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Abstract. A Navier–Stokes type equation corresponding to a non-linear relationship be-
tween the stress tensor and the velocity deformation tensor is studied and existence and unique-
ness theorems for the solution, in the 3-dimensional case, of the Cauchy–Dirichlet problem, for
a bounded solution and for an almost periodic solution are given. An inequality which in some
sense is the limit of the equation is also considered and existence theorems for the solution of
the Cauchy–Dirichlet problems and for a periodic solution are stated.

1. Introduction. I wish to present some results regarding a Navier–Stokes
type equation and its corresponding inequality. The results will only be stated
here; for their proofs, the reader is referred to the original papers.

The starting point for the introduction of the Navier–Stokes type equation I
shall consider, which is a modification of the classical Navier–Stokes equation for
an incompressible fluid, is the observation that, for large values of the velocity,
there is no experimental evidence that the linear relationship between the stress
tensor and the deformation velocity tensor (on which the classical Navier–Stokes
equations are based) continues to hold. It does not therefore seem unreasonable
to substitute this relationship with one which is not linear when the velocity is
“large”.

The choice of this relationship is made in such a way that (i) it is physically sig-
nificant, (ii) it reduces to the classical one when the velocity is “not large”, (iii) for
the corresponding Navier–Stokes type equation a global existence and uniqueness
theorem holds for the solution, in the 3-dimensional case, of the Cauchy–Dirichlet
problem (1).

Let σ(ξ) be a function, defined for 0 ≤ ξ ≤ ξ, ξ ≤ +∞, satisfying the following
conditions:

(1) For the Navier–Stokes equations, this theorem is known only for plane flows.
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(a) σ(ξ) ∈ C1[0,∞), σ(ξ) ≥ µ > 0, σ′(ξ) ≥ 0;
(b1) if ξ = +∞ and M > 0 is an arbitrary fixed value, then σ(ξ) ≥ α1ξ

3 when
ξ ≥M (α1 > 0);

(b2) if ξ < +∞, then limξ→ξ̄− σ(ξ) = +∞.

I shall assume that the relationship between the stress tensor T = {τij} and
the deformation velocity tensor S = {ηij} = { 1

2 (∂ui/∂xj + ∂uj/∂xi)} (ui being
the components of the velocity) is given by

(1.1) τij = −pδij +
1
2

(
∂φi(u)
∂xj

+
∂φj(u)
∂xi

)
having denoted by p the pressure and setting

(1.2) φi(u) = σ(|u|)ui .
It is obvious that, if σ(ξ) = µ (viscosity of the fluid), (1.1) reduces to the classi-

cal linear law. Introducing now (1.1) into the general equations of conservation of
momentum and assuming the fluid is incompressible, the following Navier–Stokes
type equations are obtained:

(1.3)
{
∂u/∂t−∆(σ(|u|)u) + (u · ∇)u−∇p+∇(div(σ(|u|)u) = f ,

div u = 0 ,
to which I shall always refer in Sections 2–4, devoted to the study of various
problems connected with these equations, according to the following plan.

In Section 2 I shall introduce some basic notations and give the definition of
weak solution; a lemma, essentially due to Prodi [6], will also be stated, since it
plays an essential role in the proof of most of the results obtained.

Section 3 is devoted to the statements of existence and uniqueness theorems for
the global solution of the Cauchy–Dirichlet problem in the 3-dimensional case and
of existence and uniqueness theorems for a solution bounded on J = (−∞,+∞);
the latter results are due to Iannelli [5], the former to Prouse [7].

In Section 4 the almost-periodicity of the bounded solution is investigated and
the existence and uniqueness of an almost-periodic solution is proved under the
assumption that f(t) is almost-periodic and “sufficiently small” (depending on Ω,
µ, α1). This theorem is due to Iannelli [5].

