :− r(f(c),V1), r(V1,V), r(V, f(Z)).

G5 :− r(c,U2), r(U2,V2), r(V2,V1), r(V1,V), r(V, f(Z)).
. .

To detect the loop which is present in the execution, the execution algorithm for
Prolog programs has to be extended with additional activities aiming at the de-
tection. In this example, we must first check whether G0 is cyclic with period 1.
For that purpose, when G1 is generated, we calculate the corresponding number
p1 (the result is p1 = 0), and check whether |G0| ≤ |G1| and π0(G0)≤G1. Since
this is not the case, we go on. We check whether G1 is cyclic with a period not
exceeding 2. For that purpose, whenG2 is generated, we calculate the correspond-
ing p1 (the result is p1 = 2), and check whether |G1| ≤ |G2| and π2(G1) ≤ G2.
Again this is not the case, and we go further. When G3 is generated, we calculate
p2 (the result is p2 = 1), and check whether |G1| ≤ |G3| and π1(G1) ≤ G3. It
turns out that this is indeed the case, and so the loop is detected by seeing that
G1 is cyclic with period 2.

Example 6. The program will be the same as in Example 5, but the query
will now be ?− r(f(f(f(c))), f(Z)). We shall now think from the very beginning
about an execution combined with detection activities. To visualize things and to
present them in a more compact form, we shall mark by ∗ the lines whose numbers
are of the form τn. For the same purpose, the value of each number pi = pt−τn

,
calculated after generating a Gt with τn < t ≤ τn+1 will be represented by means
of a broken line which divides the listing of each goal Gs with τn ≤ s ≤ t into
two parts, the right one containing exactly pi atomic formulas. And we shall
immediately stop generating new goals when a loop is detected.

If we proceed as explained above, we get the following picture (note that the
broken line representing the number p1, calculated after generating G2, is a part
of the line representing p2, calculated after generating G3, due to the equality
p1 = p2):

G0 ∗ :− r(f(f(f(c))), f(Z)).

G1 ∗ :− r(f(f(c)),U), r(U,V), r(V, f(Z)).

G2 :− r(f(c),U1), r(U1,V1), r(V1,U), r(U,V), r(V, f(Z)).

G3 ∗ :− r(c,U2), r(U2,V2), r(V2,U1), r(U1,V1), r(V1,U), r(U,V),

r(V,f(Z)).

G4 :− r(f(c),V2), r(V2,U1), r(U1,V1), r(V1,U), r(U,V), r(V, f(Z)).

G5 :− r(c,U3), r(U3,V3), r(V3,V2), r(V2,U1), r(U1,V1), r(V1,U), r(U,V),

r(V,f(Z)).

Our algorithm shows that G3 is cyclic with period 2 (since |G3| < |G5|, and the
sequence r(c,U2), r(U2,V2) coincides, up to renaming variables, with r(c,U3),
r(U3,V3)). So a periodic loop with period 2 has been detected.

164 D. SKORDEV

Let us consider also an example of application of the detection method in the
case where no loop is present during the depth-first search.

Example 7. Let the query be ?− r(Y, c), and the program be

r(c,b).

r(a,X) :− r(X,b), r(c,X).

r(X, a) :− r(b,X), r(X,b).

r(X,X) :− r(b,X), r(X, a).

r(b,X) :− r(X,b).

Then the initial depth-first part of the execution process looks as follows, when
accompanied with loop detection activities (the same conventions are adopted as
in the previous example):

G0 ∗ :− r(Y, c).

G1 ∗ :− r(c,b), r(c, c).

G2 :− r(c, c).

G3 ∗ :− r(b, c), r(c, a).

G4 :− r(c,b), r(c, a).

G5 :− r(c, a).

G6 :− r(b, c), r(c,b).

G7 :− r(c,b), r(c,b).

G8 ∗ :− r(c,b).

G9 :−.

Here the check of the inequality |G| ≤ |̺r(G)| eliminates all cases except com-
paring G0 with G1, G1 with G3, and G3 with G4, G6, G7. In these cases the in-
equalities π0(G0) ≤ G1, π

0(G1) ≤ G3, π
1(G3) ≤ G4, π

0(G3) ≤ G6, π
0(G3) ≤ G7

have to be checked, and none of them turns out to hold (4).

R e m a r k 5. Since the presented loop detection method is applicable in the
case of arbitrary goal spaces, Example 2 shows that periodic loops in the execu-
tion of deterministic recursive algorithms can also be detected by means of this
method. An example follows.

Example 8. In the notations of Example 2, let E consist of two labels, A and
B, and M be the set of integers. Let R consist of the following four E-instructions

(4) If we try to apply the loop detection method from [16] to the considered program ex-
ecution, then we shall obtain the incorrect conclusion that a loop is present, since G6 has the
same first subgoal as G3. When using our method, we have to check whether the whole G3 is a
beginning of G6, and this is not the case.