Finally, in Section 5, a Navier–Stokes type inequality associated with (1.3) is
studied. It is shown, first, that this inequality can be considered as a “limit” case
of equations (1.3) when the function σ(ξ) tends to the “limit” function

(1.4) σ̂(ξ) =
{
σ(ξ) when 0 ≤ ξ ≤M ,
+∞ when ξ > M

and a global existence and uniqueness theorem is proved for the solution of the
Cauchy–Dirichlet problem. Subsequently, the periodicity of the solutions is inves-
tigated and the existence and uniqueness of a periodic solution with the same
period as the known term is proved.

The results of this section are due to Collini [2], [3].
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2. Basic notations and definitions. Let Ω be an open, bounded set with
boundary of class C2 (2) and letN be the set of C∞ vectors with compact support
and null divergence in Ω. I shall denote by N0 and N1 respectively the closures
of N in L2(Ω) and in H1(Ω) and by N−1 the dual of N1.

The scalar products in N0, N1, N−1 are defined respectively by

(u,v)N0 = (u,v)L2(Ω) ,

(u,v)N1 = (u,v)H1
0 (Ω) = ((−∆)1/2u, (−∆)1/2v)L2(Ω) ,(2.1)

(u,v)N−1 = (u,v)H−1(Ω) = (G1/2u, G1/2v)L2(Ω)

where G is Green’s operator, from N−1 to N1 relative to −∆.
Assuming that f(t) ∈ L2(0, T ;L1), the vector u will be called a weak solution

of (1.3) in Q = Ω× (0, T ) satisfying a homogeneous Dirichlet boundary condition
if

(i) u(t) ∈ L2(0, T ;N1) ∩ L5(0, T ;L5) ∩ H1(0, T ;L2) and ∆(σ(|u|)u(t)) ∈
L2(0, T ;L2);

(ii) u satisfies, ∀h(t) ∈ L2(0, T ;H2 ∩N1), the equation
T∫

0

∫
Ω

((
∂u
∂t

+ (u · ∇)u− f
)
· h− φ(u) ·∆h

)
dΩ dt = 0 .

If we assume that σ(ξ) satisfies, in addition to (a), (b1), the condition

(c) α1ξ
s−1 ≤ σ(ξ) ≤ α2ξ

s−1 (ξ ≥M,α1, α2 > 0, s ≥ 4),

i.e. if the asymptotic behaviour of σ(ξ) is of polynomial type, of degree ≥ 3, then
the definition of solution given above can be substituted by the weaker one:

(i′) u(t) ∈ L∞(0, T ;N0) ∩ Ls+1(0, T ;Ls+1) ∩ H1,(s+1)/s(0, T ; (H2,s+1)′) ∩
L2(0, T ;N1);

(ii′) u satisfies, ∀h(t) ∈ L∞(0, T ;N0)∩Ls+1(0, T ;H2,s+1)∩L2(0, T ;N1), the
equation

〈u′ −∆φ(u) + (u · ∇)u− f ,h〉 = 0 .
The corresponding definitions of solution on J = (−∞,+∞) follow directly

from the preceding ones, on substituting the interval (0, T ) with a generic interval
(a, b) of the t-axis.

As already mentioned, most of the proofs of the theorems stated in the next
three sections are based on the following lemma, due essentially to Prodi.

Lemma. Let u ∈ N0, v ∈ L5(Ω); then, ∀µ > 0,

|〈(u · ∇)v, Gu〉| ≤ µ

4
‖u‖2L2 + C‖v‖5L5‖u‖2N−1 ,

where C depends only on µ and Ω.

(2) This assumption is made for the sake of simplicity; the results hold under much more
general conditions on Ω (see [4]).
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3. Existence and uniqueness theorems. Consider, first, the Cauchy prob-
lem, assigning the value of u at the time t = 0:

(3.1) u(0) = u0 .

The following existence and uniqueness theorems hold:

Theorem 3.1. Assume that f(t) ∈ H1(0, T ;N−1), that u0 ∈ N1∩L∞ and that
σ(ξ) satisfies (a), (b1) or (a), (b2). There exists then a unique vector u satisfying
(i), (ii). If (b2) holds then |u| < ξ.

Theorem 3.2. Assume that f(t) ∈ L1(0, T ;N−1), that u0 ∈ N0 and that σ(ξ)
satisfies (a), (c). There exists then a unique vector u satisfying (i′), (ii′).

Regarding the problem of bounded solutions, we have

Theorem 3.3. Assume that

(3.2) sup
t∈J

t+1∫
t

‖f(η)‖L2 dη = K1 < +∞ , sup
t∈J

t+1∫
t

‖f ′(η)‖N−1 dη = K2 < +∞ .

Then, if K1 is sufficiently small (depending only on Ω, µ, α1) there exists a unique
solution u(t) which is bounded on J , i.e. such that

sup
t∈J
‖u‖L2(t,t+1;N1)∩L5(t,t+1;L5)∩H1(t,t+1;N0) ≤M1 < +∞ .

4. Almost-periodic solutions. Almost-periodicity will always be under-
stood in the sense of Bohr, i.e. a function v(t) ∈ C0(J ;B) (where B is a Banach
space) will be called B-almost-periodic if, ∀ε > 0, there exists a relatively dense
set of numbers {τ}ε such that, ∀τ ∈ {τ}ε,

sup
t∈J
‖v(t+ τ)− v(t)‖B < ε .

The elements of the set {τ}ε are called the ε-almost-periods of v(t).
If 〈v(t), h〉 is almost-periodic ∀h ∈ B′, then v(t) is said to be B-weakly almost-

periodic.
The results regarding almost-periodicity are closely related to the existence

and uniqueness of a bounded solution (3); from Theorem 3.3 follows, in fact, an
almost-periodicity result, given by

Theorem 4.1. Assume that f(t), f ′(t) are respectively L2(0, 1;N0)- and
L2(0, 1;N−1)-weakly almost-periodic, i.e. that , for all ε > 0 and h1 ∈ L2(t, t +
1;N0), h2 ∈ L2(t, t+ 1;N−1), there exist two relatively dense sets {τh1}ε, {τh2}ε
such that

sup
t∈J

t+1∫
t

(f(η + τh1)− f(η),h1(η))N0 dη < ε ∀τh1 ∈ {τh1}ε ,

(3) For general results on almost-periodic functional equations see, for instance, [1].
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sup
t∈J

t+1∫
t

(f ′(η + τh2)− f ′(η),h2(η))N−1 dη < ε ∀τh2 ∈ {τh2}ε .

Assume, moreover , that the first equality of (3.2) holds with K1 sufficiently small.
There exists then a unique solution u(t) which is L2(0, 1;N0)-almost-periodic.

5. A Navier–Stokes type inequality. Assume that the relationship be-
tween the stress tensor and the deformation velocity tensor is formally defined by
(1.1), with φ(u) given by (1.2), (1.4). This is obviously a “limit” case to the ones
considered in the preceding sections and physically corresponds to the assump-
tion of the existence of a “barrier” which does not allow the velocity of the fluid
to exceed the value M . Since equations (1.3) lose their meaning in this case, it is
natural to try to define the solution of this problem as the limit, as n → ∞, of
a sequence {un} of solutions of equations (1.3) corresponding to functions σn(ξ)
which approximate σ̂(ξ) given by (1.4).

It can be shown that this is actually possible, since the whole sequence {un}
converges, in an appropriate topology, to the unique solution of the inequality (4)

(5.1) 〈u′ −∆(σ̂(|u|)u) + (u · ∇)u− f , G(u− h)〉 ≤ 0

satisfying the initial condition (3.1). The solution obtained in this way is, more-
over, independent of the approximating sequence {un}. Inequality (5.1) can there-
fore be interpreted as the limit of equations (1.3).

Assuming that f(t) ∈ L2
loc(J ;L2) and is periodic with period T , it can be

proved that there exists a unique solution of (5.1) which is periodic with the
same period T .
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(4) The definitions of solution of the inequality are analogous to (i), (ii), or (i′), (ii′), with
the exception that now both u and h must also belong, a.e. on (0, T ), to the closed convex set
K = {v ∈ L∞(Ω); |v| ≤M}.