DETECTION OF PERIODIC LOOPS 165

over M :
(A, 2x 7→ 3x+ 1,BA), (A, 2x+ 1 7→ x+ 2, ε),

(B, 2x 7→ x+ 1, ε), (B, 2x + 1 7→ 3x+ 2,AB),

where x ranges over M , and ε is the empty string. The ̺-paths in the correspond-
ing goal space from Example 2 can be regarded as representing computations
based on the following recursive definition of partial unary functions A and B

in M :
A(2x) := B(A(3x+ 1)), A(2x+ 1) := x+ 2,

B(2x) := x+ 1, B(2x+ 1) := A(B(3x+ 2)) .

For instance, the process of computation of A(162) can be represented by means
of a ̺-path looking as follows: (A, 162), (BA, 244), (BBA, 367), (BB, 185),
(BAB, 278), (BA, 140), (BBA, 211), (BB, 107), (BAB, 161), (BAAB, 242),
(BAA, 122), (BABA, 184), (BABBA, 277), (BABB, 140), (BAB, 71),
(BAAB, 107), (BAAAB, 161), . . . Applying the method in question to this ̺-
path and using the sequence 0, 1, 3, 8, 21, . . . , we observe that (BAB, 161) is a
cyclic goal and therefore the ̺-path is infinite. Thus A(162) is undefined.

Acknowledgments. The main part of the present paper was written, in
essential, in June 1990 during the author’s stay at the Institute of Practical Com-
puter Science of the University in Duisburg, Federal Republic of Germany. The
author is indebted to the participants of the Institute Seminar for useful com-
ments concerning the loop detection problem. Special thanks are due to Professor
Dr. H. Kleine Büning and to Dr. Th. Lettmann; the discussions with them helped
the author to better feel some specific features of the above problem in the case
of Prolog programs. The author is also very grateful to Professor Dr. E. Börger
and to Professor Dr. W. Schönfeld who gave him much information about other
investigations of the problem. The author greatly appreciates the invitation from
the Banach Center in Warsaw, which offered him the possibility to present his
results in a lecture and in this paper. Finally, he thanks an anonymous referee for
some helpful suggestions.

References

[1] Ph. Besnard, On infinite loops in logic programming , Rapports de Recherche 1096,
IRISA, Rennes 1989.

[2] R. N. Bol, K. R. Apt and J. W. Klop, An analysis of loop checking mechanisms for logic
programs, technical report, Centre for Mathematics and Computer Science, Amsterdam
1989.

[3] D. R. Brough and A. Walker, Some practical properties of logic programming inter-
preters, in: Internat. Conf. on Fifth Generation Computer Systems, Institute for New
Generation Computing, Tokyo 1984, 149–156.

[4] M. A. Cov ington, Eliminating unwanted loops in logic programming , SIGPLAN Notices
20 (1) (1985), 20–26.

166 D. SKORDEV

[5] M. A. Cov ington, A further note on looping in Prolog , ibid. 20 (8) (1985), 28–31.
[6] D. de Schreye, M. Bruynooghe and K. Verschaetse, On the existence of nontermi-

nating queries for a restricted class of Prolog clauses, Artificial Intelligence 41 (1989/90).
[7] H. Kle ine Bün ing, U. L öwen and S. Schmitgen, Loop detection in propositional

Prolog programs, in: CSL ’88, 2nd Workshop on Computer Science Logic, Duisburg, Oc-
tober 3–7, 1988, E. Börger, H. Kleine Büning and M. M. Richter (eds.), Lecture Notes in
Comput. Sci. 385, Springer, 1989, 148–165.

[8] D. Knuth, The Art of Computer Programming , Vol. 2, Seminumerical Algorithms, second
ed., Addison-Wesley, Reading, Mass., 1981.

[9] A. Mazurk iewicz, Recursive algorithms and formal languages, Bull. Acad. Polon. Sci.
Sér. Sci. Math. Astronom. Phys. 20 (1972), 799–803.

[10] D. Nute, A programming solution to certain problems with loops in Prolog , SIGPLAN
Notices 20 (8) (1985), 32–37.

[11] L. Plümer, Termination proofs for logic programs, dissertation, Univ. Dortmund, 1989.
[12] D. Poole and R. Goebe l, On eliminating loops in Prolog , SIGPLAN Notices 20 (8)

(1985), 38–40.
[13] A. Schmücker, Analyse und Transformationen von Hornklausel-Programmen unter Ver-

wendung von Templateketten, dissertation, Univ. Kaiserslautern, 1986.
[14] D. Skordev, An extremal problem concerning the detection of cyclic loops, C. R. Acad.

Bulgare Sci. 40 (10) (1987), 5–8.
[15] —, On the detection of periodic loops in computational processes, J. Symbolic Logic 57

(1992), 335–336.
[16] A. Van Gelder, Efficient loop detection in Prolog using the tortoise-and-hare technique,

J. Logic Programming 4 (1987), 23–31.

